Dinoflagellate Genome Evolution

Total Page:16

File Type:pdf, Size:1020Kb

Dinoflagellate Genome Evolution MI65CH19-Hackett ARI 27 July 2011 8:43 Dinoflagellate Genome Evolution Jennifer H. Wisecaver and Jeremiah D. Hackett Ecology and Evolutionary Biology Department, University of Arizona, Tucson, Arizona 85721; email: [email protected] Annu. Rev. Microbiol. 2011. 65:369–87 Keywords First published online as a Review in Advance on endosymbiosis, trans-splicing, gene transfer, alveolate, gene expression June 14, 2011 The Annual Review of Microbiology is online at Abstract micro.annualreviews.org The dinoflagellates are an ecologically important group of microbial eu- by University of Arizona Library on 11/07/11. For personal use only. This article’s doi: karyotes that have evolved many novel genomic characteristics. They 10.1146/annurev-micro-090110-102841 possess some of the largest nuclear genomes among eukaryotes arranged Copyright c 2011 by Annual Reviews. Annu. Rev. Microbiol. 2011.65:369-387. Downloaded from www.annualreviews.org ⃝ on permanently condensed liquid-crystalline chromosomes. Recent ad- All rights reserved vances have revealed the presence of genes arranged in tandem arrays, 0066-4227/11/1013-0369$20.00 trans-splicing of messenger RNAs, and a reduced role for transcrip- tional regulation compared to other eukaryotes. In contrast, the mito- chondrial and plastid genomes have the smallest gene content among functional eukaryotic organelles. Dinoflagellate biology and genome evolution have been dramatically influenced by lateral transfer of in- dividual genes and large-scale transfer of genes through endosymbio- sis. Next-generation sequencing technologies have only recently made genome-scale analyses of these organisms possible, and these new meth- ods are helping researchers better understand the biology and evolution of this enigmatic group of eukaryotes. 369 MI65CH19-Hackett ARI 27 July 2011 8:43 a complete genome sequence. Next-generation Contents sequencing technologies have finally placed a complete genome sequence of a dinoflagellate INTRODUCTION.................. 370 within reach and are already helping to eluci- DINOFLAGELLATE date the biology and evolution of these enig- PHYLOGENETICS . 370 matic organisms. NUCLEARBIOLOGY............... 372 Nuclear Genome Organization and Evolution . 372 DINOFLAGELLATE ORGANELLAR GENOMES. 376 PHYLOGENETICS The Mitochondrial Genome. 376 Dinoflagellates, apicomplexans, and ciliates are Dinoflagellate Plastids the dominant phyla of the well-supported su- and Their Genomes. 377 perphylum Alveolata, named for the flattened EVOLUTION OF vesicles (cortical alveoli) that form a contin- DINOFLAGELLATE GENE uous layer just under the plasma membrane CONTENT...................... 378 (21). The ciliates are predominantly unicellu- Endosymbiotic Gene Transfer in the lar heterotrophs that exhibit nuclear dimor- Evolution of Dinoflagellate phism and show deviations from the universal Genomes . 379 genetic code (87, 90, 113). Apicomplexans are Lateral Gene Transfer mostly intracellular parasites (54) and contain from Bacteria . 380 a nonphotosynthetic plastid (the apicoplast) in- CONCLUDING REMARKS . 380 volved in production of fatty acids, isoprene, heme, and iron-sulfur clusters (119). Phyloge- netic analyses are inconclusive but suggest alve- INTRODUCTION olates are related to stramenopiles (e.g., diatoms Dinoflagellates are ecologically and economi- and kelp) and rhizarians (e.g., forams and ra- cally important organisms in aquatic environ- diolarians) (18, 19). Within the alveolates, di- ments. They display tremendous morphologi- noflagellates are sister to the apicomplexans cal diversity and have one of the most extensive (29). Alveolate species that do not fall within fossil records among microbial eukaryotes due these three phyla are important for inferring to the formation of robust cysts by a large num- ancestral conditions. For example, the oyster ber of species (33). In marine environments they pathogen Perkinsus marinus is sister to dinoflag- are important primary producers, both as free- ellates and retains many typical eukaryotic char- by University of Arizona Library on 11/07/11. For personal use only. living phytoplankton and as symbionts of reef- acteristics (91), whereas the free-living marine forming corals. Many species are heterotrophic phototroph Chromera velia is sister to the para- Annu. Rev. Microbiol. 2011.65:369-387. Downloaded from www.annualreviews.org ormixotrophicandareprolificgrazersofplank- sitic apicomplexans (70). Molecular clock analy- tonic organisms. Dinoflagellates also produce ses indicate the dinoflagellates and apicomplex- a wide variety of secondary metabolites in- ans diverged 800–900 million years ago (11, 37), cluding a diverse array of toxins that have a consistent with fossils attributed to dinoflagel- significant impact on marine ecosystems and lates appearing as early as the late Mesoprotero- fisheries. zoic (65). Whereas some aspects of eukaryotes’ (par- The dinoflagellates can be divided into three ticularly microbial lineages) genomes differ main groups based on molecular phylogenies: from canonical eukaryotic traits, the dinoflag- Oxyrrhinales, Syndiniales, and the core di- ellates are notable for the extreme nature and noflagellates comprising the majority of char- Plastid: organelles of sheer number of novel genome characteristics. acterized species (67) (Figure 1). A large un- eukaryotes involved in photosynthesis They are perhaps the most ancient and diverse culturable diversity of marine dinoflagellates, group of eukaryotes for which there is not yet termed Marine Alveolates Group I (MAGI), 370 Wisecaver Hackett · MI65CH19-Hackett ARI 27 July 2011 8:43 Important phylogenetic nodes Durinskia 1 Alveolates baltica 2 Dinofagellates 3 Syndiniales Galeidiniium 4 Core dinofagellates Kryptoperidinium Karenia 5 Gonyaulacoids D Peridinium brevis 6 Gymnodiniales-Peridiniales- Durinskia Prorocentrales (GPP complex) Peridiniopsis Karenia H Prorocentrum Plastid replacements in dinofagellates Karlodinium sp. Gymnodinium D Dinotom dinofagellates have diatom-derived plastids Prorocentrum Peridinium H Fucoxanthin dinofagellates have 6 Peridinium haptophyte-derived plastids Symbiodinium sp. G Lepidodinium, the green dinofagellate, Woloszynskia has a prasinophyte-derived plastid G Lepidodinium K Dinophysis species have temporary Akashiwo cryptophyte plastids (kleptoplasts) Symbiodinium Pfesteria sp. Protoceratium Ceratium Gonyaulax 5 Gambierdiscus Akashiwo sanguinea Dinokaryon Alexandrium peridinin Fragilidium 4 Crypthecodinium Blastodinium Ceratium longipes Heterocapsa Noctiluca Histone-like proteins K Dinophysis 2 Amphidinium Alexandrium catenella Amoebophrya 3 Trans-splicing Syndinium Oxyrrhis Form II RuBisCO Plastid polyurdylylation MAGI Dinophysis Perkinsus sp. Apicomplexa 1 Chromera Ciliates Oxyrrhis Stramenopiles marina by University of Arizona Library on 11/07/11. For personal use only. Rhizaria Figure 1 Annu. Rev. Microbiol. 2011.65:369-387. Downloaded from www.annualreviews.org A phylogenetic model of dinoflagellate evolutionary relationships based on molecular data. Branches uniting supported clades are indicated with numbers. Plastid replacements are indicated with letters. Arrows indicate the most likely branch for the origin of some distinctive characteristics of dinoflagellates. Micrographs were obtained from the micro∗scope Web site (http://starcentral.mbl.edu/ microscope/portal.php)andusedwithpermission.Imagecopyrights:Durinskia baltica (S. Murray, M. Hoppenrath, J. Larsen & D. Patterson); Karenia brevis, Prorocentrum sp., Ceratium longipes, Alexandrium catenella,andDinophysis sp. (R. Andersen & D. Patterson); Peridinium sp. (M. Bahr & D. Patterson); Symbiodinium sp. (D. Patterson & M. Farmer); Akashiwo sanguinea (H. Su Yoon); Oxyrrhis marina (R. Moore & M.V. Sanchez-Puerta). Abbreviation: MAGI, Marine Alveolates Group I. has been described by 18S rDNA environ- heterotrophic Oxyrrhinales contain just one mental surveys and appears to be composed of morphospecies, Oxyrrhis marina (61). These primarily parasitic species (60, 69, 105). Syn- heterotrophic taxa (MAGI, the Syndiniales, and diniales, such as Amoebophrya,arealsopredom- Oxyrrhis) occupy a basal position in the di- inantly parasitic species. The free-living and noflagellate tree (41, 95, 97, 124). However, www.annualreviews.org Dinoflagellate Genome Evolution 371 • MI65CH19-Hackett ARI 27 July 2011 8:43 phylogenetic analyses have not determined the Nuclear Genome Organization positions of these groups relative to each other, and Evolution leaving the deepest branches of the dinoflagel- Dinotoms: Most dinoflagellates have dinokaryotic nuclei, late tree unresolved. This is problematic when dinoflagllates with distinguished by permanently condensed chro- attempting to infer ancestral states of some of diatom endosymbionts mosomes that are attached to the nuclear enve- plastids, which are the more unusual dinoflagellate characteristics lope and lack nucleosomes (12). Amazingly, the minimally reduced and discussed below. chromosome structure appears to be the result retain the diatom Within the core dinoflagellates, the tra- nucleus and other of DNA liquid crystal formation in the nucleus ditional orders were based on morphologi- organelles (15, 32, 59) (Figure 2a). The nuclear DNA cal characters such as thecal plate tabulation Theca: armored is associated with basic nuclear proteins, or patterns or the absence of theca altogether plates composed of histone-like proteins (HLPs). These proteins (31). Molecular phylogenetics has shown that cellulose or other have a secondary structure similar to that
Recommended publications
  • Basal Body Structure and Composition in the Apicomplexans Toxoplasma and Plasmodium Maria E
    Francia et al. Cilia (2016) 5:3 DOI 10.1186/s13630-016-0025-5 Cilia REVIEW Open Access Basal body structure and composition in the apicomplexans Toxoplasma and Plasmodium Maria E. Francia1* , Jean‑Francois Dubremetz2 and Naomi S. Morrissette3 Abstract The phylum Apicomplexa encompasses numerous important human and animal disease-causing parasites, includ‑ ing the Plasmodium species, and Toxoplasma gondii, causative agents of malaria and toxoplasmosis, respectively. Apicomplexans proliferate by asexual replication and can also undergo sexual recombination. Most life cycle stages of the parasite lack flagella; these structures only appear on male gametes. Although male gametes (microgametes) assemble a typical 9 2 axoneme, the structure of the templating basal body is poorly defined. Moreover, the rela‑ tionship between asexual+ stage centrioles and microgamete basal bodies remains unclear. While asexual stages of Plasmodium lack defined centriole structures, the asexual stages of Toxoplasma and closely related coccidian api‑ complexans contain centrioles that consist of nine singlet microtubules and a central tubule. There are relatively few ultra-structural images of Toxoplasma microgametes, which only develop in cat intestinal epithelium. Only a subset of these include sections through the basal body: to date, none have unambiguously captured organization of the basal body structure. Moreover, it is unclear whether this basal body is derived from pre-existing asexual stage centrioles or is synthesized de novo. Basal bodies in Plasmodium microgametes are thought to be synthesized de novo, and their assembly remains ill-defined. Apicomplexan genomes harbor genes encoding δ- and ε-tubulin homologs, potentially enabling these parasites to assemble a typical triplet basal body structure.
    [Show full text]
  • Molecular Data and the Evolutionary History of Dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Un
    Molecular data and the evolutionary history of dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Universitat Heidelberg, 1993 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of Botany We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA November 2003 © Juan Fernando Saldarriaga Echavarria, 2003 ABSTRACT New sequences of ribosomal and protein genes were combined with available morphological and paleontological data to produce a phylogenetic framework for dinoflagellates. The evolutionary history of some of the major morphological features of the group was then investigated in the light of that framework. Phylogenetic trees of dinoflagellates based on the small subunit ribosomal RNA gene (SSU) are generally poorly resolved but include many well- supported clades, and while combined analyses of SSU and LSU (large subunit ribosomal RNA) improve the support for several nodes, they are still generally unsatisfactory. Protein-gene based trees lack the degree of species representation necessary for meaningful in-group phylogenetic analyses, but do provide important insights to the phylogenetic position of dinoflagellates as a whole and on the identity of their close relatives. Molecular data agree with paleontology in suggesting an early evolutionary radiation of the group, but whereas paleontological data include only taxa with fossilizable cysts, the new data examined here establish that this radiation event included all dinokaryotic lineages, including athecate forms. Plastids were lost and replaced many times in dinoflagellates, a situation entirely unique for this group. Histones could well have been lost earlier in the lineage than previously assumed.
    [Show full text]
  • Identification of a Second Rrna Gene Unit in the Perkinsus Andrewsi Genome
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/8572105 Identification of a Second rRNA Gene Unit in the Perkinsus andrewsi Genome Article in Journal of Eukaryotic Microbiology · March 2004 DOI: 10.1111/j.1550-7408.2004.tb00553.x · Source: PubMed CITATIONS READS 18 61 3 authors: Wolf T Pecher José A. Fernández Robledo University of Baltimore Bigelow Laboratory for Ocean Sciences 17 PUBLICATIONS 112 CITATIONS 79 PUBLICATIONS 1,316 CITATIONS SEE PROFILE SEE PROFILE Gerardo R Vasta University of Maryland, Baltimore 220 PUBLICATIONS 6,701 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Perkinsus illustrations View project All content following this page was uploaded by José A. Fernández Robledo on 26 June 2017. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. J. Eukaryot. Microbiol., 51(2), 2004 pp. 234±245 q 2004 by the Society of Protozoologists Identi®cation of a Second rRNA Gene Unit in the Perkinsus andrewsi Genome WOLF T. PECHER, JOSEÂ A. F. ROBLEDO and GERARDO R. VASTA Center of Marine Biotechnology, University of Maryland Biotechnology Institute, University of Maryland, Baltimore, Maryland 21202, USA ABSTRACT. Perkinsus species are parasitic protozoa of mollusks, currently classi®ed within the Perkinsozoa, a recently established phylum that is basal to the Apicomplexa and Dinozoa. Ribosomal RNA (rRNA) genes and their intergenic spacers have been used to support the taxonomy of Perkinsus species, the description of new species, and to develop molecular probes for their detection and identi®cation.
    [Show full text]
  • The Planktonic Protist Interactome: Where Do We Stand After a Century of Research?
    bioRxiv preprint doi: https://doi.org/10.1101/587352; this version posted May 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Bjorbækmo et al., 23.03.2019 – preprint copy - BioRxiv The planktonic protist interactome: where do we stand after a century of research? Marit F. Markussen Bjorbækmo1*, Andreas Evenstad1* and Line Lieblein Røsæg1*, Anders K. Krabberød1**, and Ramiro Logares2,1** 1 University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N- 0316 Oslo, Norway 2 Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, ES-08003, Barcelona, Catalonia, Spain * The three authors contributed equally ** Corresponding authors: Ramiro Logares: Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain. Phone: 34-93-2309500; Fax: 34-93-2309555. [email protected] Anders K. Krabberød: University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N-0316 Oslo, Norway. Phone +47 22845986, Fax: +47 22854726. [email protected] Abstract Microbial interactions are crucial for Earth ecosystem function, yet our knowledge about them is limited and has so far mainly existed as scattered records. Here, we have surveyed the literature involving planktonic protist interactions and gathered the information in a manually curated Protist Interaction DAtabase (PIDA). In total, we have registered ~2,500 ecological interactions from ~500 publications, spanning the last 150 years.
    [Show full text]
  • University of Oklahoma
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D.
    [Show full text]
  • Dinoflagelados (Dinophyta) De Los Órdenes Prorocentrales Y Dinophysiales Del Sistema Arrecifal Veracruzano, México
    Symbol.dfont in 8/10 pts abcdefghijklmopqrstuvwxyz ABCDEFGHIJKLMNOPQRSTUVWXYZ Symbol.dfont in 10/12 pts abcdefghijklmopqrstuvwxyz ABCDEFGHIJKLMNOPQRSTUVWXYZ Symbol.dfont in 12/14 pts abcdefghijklmopqrstuvwxyz ABCDEFGHIJKLMNOPQRSTUVWXYZ Dinoflagelados (Dinophyta) de los órdenes Prorocentrales y Dinophysiales del Sistema Arrecifal Veracruzano, México Dulce Parra-Toriz1,3, María de Lourdes Araceli Ramírez-Rodríguez1 & David Uriel Hernández-Becerril2 1. Facultad de Biología, Universidad Veracruzana, Circuito Gonzalo Beltrán s/n, Zona Universitaria, Xalapa, Veracruz, 91090 México; [email protected] 2. Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México (UNAM). Apartado Postal 70-305, México D.F. 04510 México; [email protected] 3. Posgrado en Ciencias del Mar. Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México (UNAM). Apartado Postal 70-305, México D.F. 04510 México; [email protected] Recibido 12-III-2010. Corregido 24-VIII-2010. Aceptado 23-IX-2010. Abstract: Dinoflagellates (Dinophyta) of orders Dinophysiales and Prorocentrales of the Veracruz Reef System, Mexico. Dinoflagellates are a major taxonomic group in marine phytoplankton communities in terms of diversity and biomass. Some species are also important because they form blooms and/or produce toxins that may cause diverse problems. The composition of planktonic dinoflagellates of the orders Prorocentrales and Dinophysiales, in the Veracruz Reef System, were obtained during the period of October 2006 to January 2007. For this, samples were taken from the surface at 10 stations with net of 30µm mesh, and were analyzed by light and scanning electron microscopy. Each species was described and illustrated, measured and their dis- tribution and ecological data is also given. A total of nine species were found and identified, belonging to four genera: Dinophysis was represented by three species; Prorocentrum by three, Phalacroma by two, and only one species of Ornithocercus was detected.
    [Show full text]
  • Gaits in Paramecium Escape
    Transitions between three swimming gaits in Paramecium escape Amandine Hamela, Cathy Fischb, Laurent Combettesc,d, Pascale Dupuis-Williamsb,e, and Charles N. Barouda,1 aLadHyX and Department of Mechanics, Ecole Polytechnique, Centre National de la Recherche Scientifique, 91128 Palaiseau cedex, France; bActions Thématiques Incitatives de Genopole® Centriole and Associated Pathologies, Institut National de la Santé et de la Recherche Médicale Unité-Université d’Evry-Val-d’Essonne Unité U829, Université Evry-Val d'Essonne, Bâtiment Maupertuis, Rue du Père André Jarlan, 91025 Evry, France; cInstitut National de la Santé et de la Recherche Médicale Unité UMRS-757, Bâtiment 443, 91405 Orsay, France; dSignalisation Calcique et Interactions Cellulaires dans le Foie, Université de Paris-Sud, Bâtiment 443, 91405 Orsay, France; and eEcole Supérieure de Physique et de Chimie Industrielles ParisTech, 10 rue Vauquelin, 75005 Paris, France Edited* by Harry L. Swinney, University of Texas at Austin, Austin, TX, and approved March 8, 2011 (received for review November 10, 2010) Paramecium and other protists are able to swim at velocities reach- or in the switching between the different swimming behaviors ing several times their body size per second by beating their cilia (11, 13–17). in an organized fashion. The cilia beat in an asymmetric stroke, Below we show that Paramecium may also use an alternative to which breaks the time reversal symmetry of small scale flows. Here cilia to propel itself away from danger, which is based on tricho- we show that Paramecium uses three different swimming gaits to cyst extrusion. Trichocysts are exocytotic organelles, which are escape from an aggression, applied in the form of a focused laser regularly distributed along the plasma membrane in Paramecium heating.
    [Show full text]
  • Wrc Research Report No. 131 Effects of Feedlot Runoff
    WRC RESEARCH REPORT NO. 131 EFFECTS OF FEEDLOT RUNOFF ON FREE-LIVING AQUATIC CILIATED PROTOZOA BY Kenneth S. Todd, Jr. College of Veterinary Medicine Department of Veterinary Pathology and Hygiene University of Illinois Urbana, Illinois 61801 FINAL REPORT PROJECT NO. A-074-ILL This project was partially supported by the U. S. ~epartmentof the Interior in accordance with the Water Resources Research Act of 1964, P .L. 88-379, Agreement No. 14-31-0001-7030. UNIVERSITY OF ILLINOIS WATER RESOURCES CENTER 2535 Hydrosystems Laboratory Urbana, Illinois 61801 AUGUST 1977 ABSTRACT Water samples and free-living and sessite ciliated protozoa were col- lected at various distances above and below a stream that received runoff from a feedlot. No correlation was found between the species of protozoa recovered, water chemistry, location in the stream, or time of collection. Kenneth S. Todd, Jr'. EFFECTS OF FEEDLOT RUNOFF ON FREE-LIVING AQUATIC CILIATED PROTOZOA Final Report Project A-074-ILL, Office of Water Resources Research, Department of the Interior, August 1977, Washington, D.C., 13 p. KEYWORDS--*ciliated protozoa/feed lots runoff/*water pollution/water chemistry/Illinois/surface water INTRODUCTION The current trend for feeding livestock in the United States is toward large confinement types of operation. Most of these large commercial feedlots have some means of manure disposal and programs to prevent runoff from feed- lots from reaching streams. However, there are still large numbers of smaller feedlots, many of which do not have adequate facilities for disposal of manure or preventing runoff from reaching waterways. The production of wastes by domestic animals was often not considered in the past, but management of wastes is currently one of the largest problems facing the livestock industry.
    [Show full text]
  • Chromera Velia Is Endosymbiotic in Larvae of the Reef Corals Acropora
    Protist, Vol. 164, 237–244, March 2013 http://www.elsevier.de/protis Published online date 12 October 2012 ORIGINAL PAPER Chromera velia is Endosymbiotic in Larvae of the Reef Corals Acropora digitifera and A. tenuis a,b,1 b c,d e Vivian R. Cumbo , Andrew H. Baird , Robert B. Moore , Andrew P. Negri , c f e c Brett A. Neilan , Anya Salih , Madeleine J.H. van Oppen , Yan Wang , and c Christopher P. Marquis a School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, 4811, Australia b ARC Centre of Excellence for Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia c School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia d School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001, Australia e Australian Institute of Marine Science PMB 3, Townsville, Queensland, 4810, Australia f Confocal Bio-Imaging Facility, School of Science and Health, University of Western Sydney, NSW 2006, Australia Submitted May 8, 2012; Accepted August 30, 2012 Monitoring Editor: Bland J. Finlay Scleractinian corals occur in symbiosis with a range of organisms including the dinoflagellate alga, Symbiodinium, an association that is mutualistic. However, not all symbionts benefit the host. In par- ticular, many organisms within the microbial mucus layer that covers the coral epithelium can cause disease and death. Other organisms in symbiosis with corals include the recently described Chromera velia, a photosynthetic relative of the apicomplexan parasites that shares a common ancestor with Symbiodinium. To explore the nature of the association between C. velia and corals we first isolated C.
    [Show full text]
  • (Alveolata) As Inferred from Hsp90 and Actin Phylogenies1
    J. Phycol. 40, 341–350 (2004) r 2004 Phycological Society of America DOI: 10.1111/j.1529-8817.2004.03129.x EARLY EVOLUTIONARY HISTORY OF DINOFLAGELLATES AND APICOMPLEXANS (ALVEOLATA) AS INFERRED FROM HSP90 AND ACTIN PHYLOGENIES1 Brian S. Leander2 and Patrick J. Keeling Canadian Institute for Advanced Research, Program in Evolutionary Biology, Departments of Botany and Zoology, University of British Columbia, Vancouver, British Columbia, Canada Three extremely diverse groups of unicellular The Alveolata is one of the most biologically diverse eukaryotes comprise the Alveolata: ciliates, dino- supergroups of eukaryotic microorganisms, consisting flagellates, and apicomplexans. The vast phenotypic of ciliates, dinoflagellates, apicomplexans, and several distances between the three groups along with the minor lineages. Although molecular phylogenies un- enigmatic distribution of plastids and the economic equivocally support the monophyly of alveolates, and medical importance of several representative members of the group share only a few derived species (e.g. Plasmodium, Toxoplasma, Perkinsus, and morphological features, such as distinctive patterns of Pfiesteria) have stimulated a great deal of specula- cortical vesicles (syn. alveoli or amphiesmal vesicles) tion on the early evolutionary history of alveolates. subtending the plasma membrane and presumptive A robust phylogenetic framework for alveolate pinocytotic structures, called ‘‘micropores’’ (Cavalier- diversity will provide the context necessary for Smith 1993, Siddall et al. 1997, Patterson
    [Show full text]
  • Metagenomic Characterization of Unicellular Eukaryotes in the Urban Thessaloniki Bay
    Metagenomic characterization of unicellular eukaryotes in the urban Thessaloniki Bay George Tsipas SCHOOL OF ECONOMICS, BUSINESS ADMINISTRATION & LEGAL STUDIES A thesis submitted for the degree of Master of Science (MSc) in Bioeconomy Law, Regulation and Management May, 2019 Thessaloniki – Greece George Tsipas ’’Metagenomic characterization of unicellular eukaryotes in the urban Thessaloniki Bay’’ Student Name: George Tsipas SID: 268186037282 Supervisor: Prof. Dr. Savvas Genitsaris I hereby declare that the work submitted is mine and that where I have made use of another’s work, I have attributed the source(s) according to the Regulations set in the Student’s Handbook. May, 2019 Thessaloniki - Greece Page 2 of 63 George Tsipas ’’Metagenomic characterization of unicellular eukaryotes in the urban Thessaloniki Bay’’ 1. Abstract The present research investigates through metagenomics sequencing the unicellular protistan communities in Thermaikos Gulf. This research analyzes the diversity, composition and abundance in this marine environment. Water samples were collected monthly from April 2017 to February 2018 in the port of Thessaloniki (Harbor site, 40o 37’ 55 N, 22o 56’ 09 E). The extraction of DNA was completed as well as the sequencing was performed, before the downstream read processing and the taxonomic classification that was assigned using PR2 database. A total of 1248 Operational Taxonomic Units (OTUs) were detected but only 700 unicellular eukaryotes were analyzed, excluding unclassified OTUs, Metazoa and Streptophyta. In this research-based study the most abundant and diverse taxonomic groups were Dinoflagellata and Protalveolata. Specifically, the most abundant groups of all samples are Dinoflagellata with 190 OTUs (27.70%), Protalveolata with 139 OTUs (20.26%) Ochrophyta with 73 OTUs (10.64%), Cercozoa with 67 OTUs (9.77%) and Ciliophora with 64 OTUs (9.33%).
    [Show full text]
  • PROTISTS Shore and the Waves Are Large, Often the Largest of a Storm Event, and with a Long Period
    (seas), and these waves can mobilize boulders. During this phase of the storm the rapid changes in current direction caused by these large, short-period waves generate high accelerative forces, and it is these forces that ultimately can move even large boulders. Traditionally, most rocky-intertidal ecological stud- ies have been conducted on rocky platforms where the substrate is composed of stable basement rock. Projec- tiles tend to be uncommon in these types of habitats, and damage from projectiles is usually light. Perhaps for this reason the role of projectiles in intertidal ecology has received little attention. Boulder-fi eld intertidal zones are as common as, if not more common than, rock plat- forms. In boulder fi elds, projectiles are abundant, and the evidence of damage due to projectiles is obvious. Here projectiles may be one of the most important defi ning physical forces in the habitat. SEE ALSO THE FOLLOWING ARTICLES Geology, Coastal / Habitat Alteration / Hydrodynamic Forces / Wave Exposure FURTHER READING Carstens. T. 1968. Wave forces on boundaries and submerged bodies. Sarsia FIGURE 6 The intertidal zone on the north side of Cape Blanco, 34: 37–60. Oregon. The large, smooth boulders are made of serpentine, while Dayton, P. K. 1971. Competition, disturbance, and community organi- the surrounding rock from which the intertidal platform is formed zation: the provision and subsequent utilization of space in a rocky is sandstone. The smooth boulders are from a source outside the intertidal community. Ecological Monographs 45: 137–159. intertidal zone and were carried into the intertidal zone by waves. Levin, S. A., and R.
    [Show full text]