Ntarctic Journat L of the United States L

Total Page:16

File Type:pdf, Size:1020Kb

Ntarctic Journat L of the United States L NTARCTIC JOURNAT L OF THE UNITED STATES L. 11 Ua Qe t)i \ /. In this issue... • North Base site documented • Record low ozone levels recorded • Jurassic-age dinosaur remains found • Petersen named Deputy - Director Submitting manuscripts to the Antarctic Journal quarterly issues MWA Editor, Winifred Reuning he editor of the Antarctic Journal will Articles: Feature articles should be no Tconsider unsolicited manuscripts for longer than 1,500 words, but there is no Antarctic Journal of the United States, established in 1966, reports on U.S. activi- publication in the Antarctic Journal. limit on the number of illustrations (fig- ties in Antarctica, related activities else- Format and content requirements for arti- ures, tables, or photographs). Appropriate where, and trends in the U.S. Antarctic cles are summarized below. Interested topics include recent or significant science Program. The Office of Polar Programs authors should review previous issues for discoveries or advancements, cold-regions (National Science Foundation, Room 755, 4201 Wilson Boulevard, Arlington, Virginia style and content or contact the editor engineering, special support activities or 22230; telephone 703/306-1031) publishes directly. issues, history, environmental topics, and the journal five times a year (March, June, policy issues. September, December, and an annual Style Notes: Shorter articles, 500 to 800 review issue). he audience for the quarterly issues is words, will also be considered. Illustrations The Antarctic Journal is sold by the Tbroad in background and interests, so copy or on subscription through the U.S. may be submitted with these articles, but authors should make sure that their arti- Government Printing Office. Requests for notes should not include more than three prices of individual issues and subscrip- cles will be intelligible to readers outside of figures. Appropriate topics for notes tions, address changes, and information their scientific discipline or other area of about subscription matters should be sent include meeting reports or announce- expertise. Avoid specialized jargon and to the Superintendent of Documents, U.S. ments, new or improved technology, polar Government Printing Office, Washington, abbreviations, but use technical terms as publications, and support or related activi- L)C 20402. necessary. Define terms likely to be known ties. The National Science Foundation only by readers who are familiar with sub- (NSF) provides awards for research in the sciences and engineering. The awardee is ject. Spell out acronyms when they first Manuscript format wholly responsible for the conduct of such appear, including standard scientific terms anuscripts may be submitted in vari- research and preparation of results for pub- and chemical abbreviations, as well as M ous formats. For additional informa- lication. The Foundation, therefore, does not assume responsibility for such findings names of organizations. tion, contact Winifred Reuning, Editor; or their interpretation. Papers will be edited to improve style, Antarctic Journal; National Science The Foundation welcomes proposals clarity, and grammar. Authors will have the Foundation; Office of Polar Programs; oil of all qualified scientists and opportunity to review their edited manu- Room 755; 4201 Wilson Blvd.; Arlington, engineers and strongly encourages women, minorities, and persons with disabilities to scripts before publication, but galley Virginia 22230 (telephone, 703/306-1031; compete fully in any of the research and proofs are not furnished. Internet, WReuning@NSEgov). research-related programs described in this document. in accordance with Federal statutes and regulations and NSF policies, no person oil of race, color, age, sex, national origin, or physical disability shall he excluded from participation in, denied the benefits of, or be subject to dis- Contents... crimination under any program or activity receiving financial assistance from the Foundation. 3 A archaeological survey of Cover: In the McMurdo Dry Valleys, The National Science Foundation has Marble Point, Antarctica researchers check monitoring equip- Ti)i) (Telephonic Device for the Deaf) 7 Ozone depletion continues at ment used in their study capability, which enables individuals with of lichen and bearing impairments to communicate with record levels—Satellite data con- cyanobacteria that grow in the spaces the Foundation about NSF programs, firm CFCs as cause between the rock crystals of the regions employment, or general information. This 8 A winter perspective sandstone. The system records tern per- number is (703)306-0090. 10 Applied Environmental Research Facilitation Awards for Scientists and ature, humidity, and light levels, pro- Engineers With Disabilities (FASED) pro- Program begins viding year-round information about vide funding for special assistance or 10 Anne C. Petersen appointed ninth how changes in the regions climate equipment to enable persons with disabili- NSF Deputy Director affect the environment in the rocks. ties (investigators and other staff, including student research assistants) to work on NSF 11 When dinosaurs roamed These data help scientists understand projects. See the program announcement Gondwanaland how these cryptoendolithic microor- NSF 91-54), or contact the Facilitation 12 Science news from The Ice ganisms are affected by climatic Awards Coordinator at the National Science 14 Foundation awards of funds for Foundation, 4201 Wilson Boulevard, change. These microorganisms, which Arlington, Virginia (703)306-1636, antarctic projects, 1 June to 31 are estimated to be as much as 10,000 The Director of the National Science August 1994 years old, may also be a terrestrial Foundation has determined that the publi- 18 Weather at U.S. stations, analog for extraterrestrial life. cation of this periodical is necessary in the transaction of the public business required November 1993 through October (N//F ,)i,oto) by law of this agency. 1994 ANTARCTIC JOURNAL DECEMBER 1994 2 An archaeological survey of Marble Point, Antarctica fforts by national programs to clean up Archaeological work can be defined as North Base E old stations in Antarctica are increas- a systematic form of site clean-up with the n 8 January 1994, Jane Dionne, Acting ing. In 1992, the U.S. Congress allocated goal of documenting past human activi- Q Environmental Officer of the U.S. 30 million dollars for this purpose. Using ties. Prehistoric archaeology is well known Antarctic Program, forwarded a message these funds, the U.S. Antarctic Program to the public, but historic, industrial, and to me regarding her recent visit to Marble (USAP) began to clean up and retrograde conservation archaeology have rapidly Point, a small helicopter refueling station accumulated trash at McMurdo Station on grown in significance since the passage of located 43 nautical miles northwest of Ross Island, Amundsen-Scott South Pole the National Environmental Protection Act McMurdo Station: Station, and Palmer Station on the (NEPA) in 1969, which contains provisions for cultural resource protection (Schiffer About one-half mile north of the pre- Antarctic Peninsula. sent station there appears to have been a This effort also resulted in the clean- and Gummerman 1977; South 1977). fairly large camp or small station. There up of the oldest surviving U.S. station in According to a court decision in 1992, is a concrete plaque in the ground that Antarctica, East Base on Stonington Island NEPA now applies to all government-spon- says "North Base-1957." It appears as off the Antarctic Peninsula, which was last sored activities, including those outside of though a huge ditch were dug around the U.S. national territory. With the environ- main site and the camp so that the camp occupied in 1948. As a historic monument should be bulldozed into it. Near the recognized by the Antarctic Treaty, East mental emphasis in Antarctica today, every ditch, the outlines of the "foundations" of Base was carefully documented archaeo- effort must be put into protecting this frag- several smaller buildings remain from logically, and a small museum was estab- ile continent—but not at the expense of windblown sand, which must have been lished in the old Science Building sweeping away over 200 years of history blown against the buildings. Debris is and individual, national, and international now exposed from the ditch. Debris con- (Broadbent, Holdar, and Spude 1992; sists of pieces of canvas and frames of Parfit and Kendrick 1993). This station, like endeavor. This article offers an example of Jamesways, old spice cans still filled with the well-known Scott and Shackelton huts, a simple archaeological documentation spices, beer cans, pieces of crates (one is protected as a historic monument to sci- effort at a former U.S. base. Although the says "Washington" on it) etc., etc. ence and exploration and has become a historic value of such tourist attraction. sites is emphasized, Unlike this site, most sites, once doc- their scientific value is NORTH BASE MARBLE POINT umented, can be "cleaned up" and the also worth noting. Ar- ANTARCTICA PEC.1957) debris removed. To some, it must seem chaeological documen- NORTH BASE UB.M. odd that archaeological documentation tation of defunct sites C. 5.B.RUJ R. would be of value in this context, especial- can provide a baseline ly considering the young ages of these sta- for interpreting the effects of human impact L E0 tions. Others argue that archaeological— LAKE and photo documentation, however mini- on the environment
Recommended publications
  • Mcmurdo Dry Valleys, Southern Victoria Land
    Measure 1 (2004) Annex Management Plan for Antarctic Specially Managed Area No. 2 MCMURDO DRY VALLEYS, SOUTHERN VICTORIA LAND 1. Description of values to be protected and activities to be managed The McMurdo Dry Valleys are characterized as the largest relatively ice-free region in Antarctica with approximately thirty percent of the ground surface largely free of snow and ice. The region encompasses a cold desert ecosystem, whose climate is not only cold and extremely arid (in the Wright Valley the mean annual temperature is –19.8°C and annual precipitation is less than 100 mm water equivalent), but also windy. The landscape of the Area contains glaciers, mountain ranges, ice-covered lakes, meltwater streams, arid patterned soils and permafrost, sand dunes, and interconnected watershed systems. These watersheds have a regional influence on the McMurdo Sound marine ecosystem. The Area’s location, where large-scale seasonal shifts in the water phase occur, is of great importance to the study of climate change. Through shifts in the ice-water balance over time, resulting in contraction and expansion of hydrological features and the accumulations of trace gases in ancient snow, the McMurdo Dry Valley terrain also contains records of past climate change. The extreme climate of the region serves as an important analogue for the conditions of ancient Earth and contemporary Mars, where such climate may have dominated the evolution of landscape and biota. The Area is characterized by unique ecosystems of low biodiversity and reduced food web complexity. However, as the largest ice-free region in Antarctica, the McMurdo Dry Valleys also contain relatively diverse habitats compared with other ice-free areas.
    [Show full text]
  • Draft ASMA Plan for Dry Valleys
    Measure 18 (2015) Management Plan for Antarctic Specially Managed Area No. 2 MCMURDO DRY VALLEYS, SOUTHERN VICTORIA LAND Introduction The McMurdo Dry Valleys are the largest relatively ice-free region in Antarctica with approximately thirty percent of the ground surface largely free of snow and ice. The region encompasses a cold desert ecosystem, whose climate is not only cold and extremely arid (in the Wright Valley the mean annual temperature is –19.8°C and annual precipitation is less than 100 mm water equivalent), but also windy. The landscape of the Area contains mountain ranges, nunataks, glaciers, ice-free valleys, coastline, ice-covered lakes, ponds, meltwater streams, arid patterned soils and permafrost, sand dunes, and interconnected watershed systems. These watersheds have a regional influence on the McMurdo Sound marine ecosystem. The Area’s location, where large-scale seasonal shifts in the water phase occur, is of great importance to the study of climate change. Through shifts in the ice-water balance over time, resulting in contraction and expansion of hydrological features and the accumulations of trace gases in ancient snow, the McMurdo Dry Valley terrain also contains records of past climate change. The extreme climate of the region serves as an important analogue for the conditions of ancient Earth and contemporary Mars, where such climate may have dominated the evolution of landscape and biota. The Area was jointly proposed by the United States and New Zealand and adopted through Measure 1 (2004). This Management Plan aims to ensure the long-term protection of this unique environment, and to safeguard its values for the conduct of scientific research, education, and more general forms of appreciation.
    [Show full text]
  • The Antarctic Sun, November 5, 2000
    ww w. p o l a r. o rg / a n t s u n The November 5, 2000 PublishedA duringn the australt a summerr atctic McMurdo Station, Antarctica,Sun for the United States Antarctic Program Quote of the week “If we had to, we could run Roll out the barrels naked back to town.” Diver Rob Robbins, on wearing extreme cold weather gear to Fish Hut 4 on the sea ice 20 feet from McMurdo Station Fish story The ones that didn’t get away By Josh Landis Sun staff In a row of clear, plastic tanks in the Crary aquar- ium, a life cycle is underway. Early this season, divers brought a cache of dragonfish eggs out of the sea to be hatched in captivity. Now, for the first time ever at McMurdo, scores of the fish are growing up under the watchful eyes of researchers, giving them a look at a process that’s been largely unobserved: how their resistance to sub-freezing temperatures changes as they mature. Gently pouring plankton-rich water into the tanks, Teri McLain watches the small fry swim and twitch with hungry vigor. Each day these tiny fish reveal a little more of their species’ secrets of sur- vival, and she records it all. Fuelie Dave Tuepker checks new fuel drums for water condensation. Droplets formed inside some of them during transport to Antarctica, making them The droning of a gas-powered winch deafens the unsuitable for airplane and vehicle use. The ones that pass inspection will be inside of an old ice shack.
    [Show full text]
  • The Antarctic Sun, January 15, 2006
    January 15, 2006 Scientists learn volumes from ancient tracks By Emily Stone Sun staff To Molly Miller, little lines etched in stone are the history books of ancient Antarctica. Miller and her fellow scientists are hunting for tracks left by the tiny animals that inhabited the continent’s lakes and streams between 240 million and 280 million years ago. Understanding what was living here will reveal much about the climate, landscape and ecology of the period. “We’re piecing together a picture of the past,” said Miller of Vanderbilt University, Steven Profaizer / The Antarctic Sun who is a co-principal investigator on the Randy “Crunch” Noring prepares to hook a hanging cargo net to a helicopter hovering project. at Marble Point Refueling Station. The facility functions as a gas station, food stop and Her two co-principal investigators are way station for many flights in the McMurdo Dry Valleys. doing similar searches. John Isbell of the University of Wisconsin, Milwaukee is looking for features in the rocks that See TINY on page 11 Much more than fuel Marble Point Refueling Station gives pilots a taste of home By Steven Profaizer Sun staff There is no question what continent you are on when standing outside the main hut at Marble Point Refueling Station. A large glacier terminates a few hundred meters away. Icebergs stick up out of the sea ice, frozen in place. And the cold, dry wind whips across your face. Inside the hut, however, you might think you’ve been whisked away to a friend’s house, complete with a small kitchen wafting the smell of chicken noodle soup, fresh-baked bread and homemade cookies.
    [Show full text]
  • Continental Field Manual 3 Field Planning Checklist: All Field Teams Day 1: Arrive at Mcmurdo Station O Arrival Brief; Receive Room Keys and Station Information
    PROGRAM INFO USAP Operational Risk Management Consequences Probability none (0) Trivial (1) Minor (2) Major (4) Death (8) Certain (16) 0 16 32 64 128 Probable (8) 0 8 16 32 64 Even Chance (4) 0 4 8 16 32 Possible (2) 0 2 4 8 16 Unlikely (1) 0 1 2 4 8 No Chance 0% 0 0 0 0 0 None No degree of possible harm Incident may take place but injury or illness is not likely or it Trivial will be extremely minor Mild cuts and scrapes, mild contusion, minor burns, minor Minor sprain/strain, etc. Amputation, shock, broken bones, torn ligaments/tendons, Major severe burns, head trauma, etc. Injuries result in death or could result in death if not treated Death in a reasonable time. USAP 6-Step Risk Assessment USAP 6-Step Risk Assessment 1) Goals Define work activities and outcomes. 2) Hazards Identify subjective and objective hazards. Mitigate RISK exposure. Can the probability and 3) Safety Measures consequences be decreased enough to proceed? Develop a plan, establish roles, and use clear 4) Plan communication, be prepared with a backup plan. 5) Execute Reassess throughout activity. 6) Debrief What could be improved for the next time? USAP Continental Field Manual 3 Field Planning Checklist: All Field Teams Day 1: Arrive at McMurdo Station o Arrival brief; receive room keys and station information. PROGRAM INFO o Meet point of contact (POC). o Find dorm room and settle in. o Retrieve bags from Building 140. o Check in with Crary Lab staff between 10 am and 5 pm for building keys and lab or office space (if not provided by POC).
    [Show full text]
  • Antarctic Treaty Handbook
    Annex Proposed Renumbering of Antarctic Protected Areas Existing SPA’s Existing Site Proposed Year Annex V No. New Site Management Plan No. Adopted ‘Taylor Rookery 1 101 1992 Rookery Islands 2 102 1992 Ardery Island and Odbert Island 3 103 1992 Sabrina Island 4 104 Beaufort Island 5 105 Cape Crozier [redesignated as SSSI no.4] - - Cape Hallet 7 106 Dion Islands 8 107 Green Island 9 108 Byers Peninsula [redesignated as SSSI no. 6] - - Cape Shireff [redesignated as SSSI no. 32] - - Fildes Peninsula [redesignated as SSSI no.5] - - Moe Island 13 109 1995 Lynch Island 14 110 Southern Powell Island 15 111 1995 Coppermine Peninsula 16 112 Litchfield Island 17 113 North Coronation Island 18 114 Lagotellerie Island 19 115 New College Valley 20 116 1992 Avian Island (was SSSI no. 30) 21 117 ‘Cryptogram Ridge’ 22 118 Forlidas and Davis Valley Ponds 23 119 Pointe-Geologic Archipelago 24 120 1995 Cape Royds 1 121 Arrival Heights 2 122 Barwick Valley 3 123 Cape Crozier (was SPA no. 6) 4 124 Fildes Peninsula (was SPA no. 12) 5 125 Byers Peninsula (was SPA no. 10) 6 126 Haswell Island 7 127 Western Shore of Admiralty Bay 8 128 Rothera Point 9 129 Caughley Beach 10 116 1995 ‘Tramway Ridge’ 11 130 Canada Glacier 12 131 Potter Peninsula 13 132 Existing SPA’s Existing Site Proposed Year Annex V No. New Site Management Plan No. Adopted Harmony Point 14 133 Cierva Point 15 134 North-east Bailey Peninsula 16 135 Clark Peninsula 17 136 North-west White Island 18 137 Linnaeus Terrace 19 138 Biscoe Point 20 139 Parts of Deception Island 21 140 ‘Yukidori Valley’ 22 141 Svarthmaren 23 142 Summit of Mount Melbourne 24 118 ‘Marine Plain’ 25 143 Chile Bay 26 144 Port Foster 27 145 South Bay 28 146 Ablation Point 29 147 Avian Island [redesignated as SPA no.
    [Show full text]
  • Explorer's Gazette
    EEXXPPLLOORREERR’’SS GAZETTE GAZETTE Published Quarterly in Pensacola, Florida USA for the Old Antarctic Explorers Association Uniting All OAEs in Perpetuating the History of U.S. Navy Involvement in Antarctica Volume 6, Issue 3 Old Antarctic Explorers Association, Inc Jul-Sep 2006 Coast Guard Cutter Polar Star at McMurdo Ice Pier Polar Star Change of Command Ceremony Compiled by Billy-Ace Baker ince the late 1970s, the 400-foot mammoths of the Coast The “J”-shaped cranes and work areas near the stern and S Guard fleet, based in Seattle, Washington, have been port side of ship give scientists the capability to do at-sea traveling north and south on their primary mission of studies in the fields of geology, vulcanology, oceanography, scientific and logistical support in both Polar Regions. Polar sea-ice physics, and other earth science disciplines. class icebreakers, the Polar Star and the Polar Sea, have a On 10 June 2006 at 10:30 a.m. in Seattle Washington, a variety of missions while operating in Polar Regions. change of command ceremony took place aboard the Coast During Antarctic deployments, their missions include Guard Cutter Polar Star at Pier 36. breaking a channel through the sea ice to McMurdo Station On 30 June, the icebreaker entered caretaker status at its in the Ross Sea. Resupply ships use the channel to bring homeport in Seattle pending a decision whether the ship will food, fuel, and other goods to McMurdo Station. In addition be decommissioned or undergo a major renovation. Polar Star serves as a scientific research platform with five See Polar Star on page 4.
    [Show full text]
  • II. Expedition Dates
    Information Exchange Under United States Antarctic Activities Articles III and VII(5) of the Modifications of Activities Planned for 2003-2004 ANTARCTIC TREATY II. Expedition Dates II. Expedition Dates Section II of the Modifications of Activities Planned for 2003-2004 lists the actual dates of significant events occurring during this time period. Significant Dates of Expeditions Date Activity 05 Apr 03 LMG03-04 10 May 03 LMG03-04A 16 June 03 LMG03-05 16 Aug 03 LMG03-05A 21 Aug 03 First flight to McMurdo Station for Winfly operations 22 Aug 03 NBP03-04C 07 Sep 03 LMG Maintenance open period for maintenance 14 Sep 03 NBP03-04C 22 Sep 03 LMG03-06 28 Sep 03 Palmer Station annual relief 30 Sep 03 First C-141 mission to McMurdo Station during Ice Runway period McMurdo Station commenced summer operations (1 of 19) 05 Oct 03 Marble Point opens 01 Oct 03 First C-17 mission of the season to McMurdo Station (1 of 12) 09 Oct 03 NBP03-04D 10 Oct 03 LMG03-07 (Palmer Station Shuttle) 14 Oct 03 Pieter J. Lenie Field Station (Copacabana) opens 14 Oct 03 Odell Glacier Camp Opens 14 Oct 03 Lake Hoare Camp opens 16 Oct 03 Lake Bonney Camp opens 17 Oct 03 F6 Camp opens 18 Oct 03 Lake Fryxell Camp opens National Science Foundation 2 Arlington, Virginia 22230 October 1, 2004 Information Exchange Under United States Antarctic Activities Articles III and VII(5) of the Modifications of Activities Planned for 2003-2004 ANTARCTIC TREATY II. Expedition Dates Date Activity 22 Oct 03 Three (3) 109th AW LC-130’s arrive McMurdo Station to start on-continent missions
    [Show full text]
  • Wilderness and Aesthetic Values of Antarctica
    Wilderness and Aesthetic Values of Antarctica Abstract Antarctica is the least inhabited region in the world and has therefore had the least influence from human activities and, unlike the majority of the Earth’s continents and oceans, can still be considered as mostly wilderness. As every visitor to Antarctica knows, its landscapes are exceptionally beautiful. It was the recognition of the importance of these characteristics that resulted in their protection being included in the Madrid Protocol. Both wilderness and aesthetic values can be impaired by human activities in a variety of ways with the severity varying from negligible to severe, according to the type Protocol on Environmental Protec tion to the Antarctic Trea ty - of activity and its duration, spatial extent and intensity. A map of infrastructure and major travel routes the "M adrid Protocol" in Antarctica will be the first step in visually representing where wilderness and aesthetic values Article 3[1] may be impacted. It is hoped that this will stimulate further discussion on how to describe, acknowledge, The protection of the Antarctic environment and dependent an d associated ecosystems and the intrinsic value of Antarctica, understand and further protect the wilderness and aesthetic values of Antarctica. including its wilderness and aesthetic values and its value as an area for the conduct of scientific research, in particular research essential to understanding the global environment, shall be fundamental considerations in the planning and condu ct of all activities
    [Show full text]
  • Visual Recovery of Desert Pavement Surfaces Following Impacts from Vehicle and Foot Traffic in the Ross Sea Region of Antarctica TANYA A
    Antarctic Science 25(4), 514–530 (2013) & Antarctic Science Ltd 2013 doi:10.1017/S0954102012001125 Visual recovery of desert pavement surfaces following impacts from vehicle and foot traffic in the Ross Sea region of Antarctica TANYA A. O’NEILL1, MEGAN R. BALKS1 and JERO´ NIMO LO´ PEZ-MARTI´NEZ2 1Earth and Ocean Sciences, University of Waikato, Hamilton, New Zealand 2Faculty of Sciences, Universidad Auto´noma de Madrid, Spain [email protected] Abstract: Sites of past human activity were investigated to assess the visual recovery of the desert pavement following impacts from human trampling and vehicle traffic. Visually disturbed and nearby control sites were assessed using comparative photographic records, a field-based Visual Site Assessment, and Desert Pavement Recovery Assessment. Sites included: vehicle and walking tracks at Marble Point and Taylor Valley; a campsite, experimental treading trial site, and vehicle tracks in Wright Valley; and vehicle and walking tracks at Cape Roberts. The time since last disturbance ranged from three months to over 50 years. This investigation also attempted to determine what has the greatest lasting visual impact on soil surfaces in the Ross Sea region: dispersed trafficking or track formation? Walking tracks remained visible in the landscape (due to larger clasts concentrating along track margins) long after the desert pavement surface had recovered. However, randomly dispersed footprints were undetectable within five years. For many sites, allowing widespread trampling will give lower medium-term visible impact than concentrating traffic flow by track formation. For steep slopes and sites where repeated visits occur, use of a single track is recommended. Some 1950s vehicle tracks remain visible in the Antarctic landscape, but where visually obvious impacts were remediated, evidence of former occupation was almost undetectable.
    [Show full text]
  • Insights on the Environmental Impacts Associated with Visible Disturbance of Ice-Free Ground in Antarctica SHAUN T
    Antarctic Science 31(6), 304–314 (2019) © Antarctic Science Ltd 2019. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. doi:10.1017/S0954102019000440 Insights on the environmental impacts associated with visible disturbance of ice-free ground in Antarctica SHAUN T. BROOKS 1, PABLO TEJEDO2 and TANYA A. O'NEILL3,4 1Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia 2Departamento de Ecología, Universidad Autónoma de Madrid, Madrid, Spain 3Environmental Research Institute, University of Waikato, Hamilton, New Zealand 4School of Sciences, University of Waikato, Hamilton, New Zealand [email protected] Abstract: The small ice-free areas of Antarctica provide an essential habitat for most evident terrestrial biodiversity, as well as being disproportionately targeted by human activity. Visual detection of disturbance within these environments has become a useful tool for measuring areas affected by human impact, but questions remain as to what environmental consequences such disturbance actually has. To answer such questions, several factors must be considered, including the climate and biotic and abiotic characteristics. Although a body of research has established the consequences of disturbance at given locations, this paper was conceived in order to assess whether their findings could be generalized as a statement across the Antarctic continent. From a review of 31 studies within the Maritime Antarctic, Continental Antarctic and McMurdo Dry Valleys regions, we found that 83% confirmed impacts in areas of visible disturbance.
    [Show full text]
  • SECTION THREE: Historic Sites and Monuments in Antarctica
    SECTION THREE: Historic Sites and Monuments in Antarctica The need to protect historic sites and monuments became apparent as the number of expeditions to the Antarctic increased. At the Seventh Antarctic Treaty Consultative Meeting it was agreed that a list of historic sites and monuments be created. So far 74 sites have been identified. All of them are monuments – human artifacts rather than areas – and many of them are in close proximity to scientific stations. Provision for protection of these sites is contained in Annex V, Article 8. Listed Historic Sites and Monuments may not be damaged, removed, or destroyed. 315 List of Historic Sites and Monuments Identified and Described by the Proposing Government or Governments 1. Flag mast erected in December 1965 at the South Geographical Pole by the First Argentine Overland Polar Expedition. 2. Rock cairn and plaques at Syowa Station (Lat 69°00’S, Long 39°35’E) in memory of Shin Fukushima, a member of the 4th Japanese Antarctic Research Expedition, who died in October 1960 while performing official duties. The cairn was erected on 11 January 1961, by his colleagues. Some of his ashes repose in the cairn. 3. Rock cairn and plaque on Proclamation Island, Enderby Land, erected in January 1930 by Sir Douglas Mawson (Lat 65°51’S, Long 53°41’E) The cairn and plaque commemorate the landing on Proclamation Island of Sir Douglas Mawson with a party from the British, Australian and New Zealand Antarctic Research Expedition of 1929­ 31. 4. Station building to which a bust of V. I. Lenin is fixed, together with a plaque in memory of the conquest of the Pole of Inaccessibility by Soviet Antarctic explorers in 1958 (Lat 83°06’S, Long 54°58’E).
    [Show full text]