Gas Metal Arc Welding (GMAW) Process, and Then Provide an Examination of • Excellent Weld Bead Appearance

Total Page:16

File Type:pdf, Size:1020Kb

Gas Metal Arc Welding (GMAW) Process, and Then Provide an Examination of • Excellent Weld Bead Appearance Gas Metal Arc Welding Product and Procedure Selection Gas Metal Arc Welding • GMAW has higher electrode efficiencies, usually between The gas metal arc process is dominant today as a 93% and 98%, when compared to other welding processes. joining process among the world’s welding fabrica- tors. Despite its sixty years of history, research and • Higher welder efficiencies and operator factor, when compared development continue to provide improvements to to other open arc welding processes. this process, and the effort has been rewarded with • GMAW is easily adapted for high-speed robotic, hard high quality results. automation and semiautomatic welding applications. This publication’s purpose is to provide the reader • All-position welding capability. with the basic concepts of the gas metal arc welding (GMAW) process, and then provide an examination of • Excellent weld bead appearance. more recent process developments. Additionally, the • Lower hydrogen weld deposit — generally less than reader will find technical data and direction, providing 5 mL/100 g of weld metal. the opportunity to optimize the operation of the GMAW process and all of its variants. • Lower heat input when compared to other welding processes. • A minimum of weld spatter and slag makes weld clean up fast Process Definition and easy. Gas Metal Arc Welding (GMAW), by definition, is an • Less welding fumes when compared to SMAW (Shielded arc welding process which produces the coalescence Metal Arc Welding) and FCAW (Flux-Cored Arc Welding) of metals by heating them with an arc between a con- processes. tinuously fed filler metal electrode and the work. The process uses shielding from an externally supplied gas to protect the molten weld pool. The application Benefits of GMAW of GMAW generally requires DC+ (reverse) polarity to the electrode. • Generally, lower cost per length of weld metal deposited when compared to other open arc welding processes. In non-standard terminology, GMAW is commonly known as MIG (Metal Inert Gas) welding and it is less • Lower cost electrode. commonly known as MAG (Metal Active Gas) welding. • Less distortion with GMAW-P (Pulsed Spray Transfer Mode), In either case, the GMAW process lends itself to weld GMAW-S (Short-Circuit Transfer Mode) and STT™ (Surface a wide range of both solid carbon steel and tubular Tension Transfer™). metal-cored electrodes. The alloy material range for GMAW includes: carbon steel, stainless steel, • Handles poor fit-up with GMAW-S and STT modes. aluminum, magnesium, copper, nickel, silicon • Reduced welding fume generation. bronze and tubular metal-cored surfacing alloys. The GMAW process lends itself to semiautomatic, • Minimal post-weld cleanup. robotic automation and hard automation welding applications. Limitations of GMAW Advantages of GMAW • The lower heat input characteristic of the short-circuiting mode of metal transfer restricts its use to thin materials. The GMAW process enjoys widespread use because of its ability to provide high quality welds, for a wide • The higher heat input axial spray transfer generally restricts its range of ferrous and non-ferrous alloys, at a low price. use to thicker base materials. GMAW also has the following advantages: • The higher heat input mode of axial spray is restricted to flat • The ability to join a wide range of material types and or horizontal welding positions. thicknesses. • The use of argon based shielding gas for axial spray and • Simple equipment components are readily available pulsed spray transfer modes is more expensive than 100% and affordable. carbon dioxide (CO2). GMAW 2 www.lincolnelectric.com Gas Metal Arc Welding Guidelines Editor: Jeff Nadzam, Senior Application Engineer Contributors: Frank Armao, Senior Application Engineer Lisa Byall, Marketing GMAW Products Damian Kotecki, Ph.D., Consumable Research and Development Duane Miller, Design and Engineering Services Important Information on our Website Consumable AWS Certificates: www.lincolnelectric.com/products/certificates/ Material Safety Data Sheets (MSDS): www.lincolnelectric.com/products/msds/ ANSI Z49.1 Safety in Welding and Cutting and Arc Welding Safety Checklist: www.lincolnelectric.com/community/safely/ Request E205 Safety Booklet: www.lincolnelectric.com/pdfs/products/literature/e205.pdf GMAW 3 www.lincolnelectric.com Contents Page History of Gas Metal Arc Welding (GMAW) . .6 Modes of Metal Transfer . .7-10 Short-Circuit Transfer . .7 Globular Transfer . .8 Axial Spray Transfer . .9 Pulsed Spray Transfer . .10 Components of the Welding Arc . .11 Shielding Gases for GMAW . .12-15 Inert Shielding Gases . .12 Reactive Shielding Gases . .12-13 Binary Shielding Gas Blends . .13-14 Ternary Shielding Gas Blends . .14 GMAW Shielding Gas Selection Guide . .15 Effects of Variable . .16-17 Current Density . .16 Electrode Efficiencies . .16 Deposition Rate . .16-17 Electrode Extension and CTWD . .17 Advanced Welding Processes for GMAW . .18-19 Waveform Control Technology™ . .18-19 The Adaptive Loop . .20-21 Advanced Waveform Control Technology . .20 Surface Tension Transfer . .20-21 Tandem GMAW . .22-23 Features of Tandem GMAW . .22 Modes of Metal Transfer for Tandem GMAW . .22-23 Equipment for GMAW . .24-31 The Power Source . .25 The Wire Drive System . .26-27 Special Wire Feeding Considerations . .28-29 Shielding Gas Regulation . .28 Bulk Electrode Packaging . .29 Typical GMAW Systems . .30-31 Semiautomatic GMAW System . .30 Automatic GMAW System . .30 Portable Engine Driven GMAW System . .31 GMAW Torches . .31-33 For Semiautomatic GMAW Welding . .31-32 For Hard and Robotic Automation . .33 GMAW 4 www.lincolnelectric.com Contents Page GMAW of Carbon and Low Alloy Steels . .34-39 Selecting Carbon and Low Alloy Electrodes . .34 Types of GMAW Carbon and Low Alloy Steel Electrodes . .35-36 Mechanical Properties . .36 Chemical Composition . .37 AWS Specifications for Manufacturing GMAW Wires . .38 Selecting Carbon and Low Alloy Electrodes for GMAW . .38-39 GMAW of Stainless Steels . .40-57 Types of Stainless Steels . ..
Recommended publications
  • Study and Characterization of EN AW 6181/6082-T6 and EN AC
    metals Article Study and Characterization of EN AW 6181/6082-T6 and EN AC 42100-T6 Aluminum Alloy Welding of Structural Applications: Metal Inert Gas (MIG), Cold Metal Transfer (CMT), and Fiber Laser-MIG Hybrid Comparison Giovanna Cornacchia * and Silvia Cecchel DIMI, Department of Industrial and Mechanical Engineering, University of Brescia, via Branze 38, 25123 Brescia, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-030-371-5827; Fax: +39-030-370-2448 Received: 18 February 2020; Accepted: 26 March 2020; Published: 27 March 2020 Abstract: The present research investigates the effects of different welding techniques, namely traditional metal inert gas (MIG), cold metal transfer (CMT), and fiber laser-MIG hybrid, on the microstructural and mechanical properties of joints between extruded EN AW 6181/6082-T6 and cast EN AC 42100-T6 aluminum alloys. These types of weld are very interesting for junctions of Al-alloys parts in the transportation field to promote the lightweight of a large scale chassis. The weld joints were characterized through various metallurgical methods including optical microscopy and hardness measurements to assess their microstructure and to individuate the nature of the intermetallics, their morphology, and distribution. The results allowed for the evaluation of the discrepancies between the welding technologies (MIG, CMT, fiber laser) on different aluminum alloys that represent an exhaustive range of possible joints of a frame. For this reason, both simple bar samples and real junctions of a prototype frame of a sports car were studied and, compared where possible. The study demonstrated the higher quality of innovative CMT and fiber laser-MIG hybrid welding than traditional MIG and the comparison between casting and extrusion techniques provide some inputs for future developments in the automotive field.
    [Show full text]
  • Spot Welding Protocol
    USAFA-TR-2013-05 Contractor Report SPOT WELDING PROTOCOL DIVAKAR MANTHA SAFE INC. 3290 HAMAL CIRCLE MONUMENT, CO 80132-9729 APRIL 2013 Center for Aircraft Structural Life Extension (CAStLE) Department of Engineering Mechanics DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited DEAN OF THE FACULTY UNITED STATES AIR FORCE ACADEMY COLORADO 80840 ii Contents Contents ......................................................................................................................................... iii List of Figures ................................................................................................................................ iv 1. Introduction to Spot Welding of dcPD Probe Wires .................................................................. 1 2. Spot-Welding Stage .................................................................................................................... 1 3. Spot Welding Procedure ............................................................................................................ 3 4. Step-wise spot-welding Procedure .............................................................................................. 8 5. Troubleshooting .......................................................................................................................... 9 iii List of Figures Figure 1: Spot welding stage showing various components of welding ......................................... 1 Figure 2: Connection point for negative terminal of spot welder power
    [Show full text]
  • Formation and Distribution of Porosity in Al-Si Welds
    Formation and Distribution of Porosity in Al-Si Welds by Pierre-Alexandre LEGAIT A Thesis Submitted to the Faculty Of the WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirements for the Degree of Masters of Science In Material Science and Engineering By May 2005 APPROVED: Diran Apelian, Howmet Professor of Mechanical Engineering, Advisor Richard D. Sisson Jr., George F. Fuller Professor of Mechanical Engineering Material Science and Engineering, Program Head ABSTRACT Aluminum alloys are the subject of increasing interest (in the automotive industry, as well as aircraft industry), aiming to reduce the weight of components and also allowing a profit in term of energy saving. Concerning the assembly, riveting has been widely used in the aircraft industry, whereas welding seems to be promising in the car industry in the case of aluminum alloys. Nevertheless, welding can generate defects, such as porosity or hot cracking, which could limit its development. One of the major problems associated with the welding of aluminum alloys is the formation of gas porosity. Aluminum alloy cleanliness remaining one of the aluminum industry’s primary concerns, this project focuses on the formation and distribution of porosity in Al-Si welds. A literature review has been performed, to identify the mechanisms of porosity formation in welds and castings. Porosity distribution in welds has been investigated, based on three different welding techniques: hybrid Laser/MIG welding process, the electron beam welding process, and the MIG dual wire welding process. Porosity distribution results provide information on to the porosity formation mechanisms involved during welding. A complete microstructure, microhardness and EDX analysis have been carried out, to describe and quantify the solidification process within the welds.
    [Show full text]
  • MTI Friction Welding Technology Brochure
    Friction Welding Manufacturing Technology, Inc. All of us at MTI… would like to extend our thanks for your interest in our company. Manufacturing Technology, Inc. has been a leading manufacturer of inertia, direct drive and hybrid friction welders since 1976. We hope that the following pages will further spark your interest by detailing a number of our products, services and capabilities. We at MTI share a common goal…to help you solve your manufacturing problems in the most Table of Contents efficient way possible. Combining friction welding Introduction to Friction Welding 2 with custom designed automation, we have Advantages of MTI’s Process 3 demonstrated dramatic savings in labor and Inertia Friction Welding 4 material with no sacrifice to quality. Contact us Direct Drive & Hybrid Friction Welding 5 today to find out what we can do for you. Machine Monitors & Controllers 6 Safety Features 7 Flash Removal 7 MTI Welding Services 8 Weldable Combinations 9 Applications Aircraft/Aerospace 10 Oil Field Pieces 14 Military 16 Bimetallic & Special 20 Agricultural & Trucking 22 Automotive 28 General 38 Special Welders & Automated Machines 46 Machine Models & Capabilities 48 Friction Welding 4 What It Is Friction welding is a solid-state joining process that produces coalescence in materials, using the heat developed between surfaces through a combination of mechanically induced rubbing motion and Information applied load. The resulting joint is of forged quality. Under normal conditions, the faying surfaces do not melt. Filler metal, flux and shielding gas are not required with this process. Dissimilar Materials Even metal combinations not normally considered compatible can be joined by friction welding, such as aluminum to steel, copper to aluminum, titanium to copper and nickel alloys to steel.
    [Show full text]
  • Parameter Optimization of Gas Metal Arc Welding Process on Duplex 2205 Stainless Steel Using Irb1410 Arc Welding Robot
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 08 Issue: 03 | Mar 2021 www.irjet.net p-ISSN: 2395-0072 PARAMETER OPTIMIZATION OF GAS METAL ARC WELDING PROCESS ON DUPLEX 2205 STAINLESS STEEL USING IRB1410 ARC WELDING ROBOT Anand Jayakumar A1, Yash Nigam2, Vighneswaran C3, Surender S4 1Asst. Professor, Dept. of Mechanical Engineering, Sri Ramakrishna Institute of Technology, India 2,3,4Student, Dept. of Mechanical Engineering, Sri Ramakrishna Institute of Technology, India ---------------------------------------------------------------------***---------------------------------------------------------------------- Abstract - This review paper outline the recent research consumable MIG wire electrode and the workpiece metal(s), works on parameter optimization of duplex 2205 stainless which will heats the workpiece metal(s), causing them to steel using IRB1410 arc welding robot. Gas metal arc welding melt and join. Gas metal arc welding, also known as metal (GMAW) process has widely been employed due to the wide inert gas (MIG) welding, uses a continuous solid wire range of applications, cheap consumables and easy handling. A electrode that travels through the welding gun, which is suitable model is needed to investigate the characteristics of accompanied by a shielding gas to protect it from the effects of process parameters on the bead geometry in the contaminants. Gas metal arc welding (GMAW) is a welding GMA welding process in order to achieve a high level of processby an arc in which the source of heat is an arc is welding performance and quality. This paper is intended to formed between the consumable metal electrode and the represent new algorithms in the robotic GMA welding process work piece with an externally supplied gaseous shield of to predict process parameters on top-bead distance.
    [Show full text]
  • GSS-124 Welding Fabrication for Gunsmiths 1.0 Unit
    Lassen Community College Course Outline GSS-124 Welding Fabrication for Gunsmiths 1.0 Unit I. Catalog Description Students will select and fabricate gunsmith related projects using appropriate welding processes and techniques. Students will also have an opportunity to learn or improve welding skills related to the gunsmith vocation. Does Not Transfer to UC/CSU 50 Hours Lab Scheduled: II. Coding Information Repeatability: Take 1 Time Grading Option: Pass/No Pass Only Credit Type: Credit - Not Degree Applicable TOP Code: 095650 III. Course Objectives A. Course Student Learning Outcomes Upon completion of this course the student will be able to: Safely handle equipment to gas tungsten weld selected joint designs to critical industry standards. B. Course Objectives Upon completion of this course the student will be able to: 1. Explain the setup of both oxygen/acetylene welding and cutting. 2. Demonstrate correct project layout. 3. Demonstrate oxy/ace cutting. 4. Employ oxygen/acetylene welding to construct project. 5. Demonstrate setup of SMAW machine. 6. Identify and select correct electrodes. 7. Fabricate project using SMAW. 8. Demonstrate cleanup procedures. IV. Course Content A. Safety precautions 1. Electrical shock 2. Radiation hazards 3. Compressed gases 4. Air contamination 5. Emergency shop procedures B. Oxyacetylene welding 1. T-joints 2. Open butt joint - flat C. Shielded metal arc welding 1. T-joint - flat 2. T-joint - vertical GSS-124 Welding Fabrication for Gunsmiths Page 1 D. Gas metal arc welding 1. T-joint - flat 2. T-joint - vertical E. Gas tungsten arc welding 1. T-joint - flat 2. T-joint - vertical F. Cutting 1.
    [Show full text]
  • Guidelines for the Welded Fabrication of Nickel-Containing Stainless Steels for Corrosion Resistant Services
    NiDl Nickel Development Institute Guidelines for the welded fabrication of nickel-containing stainless steels for corrosion resistant services A Nickel Development Institute Reference Book, Series No 11 007 Table of Contents Introduction ........................................................................................................ i PART I – For the welder ...................................................................................... 1 Physical properties of austenitic steels .......................................................... 2 Factors affecting corrosion resistance of stainless steel welds ....................... 2 Full penetration welds .............................................................................. 2 Seal welding crevices .............................................................................. 2 Embedded iron ........................................................................................ 2 Avoid surface oxides from welding ........................................................... 3 Other welding related defects ................................................................... 3 Welding qualifications ................................................................................... 3 Welder training ............................................................................................. 4 Preparation for welding ................................................................................. 4 Cutting and joint preparation ...................................................................
    [Show full text]
  • Analysis of Metal Transfer in Gas Metal Arc Welding
    Analysis of Metal Transfer in Gas Metal Arc Welding This study shows that the transition of metal transfer mode in gas metal arc welding occurs much more gradually than is generally believed BY Y-S. KIM AND T. W. EAGAR ABSTRACT. Droplet sizes produced in transfer. These transfer modes show dif- metal transfer phenomenon. These have GMAW are predicted using both the ferent arc stabilities, weld pool penetra- had limited success. static force balance theory and the pinch tions, spatter production, porosity pop- In this study, the droplet size and instability theory as a function of weld- ulation and level of gas entrapment. droplet transfer frequency are analyzed ing current, and the results are compared Lesnewich (Ref. 1) showed that the mode both theoretically and experimentally. with experimental measurements. The of metal transfer depends on many op- In the first section of this paper, the equi- causes for the deviation of predicted erational variables such as welding cur- librium drop sizes are calculated using droplet size from measured size are dis- rent, electrode extension, electrode di- the static force balance analysis and the cussed with suggestions for modification ameter and polarity. Later, A. A. Smith pinch instability analysis. In the second of the theories in order to more accu- (Ref. 2) reported that an entirely differ- section of this paper, measurements of rately model metal transfer in GMAW. ent type of metal transfer mode is pro- droplet si'ze at different welding currents The mechanism of repelled metal trans- duced when using carbon dioxide gas are compared with the theoretical pre- fer is also discussed.
    [Show full text]
  • Welding and Joining Guidelines
    Welding and Joining Guidelines The HASTELLOY® and HAYNES® alloys are known for their good weldability, which is defined as the ability of a material to be welded and to perform satisfactorily in the imposed service environment. The service performance of the welded component should be given the utmost importance when determining a suitable weld process or procedure. If proper welding techniques and procedures are followed, high-quality welds can be produced with conventional arc welding processes. However, please be aware of the proper techniques for welding these types of alloys and the differences compared to the more common carbon and stainless steels. The following information should provide a basis for properly welding the HASTELLOY® and HAYNES® alloys. For further information, please consult the references listed throughout each section. It is also important to review any alloy- specific welding considerations prior to determining a suitable welding procedure. The most common welding processes used to weld the HASTELLOY® and HAYNES® alloys are the gas tungsten arc welding (GTAW / “TIG”), gas metal arc welding (GMAW / “MIG”), and shielded metal arc welding (SMAW / “Stick”) processes. In addition to these common arc welding processes, other welding processes such plasma arc welding (PAW), resistance spot welding (RSW), laser beam welding (LBW), and electron beam welding (EBW) are used. Submerged arc welding (SAW) is generally discouraged as this process is characterized by high heat input to the base metal, which promotes distortion, hot cracking, and precipitation of secondary phases that can be detrimental to material properties and performance. The introduction of flux elements to the weld also makes it difficult to achieve a proper chemical composition in the weld deposit.
    [Show full text]
  • Welding on the Farm: Selecting a Welding Unit for the Farm Or Ranch
    Welding on the Farm: Selecting a Welding Unit for the Farm or Ranch Farms encounter a wide variety of welding repairs and projects – having the right welder depends on a lot of factors. Do you have to bring the welder to the work or can you take the work to the welder? Which process (MIG, Stick, or TIG) fits your needs? This article examines all these issues and more. The weather finally cleared, and Wisconsin dairy farmer Al Hoffmann has 385 acres of haylage to cut and store when the chopper blower band for the silo snaps in half. Part of the 3/16 in. steel band has worn paper thin and snapped, and on this Saturday, the nearest replacement band is two days away. Using a 200 amp Millermatic® wire welder, Al saves the band by tack welding it together and then welding on a back-up strip of steel. The repaired chopper blower moves more than 800 tons of haylage in the next few days... ...It's evening milking time. Al is half done with his 185 cows when a hinge breaks on the air gate in the milking parlor. Al resumes milking a few minutes later, after he repairs the gate with a portable Millermatic wire welder that runs off his 115 V household current. "This farm has a lot of old iron, but welders keep my machinery running," Al says. In addition to the two wire welders, Al also uses a 175 amp Stick (shielded metal arc) welder, primarily for hardfacing the bucket on his skid loader or repairing his manure spreader.
    [Show full text]
  • INSTRUCTION MANUAL for Maintenance
    Document No.: TCI-0003E-M-ACU Control Dept: Electrical Engineering INSTRUCTION MANUAL for Maintenance WELD CONTROL FOR STATIONALY SPOT WELDER NWC-900 series Original instructions ~%:::;::/:;;~J-'(::;~:::::•·-:'-::%~;'(::;~:::;~/:;;~:::;'(::;~~;:/:;;W..J-':'-::%:::;/'-::%::::::..~'}'(::;~;::v:::,~::::;::~~~;,'(::;~;·/'-::%:::;::~'}:/'-::%::::::-:/'~~ ij The instruction manual must be carefully ~ ~.< read for proper machine operation. ~:· »~ «» <~ No person is allowed to install, conduct test run of, operate, maintain, repair the ~< >,' machine or do similar works, without having well understood what the manual refers >~ ~ ~- ~ >,· The improper operation with inadequate knowledge may cause serious accident. >" ~~ Incidentally, the manual must be kept at a place accessible to any of the person ~ ~ concerned. ~ ~ » ~~ Please inquire an uncertain point of our Sales Department/each office. ~~ S:~~~-~;:::-~:;;:v.~:~~~:;:.-0Y~,~1:;;?:(~~~~~,;::::~~~~v~~~~~~Y~-::::~Y~~):!Y~-~ lmJ DENGENSHA 1-23-1 Masugata, Tama-ku, Kawasaki-shi, Kanagawa-ken, JAPAN TEL : +81-44-922-1121 /FAX : +81-44-922-11 00 NOTICE 1. Please do not reprint contents of this instruction partially without permission. 2. The content of Instruction manuals might change without notifying beforehand. 3. Please contact us when there are any suggestions like an uncertain by any chance point, mistake, and description leakage, etc. Revision history - 2010/ 3 Change signal name Nakano ( '11. 1.01 l 12/29 ·~ '~" ~l \..~/ Change Temper cool cycle 2010/ ~a Ochiai- 2 Nozaki 2010/ 2010/ Change Program sheet 09/21 09/22 09/22 2010/ Fukuta Ochiai I Parts code is added to fuse. T.Nakano 2010/ 2010/ 08/31 08/31 08/31 2010/ Fukuta Ochiai - First edition M.Arima 2010/ 2010/ 08/18 08/18 08/18 Revision code Revision item Date Drawn Verification Approved B DENGENSHA Instruction manuals Instruction manuals are provided individually for the welder (Installation, operation, maintenance), program box, monitor box and Special function.
    [Show full text]
  • Laser Beams a Novel Tool for Welding: a Review
    IOSR Journal of Applied Physics (IOSR-JAP) e-ISSN: 2278-4861.Volume 8, Issue 6 Ver. III (Nov. - Dec. 2016), PP 08-26 www.iosrjournals.org Laser Beams A Novel Tool for Welding: A Review A Jayanthia,B, Kvenkataramananc, Ksuresh Kumard Aresearch Scholar, SCSVMV University, Kanchipuram, India Bdepartment Of Physics, Jeppiaar Institute Of Technology, Chennai, India Cdepartment Of Physics, SCSVMV University, Kanchipuram, India Ddepartment Of Physics, P.T. Lee CNCET, Kanchipuram, India Abstract: Welding is an important joining process of industrial fabrication and manufacturing. This review article briefs the materials processing and welding by laser beam with its special characteristics nature. Laser augmented welding process offers main atvantages such as autogenous welding, welding of high thickness, dissimilar welding, hybrid laser welding, optical fibre delivery, remote laser welding, eco-friendly, variety of sources and their wide range of applications are highlighted. Significance of Nd: YAG laser welding and pulsed wave over continuous wave pattern on laser material processesare discussed. Influence of operating parameter of the laser beam for the welding process are briefed including optical fibre delivery and shielding gas during laser welding. Some insight gained in the study of optimization techniques of laser welding parameters to achieve good weld bead geometry and mechanical properties. Significance of laser welding on stainless steels and other materials such as Aluminium, Titanium, Magnesium, copper, etc…are discussed. I. INTRODUCTION Welding is the principal industrial process used for joining metals. As materials continue to be highly engineered in terms of metallic and metallurgical continuity, structural integrity and microstructure, hence, welding processes will become more important and more prominent.
    [Show full text]