POLISH MARITIME RESEARCH Is a Scientific Journal of Worldwide Circulation
Total Page:16
File Type:pdf, Size:1020Kb
PUBLISHER: Address of Publisher & Editor's Office: POLISH MARITIME RE SEARCH GDAŃSK UNIVERSITY No 2 (82) 2014 Vol 21 OF TECHNOLOGY Faculty CONTENTS of Ocean Engineering & Ship Technology 3 JAN P. MICHALSKI Parametric method for evaluating optimal ship deadweight ul. Narutowicza 11/12 80-233 Gdańsk, POLAND 9 DEJAN RADOJCIC, ANTONIO ZGRADIC, tel.: +48 58 347 13 66 MILAN KALAJDZIC, ALEKSANDAR SIMIC fax: +48 58 341 13 66 Resistance Prediction for Hard Chine Hulls e-mail: offi[email protected] in the Pre-Planing Regime Account number: BANK ZACHODNI WBK S.A. 27 KATARZYNA ZELAZNY I Oddział w Gdańsku A simplified method for calculating propeller 41 1090 1098 0000 0000 0901 5569 thrust decrease for a ship sailing on a given shipping lane Editorial Staff: 34 PAWEŁ DYMARSKI, CZESŁAW DYMARSKI Jacek Rudnicki Editor in Chief A numerical model to simulate the motion of a lifesaving module during its launching from the ship’s stern ramp Przemysław Wierzchowski Scientific Editor 41 ALEKSANDER KNIAT Jan Michalski Editor for review matters The quick measure of a NURBS surface curvature for accurate triangular meshing Aleksander Kniat Editor for international re la tions 45 MARIUSZ ZIEJA, MARIUSZ WAŻNY Kazimierz Kempa Technical Editor A model for service life control of selected device systems Piotr Bzura Managing Editor 50 PAWEŁ SLIWIŃSKI Flow of liquid in flat gaps Cezary Spigarski Computer Design of the satellite motor working mechanism Domestic price: 58 GRZEGORZ ROGALSKI, JERZY ŁABANOWSKI, single issue: 25 zł DARIUSZ FYDRYCH, JACEK TOMKÓW Bead-on-plate welding on S235JR steel Prices for abroad: by underwater local dry chamber process single issue: - in Europe EURO 15 65 JACEK MARSZAL - overseas USD 20 Digital signal processing applied to the modernization of Polish Navy sonars ISSN 1233-2585 76 LUDMIŁA FILINA-DAWIDOWICZ Rationalization of servicing reefer containers POLISH in sea port area with taking into account risk influence MARITIME 86 MEHDI GHAZANFARI, SAEED ROUHANI, MOSTAFA JAFARI RESEARCH A fuzzy TOPSIS model to evaluate the Business Intelligence in internet competencies of Port Community Systems 97 SRETEN TOMOVIC, GORAN SEKULIC www.bg.pg.gda.pl/pmr/pmr.php Application of multi-criteria optimisation in marina planning on the Montenegrin coast Editorial POLISH MARITIME RESEARCH is a scientific journal of worldwide circulation. The journal ap pe ars as a quarterly four times a year. The first issue of it was published in September 1994. Its main aim is to present original, innovative scientific ideas and Research & Development achieve ments in the field of : Engineering, Computing & Technology, Mechanical Engineering, which could find applications in the broad domain of maritime economy. Hence there are published papers which concern methods of the designing, manufacturing and operating processes of such technical objects and devices as : ships, port equip ment, ocean engineering units, underwater vehicles and equipment as well as harbour facilities, with accounting for marine environment protection. The Editors of POLISH MARITIME RESEARCH make also efforts to present problems dealing with edu ca tion of engineers and scientific and teaching personnel. As a rule, the basic papers are supple men ted by information on conferences , important scientific events as well as coope ra tion in carrying out inter na- tio nal scientific research projects. Scientific Board Chairman : Prof. JERZY GIRTLER - Gdańsk University of Technology, Poland Vice-chairman : Prof. ANTONI JANKOWSKI - Institute of Aeronautics, Poland Vice-chairman : Prof. MIROSŁAW L. WYSZYŃSKI - University of Birmingham, United Kingdom Dr POUL ANDERSEN Prof. WOLFGANG FRICKE Prof. YASUHIKO OHTA Technical University Technical University Nagoya Institute of Technology of Denmark Hamburg-Harburg Japan Denmark Germany Dr YOSHIO SATO Dr MEHMET ATLAR Prof. STANISŁAW GUCMA National Traffic Safety University of Newcastle Maritime University of Szczecin and Environment Laboratory United Kingdom Poland Japan Prof. GÖRAN BARK Prof. ANTONI ISKRA Prof. KLAUS SCHIER Chalmers Uni ver si ty Poznań University University of Ap plied Sciences of Technology of Technology Germany Sweden Poland Prof. FREDERICK STERN Prof. SERGEY BARSUKOV Prof. JAN KICIŃSKI University of Iowa, Army Institute of Odessa Institute of Fluid-Flow Machinery IA, USA Ukraine of PASci Poland Prof. JÓZEF SZALA Bydgoszcz Uni ver si ty Prof. MUSTAFA BAYHAN Süleyman De mi rel University Prof. ZYGMUNT KITOWSKI of Technology and Agriculture Turkey Naval University Poland Poland Prof. TADEUSZ SZELANGIEWICZ Prof. VINCENZO CRUPI Prof. JAN KULCZYK Technical University University of Messina, Wrocław University of Technology of Szczecin Italy Poland Poland Prof. MAREK DZIDA Prof. NICOS LADOMMATOS Prof. WITALIJ SZCZAGIN Gdańsk University University College London State Technical University of Technology United Kingdom of Kaliningrad Poland Russia Prof. JÓZEF LISOWSKI Prof. ODD M. FALTINSEN Gdynia Ma ri ti me University Prof. BORIS TIKHOMIROV Norwegian University Poland State Marine University of Science and Technology of St. Pe ters burg Norway Prof. JERZY MATUSIAK Russia Helsinki Uni ver si ty Prof. PATRICK V. F ARRELL of Technology Prof. DRACOS VASSALOS University of Wisconsin Finland University of Glasgow Madison, WI and Strathclyde USA Prof. EUGEN NEGRUS United Kingdom University of Bucharest Romania POLISH MARITIME RESEARCH 2(82) 2014 Vol 21; pp. 65-75 10.2478/pomr-2014-0021 Digital signal processing applied to the modernization of Polish Navy sonars Jacek Marszal, Ph.D. Gdansk University of Technology, Poland ABSTRACT The article presents the equipment and digital signal processing methods used for modernizing the Polish Navy’s sonars. With the rapid advancement of electronic technologies and digital signal processing methods, electronic systems, including sonars, become obsolete very quickly. In the late 1990s a team of researchers of the Department of Marine Electronics Systems, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, began work on modernizing existing sonar systems for the Polish Navy. As part of the effort, a methodology of sonar modernization was implemented involving a complete replacement of existing electronic components with newly designed ones by using bespoke systems and methods of digital signal processing. Large and expensive systems of ultrasound transducers and their dipping and stabilisation systems underwent necessary repairs but were otherwise left unchanged. As a result, between 2001 and 2014 the Gdansk University of Technology helped to modernize 30 sonars of different types. Keywords: sonar; anti-submarine warfare; mine countermeasure; digital signal processing INTRODUCTION modernization set the scene for more modernization of the Polish Navy’s sonar systems. One of the main tasks of the Navy is to track submarines In summary, between 2001 and 2014 the Gdansk University (Anti-Submarine Warfare -ASW) and search for and destroy of Technology team modernized the total of 30 sonars of naval mines (Mine Counter-Measure - MCM) [7]. This is done different types (dipping, towed array, hull-mounted with flat by specialised ships equipped with sonar systems. Submarines or cylindrical array, side scan) including 13 in ASW class and are tracked by using long-range low frequency sonars. ASW 17 in MCM class [28, 32, 37]. tasks are also performed by helicopters equipped with dipping sonar and sonobuoy systems [7]. Naval mines are searched APPLICATION OF NEW TECHNOLOGIES for and destroyed by minesweepers and destroyers using high resolution short range sonar [7]. With the rapid advancement Modernized at the Gdansk University of Technology, the of electronic technologies and digital signal processing sonar systems operated by the Polish Navy were originally methods, electronic systems, including sonars which are built in the 1970s and 1980s. The majority were Soviet designs a key element of ASW and MCM ships, become obsolete very built entirely in analogue technology, even with some of the quickly. While the problem affects a number of countries, it transmitting equipment using high-power electron tubes. is most severe for countries which cannot afford frequent Following Poland’s accession to NATO, the Polish Navy upgrades of their military equipment. In the first decade of received two US Oliver Hazard Perry class frigates, built in this century the Polish Navy was operating ships which were 1978 and 1980. Even though the frigates’ sonars were made built in the 1970s and 1980s. In view of this, in the late 1990s in digital technology, it was the technology of the 1970s with the Department of Marine Electronics Systems, Faculty of sonars started by reading perforated tape and with signal Electronics, Telecommunications and Informatics, Gdansk processing computers for towed array sonar occupying entire University of Technology, launched a project designed to fairly large cabins. modernize helicopter on-board anti-submarine warfare systems The main objective of the modernization was to design, [48, 49]. The result was a modernized sonobuoy system with build and replace all electronic systems and use modern digital a new acoustic analyzer. Thanks to digital signal processing, systems in place of analogue or obsolete digital technology. the analyser can carry out spectral analysis of submarine- The new equipment takes up significantly less space and generated noise. The second helicopter ASW system to be uses significantly less power. Fig. 1 shows an example of the modernized was dipping sonar OKA-2M/Z