Chapter 1: the United States in Antarctica
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Antarctic Treaty System And
The Antarctic Treaty System and Law During the first half of the 20th century a series of territorial claims were made to parts of Antarctica, including New Zealand's claim to the Ross Dependency in 1923. These claims created significant international political tension over Antarctica which was compounded by military activities in the region by several nations during the Second World War. These tensions were eased by the International Geophysical Year (IGY) of 1957-58, the first substantial multi-national programme of scientific research in Antarctica. The IGY was pivotal not only in recognising the scientific value of Antarctica, but also in promoting co- operation among nations active in the region. The outstanding success of the IGY led to a series of negotiations to find a solution to the political disputes surrounding the continent. The outcome to these negotiations was the Antarctic Treaty. The Antarctic Treaty The Antarctic Treaty was signed in Washington on 1 December 1959 by the twelve nations that had been active during the IGY (Argentina, Australia, Belgium, Chile, France, Japan, New Zealand, Norway, South Africa, United Kingdom, United States and USSR). It entered into force on 23 June 1961. The Treaty, which applies to all land and ice-shelves south of 60° South latitude, is remarkably short for an international agreement – just 14 articles long. The twelve nations that adopted the Treaty in 1959 recognised that "it is in the interests of all mankind that Antarctica shall continue forever to be used exclusively for peaceful purposes and shall not become the scene or object of international discord". -
Of Penguins and Polar Bears Shapero Rare Books 93
OF PENGUINS AND POLAR BEARS Shapero Rare Books 93 OF PENGUINS AND POLAR BEARS EXPLORATION AT THE ENDS OF THE EARTH 32 Saint George Street London W1S 2EA +44 20 7493 0876 [email protected] shapero.com CONTENTS Antarctica 03 The Arctic 43 2 Shapero Rare Books ANTARCTIca Shapero Rare Books 3 1. AMUNDSEN, ROALD. The South Pole. An account of “Amundsen’s legendary dash to the Pole, which he reached the Norwegian Antarctic Expedition in the “Fram”, 1910-1912. before Scott’s ill-fated expedition by over a month. His John Murray, London, 1912. success over Scott was due to his highly disciplined dogsled teams, more accomplished skiers, a shorter distance to the A CORNERSTONE OF ANTARCTIC EXPLORATION; THE ACCOUNT OF THE Pole, better clothing and equipment, well planned supply FIRST EXPEDITION TO REACH THE SOUTH POLE. depots on the way, fortunate weather, and a modicum of luck”(Books on Ice). A handsomely produced book containing ten full-page photographic images not found in the Norwegian original, First English edition. 2 volumes, 8vo., xxxv, [i], 392; x, 449pp., 3 folding maps, folding plan, 138 photographic illustrations on 103 plates, original maroon and all full-page images being reproduced to a higher cloth gilt, vignettes to upper covers, top edges gilt, others uncut, usual fading standard. to spine flags, an excellent fresh example. Taurus 71; Rosove 9.A1; Books on Ice 7.1. £3,750 [ref: 96754] 4 Shapero Rare Books 2. [BELGIAN ANTARCTIC EXPEDITION]. Grande 3. BELLINGSHAUSEN, FABIAN G. VON. The Voyage of Fete Venitienne au Parc de 6 a 11 heurs du soir en faveur de Captain Bellingshausen to the Antarctic Seas 1819-1821. -
2. Disc Resources
An early map of the world Resource D1 A map of the world drawn in 1570 shows ‘Terra Australis Nondum Cognita’ (the unknown south land). National Library of Australia Expeditions to Antarctica 1770 –1830 and 1910 –1913 Resource D2 Voyages to Antarctica 1770–1830 1772–75 1819–20 1820–21 Cook (Britain) Bransfield (Britain) Palmer (United States) ▼ ▼ ▼ ▼ ▼ Resolution and Adventure Williams Hero 1819 1819–21 1820–21 Smith (Britain) ▼ Bellingshausen (Russia) Davis (United States) ▼ ▼ ▼ Williams Vostok and Mirnyi Cecilia 1822–24 Weddell (Britain) ▼ Jane and Beaufoy 1830–32 Biscoe (Britain) ★ ▼ Tula and Lively South Pole expeditions 1910–13 1910–12 1910–13 Amundsen (Norway) Scott (Britain) sledge ▼ ▼ ship ▼ Source: Both maps American Geographical Society Source: Major voyages to Antarctica during the 19th century Resource D3 Voyage leader Date Nationality Ships Most southerly Achievements latitude reached Bellingshausen 1819–21 Russian Vostok and Mirnyi 69˚53’S Circumnavigated Antarctica. Discovered Peter Iøy and Alexander Island. Charted the coast round South Georgia, the South Shetland Islands and the South Sandwich Islands. Made the earliest sighting of the Antarctic continent. Dumont d’Urville 1837–40 French Astrolabe and Zeelée 66°S Discovered Terre Adélie in 1840. The expedition made extensive natural history collections. Wilkes 1838–42 United States Vincennes and Followed the edge of the East Antarctic pack ice for 2400 km, 6 other vessels confirming the existence of the Antarctic continent. Ross 1839–43 British Erebus and Terror 78°17’S Discovered the Transantarctic Mountains, Ross Ice Shelf, Ross Island and the volcanoes Erebus and Terror. The expedition made comprehensive magnetic measurements and natural history collections. -
Mcmurdo STATION MODERNIZATION STUDY Building Shell & Fenestration Study
McMURDO STATION MODERNIZATION STUDY Building Shell & Fenestration Study April 29, 2016 Final Submittal MCMURDO STATION MODERNIZATION STUDY | APRIL 29, 2016 MCMURDO STATION MODERNIZATION STUDY | APRIL 29, 2016 2 TABLE OF CONTENTS Section 1: Overview PG. 7-51 Team Directory PG. 8 Project Description PG. 9 Methodology PG. 10-11 Design Criteria/Environmental Conditions PG. 12-20 (a) General Description (b) Environmental Conditions a. Wind b. Temp c. RH d. UV e. Duration of sunlight f. Air Contaminants (c) Graphic (d) Design Criteria a. Thermal b. Air Infiltration c. Moisture d. Structural e. Fire Safety f. Environmental Impact g. Corrosion/Degradation h. Durability i. Constructability j. Maintainability k. Aesthetics l. Mechanical System, Ventilation Performance and Indoor Air Quality implications m. Structural implications PG. 21-51 Benchmarking 3 Section 2: Technical Investigation and Research PG. 53-111 Envelope Components and Assemblies PG. 54-102 (a) Components a. Cladding b. Air Barrier c. Insulation d. Vapor Barrier e. Structural f. Interior Assembly (b) Assemblies a. Roofs b. Walls c. Floors Fenestration PG. 103-111 (a) Methodology (b) Window Components Research a. Window Frame b. Glazing c. Integration to skin (c) Door Components Research a. Door i. Types b. Glazing Section 3: Overall Recommendation PG. 113-141 Total Configured Assemblies PG. 114-141 (a) Roofs a. Good i. Description of priorities ii. Graphic b. Better i. Description of priorities ii. Graphic c. Best i. Description of priorities ii. Graphic 4 (b) Walls a. Good i. Description of priorities ii. Graphic b. Better i. Description of priorities ii. Graphic c. Best i. Description of priorities ii. -
Asynchronous Antarctic and Greenland Ice-Volume Contributions to the Last Interglacial Sea-Level Highstand
ARTICLE https://doi.org/10.1038/s41467-019-12874-3 OPEN Asynchronous Antarctic and Greenland ice-volume contributions to the last interglacial sea-level highstand Eelco J. Rohling 1,2,7*, Fiona D. Hibbert 1,7*, Katharine M. Grant1, Eirik V. Galaasen 3, Nil Irvalı 3, Helga F. Kleiven 3, Gianluca Marino1,4, Ulysses Ninnemann3, Andrew P. Roberts1, Yair Rosenthal5, Hartmut Schulz6, Felicity H. Williams 1 & Jimin Yu 1 1234567890():,; The last interglacial (LIG; ~130 to ~118 thousand years ago, ka) was the last time global sea level rose well above the present level. Greenland Ice Sheet (GrIS) contributions were insufficient to explain the highstand, so that substantial Antarctic Ice Sheet (AIS) reduction is implied. However, the nature and drivers of GrIS and AIS reductions remain enigmatic, even though they may be critical for understanding future sea-level rise. Here we complement existing records with new data, and reveal that the LIG contained an AIS-derived highstand from ~129.5 to ~125 ka, a lowstand centred on 125–124 ka, and joint AIS + GrIS contributions from ~123.5 to ~118 ka. Moreover, a dual substructure within the first highstand suggests temporal variability in the AIS contributions. Implied rates of sea-level rise are high (up to several meters per century; m c−1), and lend credibility to high rates inferred by ice modelling under certain ice-shelf instability parameterisations. 1 Research School of Earth Sciences, The Australian National University, Canberra, ACT 2601, Australia. 2 Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton SO14 3ZH, UK. 3 Department of Earth Science and Bjerknes Centre for Climate Research, University of Bergen, Allegaten 41, 5007 Bergen, Norway. -
Polar Ice Coring and IGY 1957-58 in This Issue
NEWSLETTER OF T H E N A T I O N A L I C E C O R E L ABORATORY — S CIE N C E M A N AGE M E N T O FFICE Vol. 3 Issue 1 • SPRING 2008 Polar Ice Coring and IGY 1957-58 In this issue . An Interview with Dr. Anthony J. “Tony” Gow Polar Ice Coring and IGY 1957-58 From the early 1950’s through the mid-1960’s, U.S. polar ice coring research was led by two U.S. Army An Interview with Dr. Tony Gow .... 1 Corps of Engineers research labs: the Snow, Ice, and Permafrost Research Establishment (SIPRE), and Upcoming Meetings ...................... 2 later, the Cold Regions Research and Engineering Laboratory (CRREL). One of the high-priority research Greenland Science projects recommended by the U.S. National Academy of Sciences/National Committee for IGY 1957-58 and Education Week ..................... 3 was to deep core drill into polar ice sheets for scientific purposes. To this end, SIPRE was tasked with Ice Core Working Group developing and running the entire U.S. ice core drilling and research program. Following the successful Members ....................................... 3 pre-IGY pilot drilling trials at Site-2 NW Greenland in 1956 (305 m) and 1957 (411 m), the SIPRE WAIS Divide turned their attention to deep ice core drilling in Antarctica for IGY 1957-58. Dr. Anthony J. (Tony) Ice Core Update ............................ 5 Gow (CRREL, retired) was one of the scientists on the project. In March 2008, the NICL-SMO had Ice Cores and POLAR-PALOOZA the opportunity to sit down with Dr. -
Operation Deep Freeze Deep Operation
OPERATION CASE STUDY DEEP FREEZE RESUPPLY OF MCMURDO STATION, ANTARCTICA PROJECT LOCATION: U.S. West Coast, New Zealand, and Antarctica CLIENT: National Science Foundation and US Navy VESSEL: M/V Ocean Giant DURATION: December 2017 to January 2018 CARGO Scientific equipment, ice core samples, and a year’s worth of station supplies. A total of 550 pieces of cargo, weighing in at nearly seven million pounds; including food, building supplies, vehicles, electrical equipment, and parts. OVERVIEW Resupply and return of equipment from Antarctica. The Ocean Giant was preceded by the USCGC Polar Star who cut a resupply channel through more than 60 miles of Antarctic ice in the Ross Sea. This allowed for the annual delivery of operating supplies and fuel for two of the National Science Foundation’s three U.S. research stations in Antarctica. The supplies amounted to nearly 80 percent of the materials needed for the winter period. REGION: THE ARCTIC OPERATION DEEP FREEZE CASE STUDY SYNOPSIS In December 2017, U.S. flag vessel, M/V Ocean Giant departed Port Hueneme, California, loaded with a year’s worth of supplies to support multiple activities in Antarctica. En route, she called Lyttelton, New Zealand, for fuel and to load cargo to support New Zealand’s activities in Antarctica. While underway she proceeded into the polar waters of the Ross Sea and rendezvoused with the ice breaker Polar Star for the final 60 mile transit into McMurdo Station. The channel through the Ross Sea is only navigable for two weeks a year during the southern hemisphere summer. While in McMurdo, she discharged her cargo at one of the most isolated spots in the world to a pier made from ice. -
JTF-SFA Meteorological Support for Operation DEEP FREEZE 2017-2018
Evaluation of Meteorological and Oceanographic support for Joint Task Force Support Forces Antarctica (Operation DEEP FREEZE) Captain Lauren S. Hogg 17 July 2018 Overview • Purpose of Visit • Meteorology Community, Products, and Equipment • Key Findings • JTF-SFA Commander Response Actions • Formal requests for National Science Foundation • Takeaways for Meteorological Community • Acknowledgements Purpose of Visit The goal of this visit was to observe the meteorology and oceanography (METOC) program as a whole and determine what can be done to improve support to JTF-SFA. Primary Focus Areas: • Increase safety of flight, ground, and maritime missions • Improve completion rate of intertheater missions Meteorology Community JMO Navy METOC SOPP Field Camp METOC AMRC Other Science Groups International Partners Lt Col Steven Randle SRC ASC-PAE Dr. Matthew Lazzara and LDB forecasters New Zealand Forecasters Italian Forecasters JMCC UK Forecasters 17th Operational Wx Sq AUS Forecasters ROF (Charleston) ~56 AWSs AWSs 5 Forecasters A-S South Pole Station 3 Observers Eyes-Forward McMurdo Station Observations 1 Met Manager Shackleton Glacier 1 Flight Briefer 2 Observer + 3 Forecasters Augmentee(s) McMurdo Station WAIS Divide 4 Observers 1 Observer + Augmentee(s) Williams Field 1 Observer (Night ops + Sunday) Siple Dome 0 Cert’d Observers Phoenix Field 1 Observer Meteorology in direct support of JTF-SFA (During Ops only) JTF-SFA Meteorology not located in Antarctica USAP Meteorology not directly aligned with JTF-SFA *NOTE: This was specific to the -
NORTH Aberdeen’S Circumpolar Collections
University of Aberdeen Marischal Museum and Special Libraries & Archives NORTH Aberdeen’s Circumpolar Collections Rambles among the fields and fjords, from Thomas Forrester, Norway in 1848 and 1849 (London: Longman, 1850). Lib R 91(481) Fore This view looking up to the Shagtols- Tind, the highest mountain in Norway, reaching the height of 7670 English feet, beneath a bell-shaped snowy valley penetrated into the mountains, and closed by a vast glacier…[the view taken from]… the most splendid fir- forest I have yet met with. An Information Document University of Aberdeen Development Office King’s College Aberdeen Scotland, UK t. +44 (0)1224 272281 f. +44 (0)1224 272271 www.abdn.ac.uk/giving 1 CONTENTS PAGE INTRODUCTION 3 IDEAS OF THE NORTH Maps 3 Marvels 3 Magicians 4 Monsters 6 An ‘imagined north’ 6 ABERDEEN AND THE ARCTIC Treasures 7 Scientists 7 Explorers 7 Drama in the Arctic 8 Commerce and adventure 8 TRAVEL AND TOPOGRAPHY Orkney and Shetland 10 Russia and Siberia 11 Iceland 12 Scandinavia 13 Northern Japan 14 The American Arctic 15 CONCLUSION 19 HOLDINGS AS INDICATED IN THE TEXT 20 2 A significant number of alumni in the University A cartographic pioneer of the sixteenth century, of Aberdeen’s long history have found that the Gerald Mercator, made a single map of The compass needle drew them to the north. As Lands under the Pole, complete with an explorers, settlers, missionaries, or employees imaginary landmass at the North Pole, while of the Hudson’s Bay Company, graduates of in the seventeenth century, Blaeu’s Regions the two ancient colleges which make up the Beneath the North Pole tries to accommodate modern university have been conspicuous in the latest geographical knowledge with many circumpolar connections. -
The Life and Letters of a Royal Navy Surgeon, Edward Lawton Moss MD
REVIEWS • 109 why they are the crème de la crème. Chapters 7a and 7b pic- plateau of Washington Irving Island off the entrance to ture and describe some of these items. Chapter 7c, entitled Dobbin Bay on the east coast of Ellesmere Island. Much to “Gems Showcase,” is a visual feast. No fewer than 43 pages their surprise, they discovered two ancient-looking stone are devoted to images, almost all in colour, of polar material cairns on the plateau, but failed to locate any evidence of such as notices of various kinds, postcards, covers, and let- who might have built them. Moss made a quick sketch of ters. This section alone is worth the price of the book. the two cairns, a sketch he later back in England turned into The ultimate goal of many philatelists is to exhibit their a colour painting, now kept at the Scott Polar Institute in collections and, they hope, to earn a commensurate award. Cambridge. The drawing and the mention of the cairns in Chapter eight outlines the differences between showing one’s the expedition diaries resulted in our own investigation of collection and exhibiting it. Although many of the processes the plateau in July 1979. By then, numerous finds of Norse involved in showing a polar exhibit are the same as those artifacts in nearby 12th century Inuit house ruins strongly of exhibiting a general postal history collection, the author suggested that the builders of the old cairns could have been explains the differences in some detail. If an exhibit is to Norse explorers from Greenland (McCullough and Schled- do well in competition, planning, deciding what to include, ermann, 1999). -
Paper Number: 2897 a History of Early Antarctic Fossil Discoveries in Support of the Supercontinent Gondwana Clary, R.M.1, and Sharpe, T.2
Paper Number: 2897 A History of Early Antarctic Fossil Discoveries in Support of the Supercontinent Gondwana Clary, R.M.1, and Sharpe, T.2 1Mississippi State University, Box 5448, Mississippi State, MS 39762 USA; [email protected] 2Centre for Lifelong Learning, Cardiff University, UK ___________________________________________________________________________ First proposed by Eduard Suess (1831-1914), the supercontinent Gondwana included the present-day continents of South America, Africa, Australia, India, and Antarctica. Alexander Du Toit (1878-1948) expanded Suess’ work in his 1937 book, Our Wandering Continents; An Hypothesis of Continental Drifting. Correlating evidence to support the inclusion of Antarctica in the Gondwana supercontinent would result from the stratigraphic and paleontological data collected within early polar expeditions. Early rock and fossil specimens of Antarctica were recovered by the 1829-1831 Antarctic Expedition sponsored by the United States of America. The expedition included a scientific program, supported by the Lyceum for Natural History of the City of New York. James Eights (1798-1882) produced quality scientific work, including a geological description of the Shetland Islands, and the first fossil of the Antarctic—carbonized wood [1, 2]. The Norwegian expedition of 1893-1894, under Carl Anton Larsen (1860-1924), also found petrified wood fossils on Seymour Island. The wood hinted of a warmer climate in Antarctica’s past, and sparked scientific interest [3]. Within the Heroic Age of Antarctic Exploration (1897-1922), additional fossils were uncovered. Cretaceous ammonites, molluscs, echinoderms and leaves were collected on Seymour Island, and additional plant fossils at Hope Bay, by geologist Nils Otto Gustaf Nordenskjöld (1869-1928) during the Swedish South Polar Expedition of 1901-1904. -
Joint Conference of the History EG and Humanities and Social Sciences
Joint conference of the History EG and Humanities and Social Sciences EG "Antarctic Wilderness: Perspectives from History, the Humanities and the Social Sciences" Colorado State University, Fort Collins (USA), 20 - 23 May 2015 A joint conference of the History Expert Group and the Humanities and Social Sciences Expert Group on "Antarctic Wilderness: Perspectives from History, the Humanities and the Social Sciences" was held at Colorado State University in Fort Collins (USA) on 20-23 May 2015. On Wednesday (20 May) we started with an excursion to the Rocky Mountain National Park close to Estes. A hike of two hours took us along a former golf course that had been remodelled as a natural plain, and served as a fitting site for a discussion with park staff on “comparative wilderness” given the different connotations of that term in isolated Antarctica and comparatively accessible Colorado. After our return to Fort Collins we met a group of members of APECS (Association of Polar Early Career Scientists), with whom we had a tour through the New Belgium Brewery. The evening concluded with a screening of the film “Nightfall on Gaia” by the anthropologist Juan Francisco Salazar (Australia), which provides an insight into current social interactions on King George Island and connections to the natural and political complexities of the sixth continent. The conference itself was opened by on Thursday (21 May) by Diana Wall, head of the School of Global Environmental Sustainability at the Colorado State University (CSU). Andres Zarankin (Brazil) opened the first session on narratives and counter narratives from Antarctica with his talk on sealers, marginality, and official narratives in Antarctic history.