National Acid Sulfate Soils Guidance Guidance for the Dewatering of Acid Sulfate Soils in Shallow Groundwater Environments

Total Page:16

File Type:pdf, Size:1020Kb

National Acid Sulfate Soils Guidance Guidance for the Dewatering of Acid Sulfate Soils in Shallow Groundwater Environments National Acid Sulfate Soils Guidance Guidance for the dewatering of acid sulfate soils in shallow groundwater environments June 2018 National Acid Sulfate Soils Guidance: Guidance for the dewatering of acid sulfate soils in shallow groundwater environments © Commonwe alth of Australia 2018 Ownership of intellectual property rights Unless otherwise noted, copyright (and any other intellectual property rights, if any) in this publication is owned by the Commonwealth of Australia (referred to as the Commonwealth). Creative Commons licence All material in this publication is licensed under a Creative Commons Attribution 4.0 International Licence except content supplied by third parties, logos and the Commonwealth Coat of Arms. Inquiries about the licence and any use of this document should be emailed to [email protected]. Cataloguing data This publication (and any material sourced from it) should be attributed as: Shand, P, Appleyard, S, Simpson, SL, Degens, B 2018, National Acid Sulfate Soils Guidance: Guidance for the dewartering of acid sulfate soils in shallow groundwater environments, Department of Agriculture and Water Resources, Canberra, ACT. CC BY 4.0. This publication is available at waterquality.gov.au. Australian Government Department of Agriculture and Water Resources GPO Box 858 Canberra ACT 2601 Switchboard +61 2 6272 3933 or 1800 900 090 Email [email protected] Liability The Australian Government acting through the Department of Agriculture and Water Resources has exercised due care and skill in preparing and compiling the information in this publication. Notwithstanding, the Australian Government Department of Agriculture and Water Resources, its employees and advisers disclaim all liability, including liability for negligence and for any loss, damage, injury, expense or cost incurred by any person as a result of accessing, using or relying on any of the information or data in this publication to the maximum extent permitted by law. Acknowledgements The authors are grateful for the Department of Agriculture and Water Resources for overseeing the management of the acid sulfate soils national guidances project, and for providing support throughout. Luke Mosley, Amandine Schneider and David Sim are kindly thanked for providing excellent case studies and for sharing experience and knowledge of acid sulfate soils and groundwater. The Acid Sulfate Soils Technical Working Group and the National Committee for Acid Sulfate Soils provided continuous support and guidance since the projects inception. In particular, Liz Barnett, Lawrence Fox and Mitch Tulau are thanked for contributing reviews. Funding for this guidance was provided by the Department of Agriculture and Water Resources with in-kind support from the CSIRO (EP174687). Water Quality Australia ii National Acid Sulfate Soils Guidance: Guidance for the dewatering of acid sulfate soils in shallow groundwater environments Contents 1 The purpose of this guidance ................................................................................................. 1 2 Introduction .......................................................................................................................... 2 2.1 Acid Sulfate Soils.................................................................................................................. 2 2.2 Groundwater and ASS ......................................................................................................... 3 3 The extent of and risk associated with groundwater dewatering ............................................ 6 3.1 Type and extent of groundwater dewatering in areas of acid sulfate soils ........................ 9 3.2 Hazards and risks of groundwater dewatering in areas of acid sulfate soils .................... 10 3.3 Policy and regulatory environment ................................................................................... 21 3.4 Current management practices ......................................................................................... 21 4 Management strategies ........................................................................................................24 4.1 Step 1 Project description ................................................................................................. 27 4.2 Step 2 Desktop assessment ............................................................................................... 28 4.3 Step 3 Evaluating alternatives to dewatering or minimise impacted area ....................... 30 4.4 Step 4 Characterising soils and groundwater .................................................................... 31 4.5 Step 5 Groundwater investigations – hydrogeology ......................................................... 38 4.6 Step 6 Mitigation and control measures ........................................................................... 43 4.7 Step 7 Monitoring strategy................................................................................................ 57 4.8 Step 8 Closure reports ....................................................................................................... 62 5 ASS Groundwater management levels and planning .............................................................. 64 5.1 Introduction ....................................................................................................................... 64 5.2 Management levels ........................................................................................................... 65 5.3 Management planning ...................................................................................................... 66 5.4 Management of ASS in complex terrains: a case study .................................................... 72 6 Future work and data gaps ...................................................................................................76 Appendix A: Texture based action criteria for acid sulfate soils ..................................................... 77 Appendix B: Calculating the extent and duration of a cone of depression ..................................... 79 Appendix C: Dewatering effluent monitoring matrix .................................................................... 82 Appendix D: A one-dimensional analytical solution for the transport of contaminants in groundwater ...............................................................................................................................84 Appendix E: Checklist for reporting for initial closure report as required by Department of Water and Environment Regulation (DWER) ...........................................................................................86 Appendix F: Checklist for reporting for post-monitoring closure report as required by Department of Water and Environment Regulation (DWER) ............................................................................ 90 Appendix G: Management Levels for dewatering scale of acid sulfate soils ................................... 93 Water Quality Australia iii National Acid Sulfate Soils Guidance: Guidance for the dewatering of acid sulfate soils in shallow groundwater environments Glossary ......................................................................................................................................96 References ................................................................................................................................ 102 Figures Figure 2.1 Water movement and potential pathways for better management responses at a range of scales. ...................................................................................................................................................... 4 Figure 3.1 Urban and rural development activities................................................................................. 8 Figure 3.2 Processes of soil acidification and contaminant discharge in urban drains under varying rainfall-runoff periods. .......................................................................................................................... 13 Figure 3.3 High ASS risk areas on Gnangara Mound Western Australia. .............................................. 14 Figure 3.4 Clogging of pumps (left) and well screens (right) by amorphous Al hydroxide. .................. 18 Figure 3.5 Changes in groundwater level, soil pH and groundwater pH before, during and after the Millennium Drought. ............................................................................................................................. 19 Figure 4.1 Typical framework used as an assessment framework. ....................................................... 25 Figure 4.2 The formation of a cone of depression during pumping from a bore. ................................ 39 Figure 4.3 The principle of superposition.............................................................................................. 40 Figure 4.4 A well point dewatering system for a shallow excavation. .................................................. 45 Figure 4.5 Stage 5 development area prior to construction. ................................................................ 46 Figure 4.6 ASSDMP concept diagram of dewatering infrastructure. .................................................... 47 Figure 4.7 Open excavation of canal infrastructure with dewatering sump pump in foreground and recharge trench with settling basin. .....................................................................................................
Recommended publications
  • Management of Acid Sulfate Soils by Groundwater Manipulation Bruce Geoffrey Blunden University of Wollongong
    University of Wollongong Research Online University of Wollongong Thesis Collection University of Wollongong Thesis Collections 2000 Management of acid sulfate soils by groundwater manipulation Bruce Geoffrey Blunden University of Wollongong Recommended Citation Blunden, Bruce Geoffrey, Management of acid sulfate soils by groundwater manipulation, Doctor of Philosophy thesis, Faculty of Engineering, University of Wollongong, 2000. http://ro.uow.edu.au/theses/1834 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] MANAGEMENT OF ACID SULFATE SOILS BY GROUNDWATER MANIPULATION A thesis submitted in fulfilment of the requirements of the degree of DOCTOR OF PHILOSOPHY from UNIVERSITY OF WOLLONGONG by BRUCE GEOFFREY BLUNDEN B.Nat Res. (Hons), M.Eng. Faculty of Engineering October 2000 AFFIRMATION I, Bruce Blunden, declare that this thesis, submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the Faculty of Engineering, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. This document has not been submitted for qualifications at any other academic institution. Bruce Blunden. n PUBLICATIONS RELATED TO THIS RESEARCH Blunden, B. and Indraratna, B. (2000). Evaluation of Surface and Groundwater Management Strategies for Drained Sulfidic Soil using Numerical Models. Australian Journal of Soil Research 38, 569-590 Blunden, B. and Indraratna, B. (2000). Pyrite Oxidation Model for Assessing Groundwater management Strategies in Acid Sulphate Soils. Journal of Geotechnical and Geoenvironmental Engineering, (in press). Indraratna, B. and Blunden, B. (1999). Nature and Properties of Acid Sulphate Soils in Drained Coastal lowland in NSW, Australian Geomechanics Journal, 34(1), 61-78.
    [Show full text]
  • Acid Sulfate Soil Materials
    Site contamination —acid sulfate soil materials Issued November 2007 EPA 638/07: This guideline has been prepared to provide information to those involved in activities that may disturb acid sulfate soil materials (including soil, sediment and rock), the identification of these materials and measures for environmental management. What are acid sulfate soil materials? Acid sulfate soil materials is the term applied to soils, sediment or rock in the environment that contain elevated concentrations of metal sulfides (principally pyriteFeS2 or monosulfides in the form of iron sulfideFeS), which generate acidic conditions when exposed to oxygen. Identified impacts from this acidity cause minerals in soils to dissolve and liberate soluble and colloidal aluminium and iron, which may potentially impact on human health and the environment, and may also result in damage to infrastructure constructed on acid sulfate soil materials. Drainage of peaty acid sulfate soil material also results in the substantial production of the greenhouse gases carbon dioxide (CO2) and nitrous oxide (N2O). The oxidation of metal sulfides is a function of natural weathering processes. This process is slow however, and, generally, weathering alone does not pose an environmental concern. The rate of acid generation is increased greatly through human activities which expose large amounts of soil to air (eg via excavation processes). This is most commonly associated with (but not necessarily confined to) mining activities. Soil horizons that contain sulfides are called ‘sulfidic materials’ (Isbell 1996; Soil Survey Staff 2003) and can be environmentally damaging if exposed to air by disturbance. Exposure results in the oxidation of pyrite. This process transforms sulfidic material to sulfuric material when, on oxidation, the material develops a pH 4 or less (Isbell 1996; Soil Survey Staff 2003).
    [Show full text]
  • Understanding and Managing Irrigated Acid Sulfate and Salt-Affected Soils
    This handbook was part-funded by a grant from the South Australian River Murray Sustainability Program and delivered by Primary Industries and Regions South Australia between 2014 and 2016. We also acknowledge funding support and assistance from the Murray-Darling Basin Authority for field monitoring investigations between 2008 and 2011. Share this book Thehigh-quality paperback edition of this book is available for purchase online at https://shop. adelaide.edu.au/ Suggested citation: Fitzpatrick RW, Mosley LM, and Cook FJ. (2017). Understanding and managing irrigated acid sulfateand salt­ affectedsoils: A handbook for the Lower Murray Reclaimed Irrigation Area. Acid SulfateSoils Centre Report: ASSC_086. University of Adelaide Press, Adelaide. DO I: https:/ / doi.org/ 10.20851/ murray-soils. License: CC-BY-NC-ND 4.0 UNDERSTANDING AND MANAGING IRRIGATED ACID SULFATE AND SALT-AFFECTED SOILS A handbook for the Lower Murray Reclaimed Irrigation Area by Rob W Fitzpatrick • Luke M Mosley • Freeman J Cook Acid Sulfate Soils Centre (ASSC), The University of Adelaide Published in Adelaide by University of Adelaide Press Barr Smith Library The University of Adelaide South Australia 5005 [email protected] www.adelaide.edu.au/press The University of Adelaide Press publishes peer reviewed scholarly books. It aims to maximise access to the best research by publishing works through the internet as free downloads and for sale as high quality printed volumes. © 2017 Rob W Fitzpatrick, Luke M Mosley, Freeman J Cook This work is licenced under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0 or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.
    [Show full text]
  • Management Options for Acid Sulfate Soils in the Lower Murray Lakes, South Australia
    MANAGEMENT OPTIONS FOR ACID SULFATE SOILS IN THE LOWER MURRAY LAKES, SOUTH AUSTRALIA Stage 2 - Preliminary Assessment of Prevention, Control and Treatment Options prepared for PRIMARY INDUSTRIES AND RESOURCES SOUTH AUSTRALIA RURAL SOLUTIONS SA & THE DEPARTMENT FOR ENVIRONMENT AND HERITAGE, SOUTH AUSTRALIA by EARTH SYSTEMS Environment – Water – Sustainability December, 2008 MANAGEMENT OPTIONS FOR ACID SULFATE SOILS IN THE LOWER MURRAY LAKES STAGE 2 – PRELIMINARY ASSESSMENT OF PREVENTION, CONTROL AND TREATMENT OPTIONS Earth Systems DECEMBER, 2008 EARTH SYSTEMS DISTRIBUTION RECORD Copy No. Company / Position Name 1 Primary Industries and Resources South Australia, Martin Carter Rural Solutions SA 2 Department for Environment and Heritage Russell Seaman 3 Primary Industries and Resources South Australia Jason Higham 4 Environment Protection Authority SA Luke Mosley 5 Earth Systems Library RSSA082305_Report_Rev1 Page 2 MANAGEMENT OPTIONS FOR ACID SULFATE SOILS IN THE LOWER MURRAY LAKES STAGE 2 – PRELIMINARY ASSESSMENT OF PREVENTION, CONTROL AND TREATMENT OPTIONS Earth Systems DECEMBER, 2008 EARTH SYSTEMS DOCUMENT REVISION LIST Revision Revision Date Description of Approved By Status/Number Revision 0 December 2008 Draft Report Jeff Taylor 1 December 2008 Final Report Jeff Taylor This report is not to be used for purposes other than that for which it was intended. Environmental conditions change with time. The site conditions described in this report are based on observations made during the site visit and on subsequent monitoring results. Earth Systems Pty Ltd does not imply that the site conditions described in this report are representative of past or future conditions. Where this report is to be made available, either in part or in its entirety, to a third party, Earth Systems Pty Ltd reserves the right to review the information and documentation contained in the report and revisit and update findings, conclusions and recommendations.
    [Show full text]
  • New Approaches to Agricultural Land Drainage
    ge Syst Gurovich and Oyarce, Irrigat Drainage Sys Eng 2015, 4:2 ina em a s r D E DOI: 10.4172/2168-9768.1000135 n & g i n n o e i t e a r i g n i r g r Irrigation & Drainage Systems Engineering I ISSN: 2168-9768 Research Article Open Access New Approaches to Agricultural Land Drainage: A Review Luis Gurovich* and Patricio Oyarce Departamento de Fruticultura y Enología, Pontificia Universidad Católica de Chile. Santiago, Chile Abstract A review on agricultural effects of restricted soil drainage conditions is presented, related to soil physical, chemical and biological properties, soil water availability to crops and its effects on crop development and yield, soil salinization hazards, and the differences on drainage design main objectives in soils under tropical and semi-arid water regime conditions. The extent and relative importance of restricted drainage conditions in Agriculture, due to poor irrigation management is discussed, and comprehensive studies for efficient drainage design and operation required are outlined, as related to data gathering, revision and analysis about geology, soil science, topography, wells, underground water dynamics under field conditions, the amount, intensity and frequency of precipitations, superficial flow over the area to be drained, climatic characteristics, irrigation management and the phenology of crop productive development stages. These studies enable determining areas affected by drainage restrictions, as well as defining the optimal drainage net design and performance, in order to sustain soil conditions suitable to crops development. Keywords: Restricted drainage; Drainage studies; Drainage design As a result of plant metabolic disorders, caused by conditions of parameters total or partial anoxia near the roots, resulting from deficient drainage conditions, a decrease in crop production often occurs [8,15,16,18].
    [Show full text]
  • Groundwater Interactions with Acid Sulfate Soil: a Case Study in Torbay
    Government of Western Australia Department of Water Groundwater interactions with acid sulfate soil: a case study in Torbay, Western Australia A technical report for the project Tackling acid sulfate soils on the WA coast Looking after all our water needs technical series Report no. WST 17 October 2009 Groundwater interactions with acid sulfate soil: a case study in Torbay, Western Australia A technical report for the project: Tackling acid sulfate soils on the WA coast Looking after all our water needs KL Kilminster Department of Water Water Science Technical series Report no. 17 October 2009 Groundwater interactions with acid sulfate soil: a case study in Torbay, Western Australia Department of Water 168 St Georges Terrace Perth Western Australia 6000 Telephone +61 8 6364 7600 Facsimile +61 8 6364 7601 www.water.wa.gov.au © Government of Western Australia 2009 October 2009 This work is copyright. You may download, display, print and reproduce this material in unaltered form only (retaining this notice) for your personal, non-commercial use or use within your organisation. Apart from any use as permitted under the Copyright Act 1968, all other rights are reserved. Requests and inquiries concerning reproduction and rights should be addressed to the Department of Water. ISSN 1836-2869 (print) ISSN 1836-2877 (online) ISBN 978-1-921675-65-2 (print) ISBN 978-1-921675-33-1 (online) Acknowledgements This project was funded by the Australian Federal and Western Australian governments. The Department of Water would like to thank the following people for their contribution to this publication. This report was written by Dr Kieryn Kilminster.
    [Show full text]
  • Sustainable Management of Coastal Saline Soils in the Saloum River Basin, Senegal
    Available online at http://www.ifgdg.org Int. J. Biol. Chem. Sci. 11(4): 1903-1919, August 2017 ISSN 1997-342X (Online), ISSN 1991-8631 (Print) Original Paper http://ajol.info/index.php/ijbcs http://indexmedicus.afro.who.int Sustainable management of coastal saline soils in the Saloum river Basin, Senegal Aïdara C. A. Lamine FALL Department of Geography, University Assane Seck of Ziguinchor, BP 523 Ziguinchor, Senegal. E-mail: [email protected]; Tel.: +221 77 393 46 30 ABSTRACT Salinization of soils is one of the major environmental problems facing the world. Frequent tidal intrusions and continuous decrease of annual rainfall support the salinization of soils in the coastal area of the Saloum river Basin, West Central of Senegal, West Africa. This study aimed at appreciating the spatial variability of soil salinity along a levee to backswamp toposequence in the Saloum River basin; in order to assess the constraints and potentialities of these saline soils and propose sustainable soil management strategies. One transect (2.2 km) oriented East-West, including 9 soil profiles located on three topographic units: floodplain, low terrace, and middle terrace was selected. Soil chemical properties (electrical conductivity, pH, water soluble cations and anions) were analysed to estimate the salinity level at each soil horizon (n = 45). Soil pH (3.5-8.5), electrical conductivity (0.01-55 dS m-1) and water-soluble cations (Na+, K+, 2+ 2+ - 2- Ca , Mg ) and anions (Cl , SO4 ) decrease with altitude. The study demonstrates the close correlation between landscape position and soil salinity illustrated by a two-dimensional salt distribution pattern: horizontal and vertical.
    [Show full text]
  • Treatment and Management of Soils and Water in Acid Sulfate Soil Landscapes (DER 2015)
    GUIDELINE PAPER Treatment and management of soil and water in acid sulfate soil landscapes Version: Final June 2015 DER2015001427 1 Department of Environment Regulation This guideline may be applicable to decision-making authorities, proponents, consultants and other interested parties involved in the planning, development and use of areas potentially containing acid sulfate soils. The Department of Environment Regulation (DER) should be consulted regarding policy issues not covered in this guideline or where further clarification and explanation is required. DER would like to acknowledge the guidelines and manuals produced by the following committees and organisations that were used in the development of this guideline: • Queensland Acid Sulfate Soils Investigation Team • National Committee for Acid Sulfate Soils (NatCASS) • Southern Cross University This guideline forms part of a comprehensive statutory and policy framework for the identification, assessment and management of acid sulfate soils in Western Australia. The DER Acid Sulfate Soils Guideline Series contains the following guidelines: • Identification and investigation of acid sulfate soils and acidic landscapes (DER 2015) • Treatment and management of soils and water in acid sulfate soil landscapes (DER 2015) Other guidelines include: • Is my house built on acid sulfate soils? (DER 2015) Copies of these guidelines are available from DER’s website at www.der.wa.gov.au/ass. This document replaces: • Treatment and management of soil and water in acid sulfate soil landscapes (July 2011) i Treatment and management of soil and water in acid sulfate soil landscapes (June 2015) Department of Environment Regulation Produced and published by Department of Environment Regulation 168 St Georges Terrace, Perth, Western Australia Copyright © State of Western Australia 2015 All material is the copyright of the State of Western Australia.
    [Show full text]
  • Urban Nutrient Management Handbook I Table of Contents
    URBAN NU TRIENT MANAGE M ENT HANDBOOK URBAN NU TRIENT MANAGE M ENT HANDBOOK Content Coordinators: Michael Goatley Jr., Professor, Crop and Soil Environmental Sciences, Virginia Tech Kevin Hensler, Research Specialist Senior, Crop and Soil Environmental Sciences, Virginia Tech Published by: Virginia Cooperative Extension Project funded by: Virginia Department of Conservation and Recreation Produced by: Communications and Marketing, College of Agriculture and Life Sciences, Virginia Polytechnic Institute and State University Director: Thea Glidden Copy Editor: Bobbi A. Hoffman Assistant Editor: Liz Guinn Layout: Christopher Cox This material is based upon work supported by the Virginia Department of Conservation and Recreation, under Agreement 50301-2009-01-SF. Any opinions, findings, conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the Virginia Department of Conservation and Recreation. May 2011 Table of Contents Chapter 1. The Objectives of Turf and Landscape Nutrient Management Introduction. 1-1 What Is Nutrient Management? . 1-1 Improving Water Quality Through Turf and Landscape Nutrient Management. .1-4 Literature Cited. 1-4 Chapter 2. General Soil Science Principles Soil Formation and Soil Horizons. 2-1 Soil Physical Properties. 2-3 Soil Organic Matter . 2-6 Soil-Water Relationships. .2-7 Essential Elements for Plant Growth. 2-11 Soil Survey. 2-11 Literature Cited. .2-13 Chapter 3. Managing Urban Soils What Is an Urban Soil?. 3-1 Urban Soil Properties. 3-1 Types of Urban Soil Materials and Their Variability. .3-1 Common Soil Limitations in the Urban Environment . 3-2 Managing Urban Soils and Their Limitations.
    [Show full text]
  • 1455189355674.Pdf
    THE STORYTeller’S THESAURUS FANTASY, HISTORY, AND HORROR JAMES M. WARD AND ANNE K. BROWN Cover by: Peter Bradley LEGAL PAGE: Every effort has been made not to make use of proprietary or copyrighted materi- al. Any mention of actual commercial products in this book does not constitute an endorsement. www.trolllord.com www.chenaultandgraypublishing.com Email:[email protected] Printed in U.S.A © 2013 Chenault & Gray Publishing, LLC. All Rights Reserved. Storyteller’s Thesaurus Trademark of Cheanult & Gray Publishing. All Rights Reserved. Chenault & Gray Publishing, Troll Lord Games logos are Trademark of Chenault & Gray Publishing. All Rights Reserved. TABLE OF CONTENTS THE STORYTeller’S THESAURUS 1 FANTASY, HISTORY, AND HORROR 1 JAMES M. WARD AND ANNE K. BROWN 1 INTRODUCTION 8 WHAT MAKES THIS BOOK DIFFERENT 8 THE STORYTeller’s RESPONSIBILITY: RESEARCH 9 WHAT THIS BOOK DOES NOT CONTAIN 9 A WHISPER OF ENCOURAGEMENT 10 CHAPTER 1: CHARACTER BUILDING 11 GENDER 11 AGE 11 PHYSICAL AttRIBUTES 11 SIZE AND BODY TYPE 11 FACIAL FEATURES 12 HAIR 13 SPECIES 13 PERSONALITY 14 PHOBIAS 15 OCCUPATIONS 17 ADVENTURERS 17 CIVILIANS 18 ORGANIZATIONS 21 CHAPTER 2: CLOTHING 22 STYLES OF DRESS 22 CLOTHING PIECES 22 CLOTHING CONSTRUCTION 24 CHAPTER 3: ARCHITECTURE AND PROPERTY 25 ARCHITECTURAL STYLES AND ELEMENTS 25 BUILDING MATERIALS 26 PROPERTY TYPES 26 SPECIALTY ANATOMY 29 CHAPTER 4: FURNISHINGS 30 CHAPTER 5: EQUIPMENT AND TOOLS 31 ADVENTurer’S GEAR 31 GENERAL EQUIPMENT AND TOOLS 31 2 THE STORYTeller’s Thesaurus KITCHEN EQUIPMENT 35 LINENS 36 MUSICAL INSTRUMENTS
    [Show full text]
  • Treatment and Management of Soils and Water in Acid Sulfate Soil Landscapes
    E R N V M E O N G T E O H F T W A E I S L T A E R R N A U S T Draft Treatment and management of soils and water in acid sulfate soil landscapes January 2009 Prepared by Contaminated Sites Branch Environmental Regulation Division Department of Environment and Conservation Acid Sulfate Soils Guideline Series Acid Sulfate Soils Guideline Series DRAFT Treatment and management of soils and water in acid sulfate soil landscapes DRAFT TREATMENT AND MANAGEMENT OF SOILS AND WATER IN ACID SULFATE SOIL LANDSCAPES Prepared by Contaminated Sites Branch Environmental Regulation Division DEPARTMENT OF ENVIRONMENT AND CONSERVATION ACID SULFATE SOILS GUIDELINE SERIES DRAFT FOR COMMENT JANUARY 2009 Department of Environment and Conservation i Acid Sulfate Soils Guideline Series DRAFT Treatment and management of soils and water in acid sulfate soil landscapes Notice This guideline may be applicable to decision-making authorities, proponents, consultants and other interested parties involved in the planning, development and use of areas potentially containing acid sulfate soils. The Department of Environment and Conservation (DEC) should be consulted regarding policy issues not covered in this guideline or where further clarification and explanation is required. Limitations and disclaimer The information presented in this document is provided voluntarily as a public service. The information provided is made available in good faith and is believed accurate at the time of publication (or at the time of release on the Internet). However, the document is intended to be a guide only and should not be seen as a substitute for obtaining appropriate advice or making prudent inquiries.
    [Show full text]
  • Acid Sulfate Soil Remediation: Drainage Water Quality As Influenced by Tidal Forcing
    Acid sulfate soil remediation: Drainage water quality as influenced by tidal forcing Sylvia Warnecke A, Col Ahern B, C , Angus McElnea B, C , Freeman Cook D, Heiner Fleige E and Rainer Horn E AInstitute for Spatial Analysis and Planning in Areas of Intensive Agriculture, University of Vechta, Vechta, Germany, Email [email protected] BQueensland Department of Environment and Resource Management, Indooroopilly, QLD, Australia, Email [email protected] CCRC CARE, Salisbury South, South Australia 5106, Australia, Email [email protected] DCSIRO Land and Water, Indooroopilly, QLD, Australia, Email [email protected] EInstitute of Plant Nutrition and Soil Science, Christian-Albrechts-Universität zu Kiel, Kiel, Germany, Email [email protected] Abstract The aim of this study was the assessment of water quality at the landward periphery in a broadacre coastal acid sulfate soil area in tropical Queensland, Australia, as influenced by remediation by lime assisted re- introduction of tidal exchange. Focus lay on characterising alkalinity import to and acidity release from individual drains on the investigation site. The parameters determined were water level, pH, electrical conductivity, measured net alkalinity/net acidity, ferrous ion and total dissolved iron, aluminium and manganese. The parameters displayed gradients which could largely be attributed to the tidal influence. With increasing distance from the ocean, water level fluctuations in the drains became less pronounced, and the onset of the turning of the tides occurred later, as did the saline or brackish water influence. Net acidity and the metal concentrations decreased with increasing water levels during flood tide and then increased with decreasing water levels during ebb tide.
    [Show full text]