Active Tectonics of the Himalaya

Total Page:16

File Type:pdf, Size:1020Kb

Active Tectonics of the Himalaya Pro(:. Indian Acad. Sci. (Earth Planet. Sci.), Vol. 98, No. 1, April 1989, pp. 71-89. Printed in India. Active tectonics of the Himalaya JAMES F NI Departmeht of Physics, New Mexico State University, Las Cruces, NM 88003, USA Al~ract. The Himalayan mountains are a product of the collision between India and Eurasia which began in the Eocene. In the early stage of continental collision the development of a suture zone between two colliding plates took place. The continued convergence is accommodated along the suture zone and in the back-arc region. Further convergence results in intracrustal megathrust within the leading edge of the advancing Indian plate. In the Himalaya this stage is characterized .by the intense uplift of the High Himalaya, the development of the Tibetan Plateau and the breaking-up of the central and eastern Asian continent. Although numerous models for the evolution of the Himalaya have been proposed, the available geological and geophysical data are consistent with an underthrusting model in which the Indian continental lithosphere underthrusts beneath the Himalaya and southern Tibet. Reflection profiles across the entire Himalaya and Tibet are needed to prove the existence of such underthrusting. Geodetic surveys across the High Himalaya are needed to determine the present state of the MCT as well as the rate of uplift and shortening within the Himalaya. Paleoseismicity studies are necessary to resolve the temporal and spatial patterns of major earthquake faulting along the segmented Himalayan mountains. Keywocds. Himalayan mountains; continental collision; earthquakes; active tectonics; tectonic setting; Main boundary thrust; Tethyan slab. 1. Introduction The Himalaya is the largest mountain chain in the world. Accordingly, understanding the mechanics responsible for its formation and for its support must be two of the most important geological problems. Moreover, study of the active tectonics of the Himalayan mountain belt is important because such a region contains information that is unavailable in other, older mountain belts, but necessary in order to understand how mountain building takes place. Early episodes in orogenic research (last quarter of the 18th and first half of the 19th centuries) were characterized by the interpretation that mountain belts are a result of vertical uplift. It was not until the late 19th century that the role of horizontal movements became more widely appreciated. The development of geosynclinal theory in the early 20th century to explain the prehistory of mountain belts and the subsequent horizontal shortening in orogeny as expressed by fold and nappe structures delayed a more accurate understanding of mountain building. As the concept of plate tectonics was developed during the 1960s, numerous models for the evolution of the Himalaya were proposed. The past decade has included a transition from a focus on testing of the Himalayan collision models to research based more on observation. The models developed in the 1970s and refined in the 1980s have provided the direction of investigation as deeper observations have been made possible by geophysical techniques. 71 72 James F Ni This review focuses on the deep crustal and uppermost mantle structures of the Himalaya, because these features reflect the mechanical processes that result in mountain building. The review also will discuss recent work on the Pakistan Himalaya. 2. Collision models Early ideas about the architecture of the Himalaya assumed that the Himalayan Mountains rest on a rigid substratum that is similar to the rocks beneath the Indian Shield. However, geodetic measurements (plumb line) of Pratt (1855) showed that the observed deflection was much smaller than expected for a rigid model. Shortly following this experiment the concept of isostasy was born and a floating Himalayan range with a "crustal root" became the dominant geological thinking for the early twentieth century. With the improvement of gravity meters, numerous studies have shown that gravity measurements deviate from local isostatic equilibriuml This discovery suggested that the Himalaya is not completely supported by the buoyancy force; rather it is held up, at least in part, by an upward force. Searching for the origin of this force is essential to understanding the dynamics of mountain building. The concept of underthrusting of one continental lithosphere beneath another as the cause of mountain building and plateau uplift was first proposed by Argand (1924). With the advent of the new global tectonics (e.g. Isacks et al 1968) a number of different mechanisms for the uplift of the Himalaya and Tibet have been developed. Dewey and Bird (1970) suggested that the Himalaya was formed solely by the collision of an Atlantic-type continental margin with the Asian continent bordered by a marginal trench. In their model they assumed that the buoyancy of the continental lithosphere prevents further sulSduction and they overlooked the possible significance of intracontinentai thrusts. Powell and Conaghan (1973) pointed out that the geological history of the Himalaya does not agree with the simple continent- continent collision model of Dewey and Bird (1970), because the collision itself did not directly produce the present-day Himalaya. Alternatively, Powell and Conaghan (1973, 19.75) and Powell (1979) proposed an "evolutionary" model (figure 1) invoking two phases of orogeny. In their model, the first phase is related to active Mesozoic- early Tertiary subduction zones along the present-day Indus-Tsangpo suture, analogous to the North American Cordilleras. This phase ended in the Eocene (e.g. Molnar and Tapponnier 1975; Tapponnier and Molnar 1977) when India collided with Asia. The Indus-Tsangpo suture is a direct result of this collision. The second phase involves formation of intracontinental fractures within the northern Indian margin during the Middle Tertiary and underthrusting of the Indian continent along this fracture from Miocene time to the present. Since 1973, increasing amounts of data on the Himalaya and Tibet have become available and, consequently, many plate tectonic models have been proposed for the evolution of the Himalaya (e.g. LeFort 1975; Molnar et al 1977; Bird 1978; Seeber et al 1981; Chen and Molnar 1981; Barazangi and Ni 1982; Molnar and Chen 1982; Ni and Barazangi 1984; Molnar 1984). Among these models, much of the debate about the tectonics of the Himalaya is concerned with the nature of the Main Boundary Thrust (MBT) and Main Central Thrust (MCT). According to LeFort (1975), the Himalaya was formed by the imbrication of slices of India's northern margin. In his evolutionary model (figure 1), the MBT and MCT are assumed to be similar, but successive, Active tectonics of the Himalaya 73 MBT MCT A. La Fort 1975 o ~ o I~t~,..-"~.~ ---" ~ 'B,OCKI Himalayan I, Schuppen ~ I q Tethyan , ~ Indus -'i Zone Himalaya Suture M__ MCT MCT CCA I~1" --~ _ - B. Powall 1979 o II..... -'~~-__.~INDIAN ~ "~"'s.IE,~" iHOl^._- J ~o 50~ 50 I ~ Sedimentary -'-~1 Wedge Tethyan Himalaya C. Seeber tlt Armbruster MBT MCT 1981 0-~' 0 50 - - 50 0, Burg &Chen 0 0 1984 i i I Late [] Molasse [] Cretaceous 9 Ophiolite N~Metamorphic Plutons ~,~ Foliation Figure 1. Comparison of tectonic models of the Himalaya. A. After La Fort (1975). The Himalaya was formed by imbrication of slices of India's northern margin. B. After Powell (1979), The MCT and MBT are fundamentally different structures in this model. C. After Seeber and Anabruster (1981). All the elements in this model are active simultaneously and subduction proceeds without fundamental changes in the structure. This model was named the "steady-state" model. D. After Burg and Chen (1984). In their model, decoupling and thrusting, which separate lower and upper crustal layers, occur contemporaneously with each other. tectonic thrusts, The southern thrust zone (i.e. the MBT) becomes the new boundary of the continental convergent zone, while the older thrust zone (i.e. the MCT) becomes a less active or a dormant feature. In contrast, Seeber and Armbruster (1981) proposed a "steady-state" model 74 James F Ni (figure I) for the evolution of the Himalaya. This model requires that the MBT and MCT are contemporaneous features. Central to this model is a detachment (decollement) surface underlying the entire Himalaya. The detachment represents the upper surface of the underthrusting Indian plate. Seeber et al (1981) also postulated the presence of a Basement Thrust (BT) where the northerly and relatively steeply dipping MCT merges with the shallow dipping detachment surface at depth (see figure 11 of Seeber et al 1981). The BT zone represents the front of the overriding crystalline basement (analogous to a bulldozer blade), and it is along this front where the sedimentary rocks above the Indian Shield are scraped off. A more complex model for the Himalaya has been proposed by Him et al (1984a) and Burg and Chen (1984) (figure I). Their model is mostly based on the interpretation of recent reflection data in which a variation in the level of the Moho has been suggested. In their model, decoupling and thrusting, which separate lower and upper crustal layers, occur contemporaneously with eac.h other. However, polarities of thrusting are opposite to each other (figure 1). 3. Tectonic setting The hypotheses of the evolution of the Himalaya discussed above depend largely on understanding the evolution and structure of major tectonic features and their behaviour at depth. The following is a brief summary of the main structural characteristics of these features (figure 2). 3.1 lndus-Tsanopo suture The Indus-Tsangpo suture (e.g. Gansser 1964, 1980; LeFort 1975) marks the northern limit of the Indian subcontinent following the late Cretaceous-early Tertiary closure of the Neo-Tethys. The suture is made up of imbricated melanges of flysch sediments, radiolarite, pillow iavas, voicanics, and basic and ultrabasic rocks that are cut by steep thrust faults (e.g. Stocklin 1980; Allegre et al 1984).
Recommended publications
  • Slip Rate of the Western Garlock Fault, at Clark Wash, Near Lone Tree Canyon, Mojave Desert, California
    Slip rate of the western Garlock fault, at Clark Wash, near Lone Tree Canyon, Mojave Desert, California Sally F. McGill1†, Stephen G. Wells2, Sarah K. Fortner3*, Heidi Anderson Kuzma1**, John D. McGill4 1Department of Geological Sciences, California State University, San Bernardino, 5500 University Parkway, San Bernardino, California 92407-2397, USA 2Desert Research Institute, PO Box 60220, Reno, Nevada 89506-0220, USA 3Department of Geology and Geophysics, University of Wisconsin-Madison, 1215 W Dayton St., Madison, Wisconsin 53706, USA 4Department of Physics, California State University, San Bernardino, 5500 University Parkway, San Bernardino, California 92407-2397, USA *Now at School of Earth Sciences, The Ohio State University, 275 Mendenhall Laboratory, 125 S. Oval Mall, Columbus, Ohio 43210, USA **Now at Department of Civil and Environmental Engineering, 760 Davis Hall, University of California, Berkeley, California, 94720-1710, USA ABSTRACT than rates inferred from geodetic data. The ously published slip-rate estimates from a simi- high rate of motion on the western Garlock lar time period along the central section of the The precise tectonic role of the left-lateral fault is most consistent with a model in which fault (Clark and Lajoie, 1974; McGill and Sieh, Garlock fault in southern California has the western Garlock fault acts as a conju- 1993). This allows us to assess how the slip rate been controversial. Three proposed tectonic gate shear to the San Andreas fault. Other changes as a function of distance along strike. models yield signifi cantly different predic- mechanisms, involving extension north of the Our results also fi ll an important temporal niche tions for the slip rate, history, orientation, Garlock fault and block rotation at the east- between slip rates estimated at geodetic time and total bedrock offset as a function of dis- ern end of the fault may be relevant to the scales (past decade or two) and fault motions tance along strike.
    [Show full text]
  • Kinematics of the Northern Walker Lane: an Incipient Transform Fault Along the Pacific–North American Plate Boundary
    Kinematics of the northern Walker Lane: An incipient transform fault along the Paci®c±North American plate boundary James E. Faulds Christopher D. Henry Nevada Bureau of Mines and Geology, MS 178, University of Nevada, Reno, Nevada 89557, USA Nicholas H. Hinz ABSTRACT GEOLOGIC SETTING In the western Great Basin of North America, a system of dextral faults accommodates As western North America has evolved 15%±25% of the Paci®c±North American plate motion. The northern Walker Lane in from a convergent to a transform margin in northwest Nevada and northeast California occupies the northern terminus of this system. the past 30 m.y., the northern Walker Lane has This young evolving part of the plate boundary offers insight into how strike-slip fault undergone widespread volcanism and tecto- systems develop and may re¯ect the birth of a transform fault. A belt of overlapping, left- nism. Tertiary volcanic strata include 31±23 stepping dextral faults dominates the northern Walker Lane. Offset segments of a W- Ma ash-¯ow tuffs associated with the south- trending Oligocene paleovalley suggest ;20±30 km of cumulative dextral slip beginning ward-migrating ``ignimbrite ¯are up,'' 22±5 ca. 9±3 Ma. The inferred long-term slip rate of ;2±10 mm/yr is compatible with global Ma calc-alkaline intermediate-composition positioning system observations of the current strain ®eld. We interpret the left-stepping rocks related to the ancestral Cascade arc, and faults as macroscopic Riedel shears developing above a nascent lithospheric-scale trans- 13 Ma to present bimodal rocks linked to Ba- form fault.
    [Show full text]
  • Regional Tectonic Systems of the Pacific Northwest Delineated from ERTS-1 Imagery
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1975 Regional tectonic systems of the Pacific Northwest delineated from ERTS-1 imagery Linda Kay Wackwitz The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Wackwitz, Linda Kay, "Regional tectonic systems of the Pacific Northwest delineated from ERTS-1 imagery" (1975). Graduate Student Theses, Dissertations, & Professional Papers. 7103. https://scholarworks.umt.edu/etd/7103 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. APR 1 6 1984 (iETo;,pr<i a 1384 ' r' r: ^ REGIONAL TECTONIC SYSTEMS OF THE PACIFIC NORTHWEST DELINEATED FROM ERTS-1 IMAGERY by Linda K. Wackwitz B.A. Colby College, 1972 Presented in partial fulfillment of the requirements for the degree of Master of Arts UNIVERSITY OF MONTANA 1975 Approved by Chairman, Board of Examiners / ^ f - / - - -- Dean, Graduate School I ,y. Date UMI Number: EP37904 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.
    [Show full text]
  • The Tectonic Evolution of the Madrean Archipelago and Its Impact on the Geoecology of the Sky Islands
    The Tectonic Evolution of the Madrean Archipelago and Its Impact on the Geoecology of the Sky Islands David Coblentz Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM Abstract—While the unique geographic location of the Sky Islands is well recognized as a primary factor for the elevated biodiversity of the region, its unique tectonic history is often overlooked. The mixing of tectonic environments is an important supplement to the mixing of flora and faunal regimes in contributing to the biodiversity of the Madrean Archipelago. The Sky Islands region is located near the actively deforming plate margin of the Western United States that has seen active and diverse tectonics spanning more than 300 million years, many aspects of which are preserved in the present-day geology. This tectonic history has played a fundamental role in the development and nature of the topography, bedrock geology, and soil distribution through the region that in turn are important factors for understanding the biodiversity. Consideration of the geologic and tectonic history of the Sky Islands also provides important insights into the “deep time” factors contributing to present-day biodiversity that fall outside the normal realm of human perception. in the North American Cordillera between the Sierra Madre Introduction Occidental and the Colorado Plateau – Southern Rocky The “Sky Island” region of the Madrean Archipelago (lo- Mountains (figure 1). This part of the Cordillera has been cre- cated between the northern Sierra Madre Occidental in Mexico ated by the interactions between the Pacific, North American, and the Colorado Plateau/Rocky Mountains in the Southwest- Farallon (now entirely subducted under North America) and ern United States) is an area of exceptional biodiversity and has Juan de Fuca plates and is rich in geology features, including become an important study area for geoecology, biology, and major plateaus (The Colorado Plateau), large elevated areas conservation management.
    [Show full text]
  • Garlock Fault: an Intracontinental Transform Structure, Southern California
    GREGORY A. DAVIS Department of Geological Sciences, University of Southern California, Los Angeles, California 90007 B. C. BURCHFIEL Department of Geology, Rice University, Houston, Texas 77001 Garlock Fault: An Intracontinental Transform Structure, Southern California ABSTRACT Sierra Nevada. Westward shifting of the north- ern block of the Garlock has probably contrib- The northeast- to east-striking Garlock fault uted to the westward bending or deflection of of southern California is a major strike-slip the San Andreas fault where the two faults fault with a left-lateral displacement of at least meet. 48 to 64 km. It is also an important physio- Many earlier workers have considered that graphic boundary since it separates along its the left-lateral Garlock fault is conjugate to length the Tehachapi-Sierra Nevada and Basin the right-lateral San Andreas fault in a regional and Range provinces of pronounced topogra- strain pattern of north-south shortening and phy to the north from the Mojave Desert east-west extension, the latter expressed in part block of more subdued topography to the as an eastward displacement of the Mojave south. Previous authors have considered the block away from the junction of the San 260-km-long fault to be terminated at its Andreas and Garlock faults. In contrast, we western and eastern ends by the northwest- regard the origin of the Garlock fault as being striking San Andreas and Death Valley fault directly related to the extensional origin of the zones, respectively. Basin and Range province in areas north of the We interpret the Garlock fault as an intra- Garlock.
    [Show full text]
  • Cenozoic Thermal, Mechanical and Tectonic Evolution of the Rio Grande Rift
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 91, NO. B6, PAGES 6263-6276, MAY 10, 1986 Cenozoic Thermal, Mechanical and Tectonic Evolution of the Rio Grande Rift PAUL MORGAN1 Departmentof Geosciences,Purdue University,West Lafayette, Indiana WILLIAM R. SEAGER Departmentof Earth Sciences,New Mexico State University,Las Cruces MATTHEW P. GOLOMBEK Jet PropulsionLaboratory, CaliforniaInstitute of Technology,Pasadena Careful documentationof the Cenozoicgeologic history of the Rio Grande rift in New Mexico reveals a complexsequence of events.At least two phasesof extensionhave been identified.An early phase of extensionbegan in the mid-Oligocene(about 30 Ma) and may have continuedto the early Miocene (about 18 Ma). This phaseof extensionwas characterizedby local high-strainextension events (locally, 50-100%,regionally, 30-50%), low-anglefaulting, and the developmentof broad, relativelyshallow basins, all indicatingan approximatelyNE-SW •-25ø extensiondirection, consistent with the regionalstress field at that time.Extension events were not synchronousduring early phase extension and were often temporally and spatiallyassociated with major magmatism.A late phaseof extensionoccurred primarily in the late Miocene(10-5 Ma) with minor extensioncontinuing to the present.It was characterizedby apparently synchronous,high-angle faulting givinglarge verticalstrains with relativelyminor lateral strain (5-20%) whichproduced the moderuRio Granderift morphology.Extension direction was approximatelyE-W, consistentwith the contemporaryregional stress field. Late phasegraben or half-grabenbasins cut and often obscureearly phasebroad basins.Early phase extensionalstyle and basin formation indicate a ductilelithosphere, and this extensionoccurred during the climax of Paleogenemagmatic activity in this zone.Late phaseextensional style indicates a more brittle lithosphere,and this extensionfollowed a middle Miocenelull in volcanism.Regional uplift of about1 km appearsto haveaccompanied late phase extension, andrelatively minor volcanism has continued to thepresent.
    [Show full text]
  • Yellowstone Plume Trigger for Basin and Range Extension, and Coeval Emplacement of the Nevada–Columbia Basin Magmatic Belt
    Geosphere, published online on 17 February 2015 as doi:10.1130/GES01051.1 Cenozoic Tectonics, Magmatism, and Stratigraphy of the Snake River Plain–Yellowstone Region and AdjacentYellowstone Areas plume themed trigger issuefor Basin and Range extension Yellowstone plume trigger for Basin and Range extension, and coeval emplacement of the Nevada–Columbia Basin magmatic belt Victor E. Camp1, Kenneth L. Pierce2, and Lisa A. Morgan3 1Department of Geological Sciences, San Diego State University, San Diego, California 92182, USA 2U.S. Geological Survey, Northern Rocky Mountain Science Center, 2327 University Way, Box 2, Bozeman, Montana 59715, USA 3U.S. Geological Survey, 973 Federal Center, Box 25046, Denver, Colorado 80225-0046, USA ABSTRACT and Range. It was not the sole cause of Basin Juan de Fuca–Farallon plates, tractional forces and Range extension, but rather the catalyst applied to the base of the lithosphere, buoyancy Widespread extension began across the for extension of the Nevadaplano, which was forces associated with lithospheric density varia- northern and central Basin and Range already on the verge of regional collapse. tions, and basal normal forces associated with Province at 17–16 Ma, contemporaneous mantle upwelling and/or gravitational insta- with magmatism along the Nevada–Colum- INTRODUCTION bilities. They concluded that boundary forces bia Basin magmatic belt, a linear zone of associated with plate interaction would produce dikes and volcanic centers that extends for The Basin and Range Province is one of the neither the magnitude nor the rates of extension >1000 km, from southern Nevada to the best exposed extensional areas in the world for observed in the northern and central Basin and Columbia Basin of eastern Washington.
    [Show full text]
  • Landsliding and the Evolution of Normal Fault-Bounded Mountains
    Landsliding and the Evolution of Normal Fault-Bounded Mountains Alexander L. Densmore Department of Geology Trinity College, Dublin 2 Ireland [email protected] Michael A. Ellis Center for Earthquake Research and Information University of Memphis, Memphis TN 38125 USA Robert S. Anderson Institute of Tectonics and Department of Earth Sciences University of California, Santa Cruz CA 95064 USA 1 Abstract Much of the tectonic and climatic history in high-relief regions, such as the mountains of the Basin and Range province, western U.S.A., is contained in the morphology of hillslopes, drainage networks, and other landforms that range in scale from 10-1 to 101 km. To understand how these landforms evolve, we have developed a numerical landscape evolution model that combines a detailed tectonic displacement field with a set of physically-based geomorphic rules. Bedrock landsliding, long recognized as a significant geomorphic process in mountainous topography, is for the first time explicitly included in the ruleset. In a series of numerical experiments, we generate synthetic landscapes that closely resemble mountainous topography observed in the Basin and Range. The production of realistic landscapes depends critically on the presence of bedrock landslides, and landsliding yields rates of long-term erosion that are comparable in magnitude to those of fluvial erosion. The erosive efficiency of bedrock landsliding implies that hillslopes may respond very quickly to changes in local baselevel, and that fluvial erosion is the rate-limiting process in steady state experimental landscapes. Our experiments generate power-law distributions of landslide sizes, somewhat similar to both field and laboratory observations. Thus, even a simple model of bedrock landsliding is capable of quantitatively reproducing mountainous topography and landslide distributions, and represents a significant step forward in our understanding of the evolution of normal fault-bounded ranges.
    [Show full text]
  • List P ‐ Major Terms
    LIST P ‐ MAJOR TERMS Major Term Usage dates Type of Term absolute age 1960‐ academic institutions 1989‐ actinium 1965‐ Chemical terms addresses 1918‐1965 Adriatic Sea 1962‐ Geographic terms Aegean Sea 1977‐ Geographic terms aerial photography 1949‐1961 aeronomy 1971‐1992 Afghanistan 1933‐ Geographic terms Africa 1933‐ Geographic terms Agnatha 1981‐ Fossil terms Alabama 1918‐ Geographic terms Alaska 1918‐ Geographic terms Albania 1933‐ Geographic terms Alberta 1918‐ Geographic terms algae 1960‐ Fossil terms Algeria 1933‐ Geographic terms Alps 1933‐ Geographic terms aluminum 1966‐ Chemical terms aluminum 1966‐1980 Commodity terms aluminum ores 1981‐ Commodity terms americium 1977‐ Chemical terms Amphibia 1918‐ Fossil terms Andes 1961‐ Geographic terms Andorra 1969‐ Geographic terms Angiospermae 1969‐ Fossil terms Angola 1933‐ Geographic terms Anhui China 1992‐ Geographic terms Antarctic Ocean 1964‐2004 Geographic terms Antarctica 1966‐ Geographic terms antimony 1965‐ Chemical terms antimony 1965‐1980 Commodity terms antimony ores 1981‐ Commodity terms Apennines 1967‐ Geographic terms Appalachians 1918‐ Geographic terms Arabian Peninsula 1970‐ Geographic terms Arabian Sea 1946‐ Geographic terms Archaeocyatha 1959‐ Fossil terms Archean 1918‐ Geologic age terms Arctic America 1939‐1964 Geographic terms Arctic Ocean 1936‐ Geographic terms Arctic region 1918‐ Geographic terms Argentina 1933‐ Geographic terms argon 1966‐ Chemical terms Arizona 1918‐ Geographic terms Arkansas 1918‐ Geographic terms Armenia 1993‐ Geographic terms arsenic 1965‐
    [Show full text]
  • Introduction: Origin and Evolution of the Sierra Nevada and Walker Lane
    Origin and Evolution of the Sierra Nevada and Walker Lane themed issue Introduction: Origin and Evolution of the Sierra Nevada and Walker Lane Keith D. Putirka1,* and Cathy J. Busby2,* 1California State University, Fresno, Department of Earth and Environmental Sciences, 2345 E. San Ramon Ave., MS/MH24, Fresno, California 93720, USA 2Department of Earth Science, University of California, Santa Barbara, California 93106, USA BACKGROUND AND HISTORY Figure 1. A map showing an outline of the Sierra Nevada This Geosphere themed issue is an outgrowth and approximate boundaries of of our Penrose Conference: Origin and Uplift the Walker Lane belt. The out- of the Sierra Nevada, California, which was line of the Walker Lane (and held in Bridgeport, California, August 16–20, its southern extension into the 2010. The theme is here expanded to include Eastern California Shear Zone) the Walker Lane (Fig. 1), since a large number is modifi ed from Faulds et al. of our Penrose abstracts were oriented to that (2005) and Oldow and Cashman topic, and because that region is no less a part (2009); we draw the western Sierra of the Sierran story than the high peaks them- boundary to coincide with the Walker selves. A fundamental question for the confer- Sierra Nevada range front; the N evada Lane ence and themed issue is “How did the Sierra Walker Lane belt is then drawn Nevada form?” The question can mean many to include the region of the things to disparate disciplines. One might refer Basin and Range province where & to the age and origin of the rocks that form the basins and ranges trend more Sierra Nevada batholith, or instead to the time N–S, rather than NE–SW.
    [Show full text]
  • Hall Morley 2004 Sun
    Sundaland Basins Robert Hall SE Asia Research Group, Department of Geology, Royal Holloway University of London, Egham, Surrey, U.K. Christopher K. Morley Department of Petroleum Geoscience, Universiti of Brunei Darussalam, Tunku Link, Gadong, Brunei Darussalam The continental core of Sundaland, comprising Sumatra, Java, Borneo, the Thai–Malay Peninsula and Indochina, was assembled during the Triassic Indosin- ian orogeny, and formed an exposed landmass during Pleistocene lowstands. Because the region includes extensive shallow seas, and is not significantly elevated, it is often assumed to have been stable for a long period. This stability is a myth. The region is today surrounded by subduction and collision zones, and merges with the India–Asia collision zone. Cenozoic deformation of Sundaland is recorded in the numerous deep sedimentary basins alongside elevated highlands. Some sediment may have been supplied from Asia following Indian collision but most was locally derived. Modern and Late Cenozoic sediment yields are exceptionally high despite a relatively small land area. India–Asia collision, Australia–SE Asia collision, backarc extension, subduction rollback, strike-slip faulting, mantle plume activity, and differential crust-lithosphere stretching have been proposed as possible basin- forming mechanisms. In scale, crustal character, heat flow and mantle character the region resembles the Basin and Range province or the East African Rift, but is quite unlike them in tectonic setting. Conventional basin modeling fails to predict heat flow, elevation, basin depths and subsidence history of Sundaland and overes- timates stretching factors. These can be explained by interaction of a hot upper mantle, a weak lower crust, and lower crustal flow in response to changing forces at the plate edges.
    [Show full text]
  • Modern Strain Localization in the Central Walker Lane, Western United States
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Trinity University Trinity University Digital Commons @ Trinity Geosciences Faculty Research Geosciences Department 2008 Modern Strain Localization in the Central Walker Lane, Western United States: Implications for the Evolution of Intraplate Deformation in Transtensional Settings Benjamin E. Surpless Trinity University, [email protected] Follow this and additional works at: https://digitalcommons.trinity.edu/geo_faculty Part of the Earth Sciences Commons Repository Citation Surpless, B.E. (2008) Modern strain localization in the central walker lane, western United States: Implications for future seismicity and plate boundary tectonics. Tectonophysics, 457(3-4), 239-253. doi:10.1016/j.tecto.2008.07.001 This Post-Print is brought to you for free and open access by the Geosciences Department at Digital Commons @ Trinity. It has been accepted for inclusion in Geosciences Faculty Research by an authorized administrator of Digital Commons @ Trinity. For more information, please contact [email protected]. 1 Modern strain localization in the central Walker Lane, western United States: Implications for the evolution of intraplate deformation in transtensional settings Benjamin Surpless Department of Geosciences, Trinity University, One Trinity Place, San Antonio, TX 78209, United States Keywords: Transtension , Walker Lane Lake Tahoe , Strain partitioning , North American – Pacific plate boundary *Tel: +1 210 999 7110; fax: +1 210 999 7090 E-mail address: [email protected] ABSTRACT Approximately 25% of the differential motion between the Pacific and North American plates occurs in the Walker Lane, a zone of dextral motion within the western margin of the Basin and Range province.
    [Show full text]