Balance Principles for Algorithm-Architecture Co-Design

Total Page:16

File Type:pdf, Size:1020Kb

Balance Principles for Algorithm-Architecture Co-Design Balance principles for algorithm-architecture co-design Kent Czechowski∗, Casey Battaglinoy, Chris McClanahan∗, Aparna Chandramowlishwarany, Richard Vuducy Georgia Institute of Technology y School of Computational Science and Engineering ∗ School of Computer Science fkentcz,cbattaglino3,chris.mcclanahan,aparna,[email protected] Abstract could include multicore CPUs or manycore GPU-like We consider the problem of “co-design,” by which we processors; and by modern algorithms, we mean those mean the problem of how to design computational al- analyzed using recent techniques that explicitly count gorithms for particular hardware architectures and vice- parallel operations and I/O operations. Given an algo- versa. Our position is that balance principles should rithm analyzed this way and a cost model for some ar- drive the co-design process. A balance principle is a chitecture, we can estimate compute-time and I/O-time theoretical constraint equation that explicitly relates al- explicitly. We then connect the algorithm and architec- gorithm parameters to hardware parameters according to ture simply by applying the concept of balance, which some figure of merit, such as speed, power, or cost. This says a computation running on some machine is efficient notion originates in the work of Kung (1986); Callahan, if the compute-time dominates the I/O (memory transfer) Cocke, and Kennedy (1988); and McCalpin (1995); how- time, as suggested originally by Kung (1986) and since ever, we reinterpret these classical notions of balance in applied by numerous others [13, 28, 32, 38].1 The result a modern context of parallel and I/O-efficient algorithm is a constraint equation that binds algorithm and archi- design as well as trends in emerging architectures. From tecture parameters together; we refer to this constraint as such a principle, we argue that one can better under- a balance principle. stand algorithm and hardware trends, and furthermore gain insight into how to improve both algorithms and Position. Our position is that this simple and classical hardware. For example, we suggest that although ma- idea of balance is an insightful way to understand the trix multiply is currently compute-bound, it will in fact impact of architectural design on algorithms and vice- become memory-bound in as few as ten years—even if versa. We argue this point by giving a detailed example last-level caches grow at their current rates. Our overall of how one might derive a balance principle for an algo- aim is to suggest how to co-design rigorously and quan- rithm running on a manycore architecture, and analyze titatively while still yielding intuition and insight. the resulting balance principle to determine the trajectory of algorithms given current architectural trends. Among 1 Our Position and its Limitations numerous observations, We seek a formal framework that can explicitly relate • we show that balance principles can yield unified characteristics of an algorithm, such as its inherent par- ways of viewing several classical performance en- allelism or memory behavior, with parameters of an ar- gineering principles, such as classical machine bal- chitecture, such as the number of cores or cache sizes ance, Amdahl’s Law, and Little’s Law; or memory latency. We refer to this task as one of • we predict that matrix multiply, the prototypi- algorithm-architecture co-design. Our goal is to say pre- cal compute-bound kernel, will actually become cisely and analytically how changes to the architecture memory-bound in as few as ten years based on cur- might affect the scaling of a computation, and, con- rent architectural trends, even if last-level caches versely, identify what classes of computation might exe- continue to grow at their historical rates; cute efficiently on a given architecture. • we argue that stacked memory, widely believed to Our approach is inspired by the fundamental principle be capable of largely solving the problem of how of machine balance, applied here in the context of mod- 1We depart slightly from traditional conventions of balance, which ern architectures and algorithms. “Modern architectures” ask instead that compute-time equal I/O-time. 1 to scale bandwidth with compute capacity, still may not solve the problem of compute-bound kernels be- coming increasingly memory-bound; • we suggest how minimizing I/O-time relative to Slow memory! computation time will also save power and energy, thereby obviating the need for “new” principles of energy- or power-aware algorithm design. Transaction size" α= latency! + = L words! β= bandwidth! … Limitations. Our approach has several weaknesses. Fast memory! First, our discussion is theoretical. That is, we assume (Capacity = Z words)! abstract models for both the algorithms and the archi- 1! 2! …! p! cores! tectures and make numerous simplifying assumptions. W(n) = work (total ops) C0 = flops / time / core! However, as an initial step in formalizing intuition about D(n) = depth how algorithms and architectures need to change, we be- lieve that an abstract analytical model is a useful start. Secondly, the specific balance principles we discuss in Figure 1: (left) A parallel computation in the work-depth this paper still assume “time” as the main figure of merit, model. (right) An abstract manycore processor with a rather than, say, dollar cost. Nevertheless, we emphasize large shared fast memory (cache or local-store). that time-based balance principles are just one example; one is free to redefine the figure of merit appropriately to of operations, where edges indicate dependencies, as il- consider balanced systems in other measures. We discuss lustrated in Fig. 1 (left). Given the DAG, we measure energy based measures specifically in x 3. its work, W (n), which is the total number of unit-cost Thirdly, what we suggest is a kind of re-packaging of operations for an input of size n; and its depth or span, many known principles, rather than discovering an en- D(n), which is its critical path length measured again tirely new principle for co-design. Still, we hope our in unit-cost operations. Note that D(n) defines the min- synthesis proves useful in related efforts to design better imum execution time of the computation; W (n)=D(n) algorithms and hardware through analytical techniques. measures the average available parallelism as each criti- cal path node executes. The ratio D(n)=W (n) is similar 2 Deriving a Balance Principle to the concept of a sequential fraction, as one might use in evaluating Amdahl’s Law [4, 21, 39]. When we de- Deriving a balance principle consists of three steps. sign an algorithm in this model, we try to ensure work- optimality, which says that W (n) is not asymptotically 1. Algorithmically analyze the parallelism. worse than the best sequential algorithm, while also try- 2. Algorithmically analyze the I/O behavior, or num- ing to maximize W (n)=D(n). ber of transfers through the memory hierarchy. 3. Combine these two analyses with a cost model for an abstract machine, to estimate the total cost of Analyzing I/Os. To analyze the I/O behavior, we adopt computation vs. the cost of memory accesses. the classical external memory model [3]. In this model, we assume a sequential processor with a two-level mem- From the last step, we may then impose the condition for ory hierarchy consisting of a large but slow memory and balance, i.e., that compute-time dominate memory-time. a small fast memory of size Z words; work operations This process resembles Kung’s approach [28], except may only be performed on data that lives in fast mem- that we (a) consider parallelism explicitly; (b) use richer ory. This fast memory may be an automatic cache or a algorithmic models that account for more detailed mem- software-controlled scratchpad; our analysis in this pa- ory hierarchy costs; and (c) apply the model to analyze per is agnostic to this choice. We may further consider platforms of interest today, such as GPUs. Note that we that transfers between slow and fast memory must occur use a number of parameters in our model; refer to Fig- in discrete transactions (blocks) of size L words. When ure 1 and Table 1 as a guide. we design an algorithm in this model, we again measure the work, W (n); however, we also measure QZ;L(n), Analyzing parallelism. To analyze algorithmic paral- the number of L-sized transfers between slow and fast lelism, we adopt the classical work-depth (work-span) memory for an input of size n. There are several ways to model [9], which has numerous implementations in real design either cache-aware or cache-oblivious algorithms programming models [11, 18, 24]. In this model, we rep- and then analyze QZ;L(n) [3, 19, 22, 40]. In either resent a computation by a directed acyclic graph (DAG) case, when we design an algorithm in this model, we 2 again aim for work-optimality while also trying to max- For example, Kung’s classical balance principle [28] imize the algorithm’s computational intensity, which is in our notation would have been W (n)= (QZ;L(n) · L). Intensity is the algorithmic ratio pC0 W of operations performed to words transferred. ≤ (4) β Qp;Z;L · L Architecture-specific cost model. The preceding which says the machine’s inherent balance point (left- analyses do not directly model time; for that, we need hand side, peak operations to bandwidth) should be no to choose an architecture model and define the costs. greater than the algorithm’s inherent computational in- For this example, we use Fig. 1 (right) as our abstract tensity (right-hand side), measured in units of opera- machine, which is intended to represent a generic many- tions to words. Indeed, Equ.
Recommended publications
  • Three-Dimensional Integrated Circuit Design: EDA, Design And
    Integrated Circuits and Systems Series Editor Anantha Chandrakasan, Massachusetts Institute of Technology Cambridge, Massachusetts For other titles published in this series, go to http://www.springer.com/series/7236 Yuan Xie · Jason Cong · Sachin Sapatnekar Editors Three-Dimensional Integrated Circuit Design EDA, Design and Microarchitectures 123 Editors Yuan Xie Jason Cong Department of Computer Science and Department of Computer Science Engineering University of California, Los Angeles Pennsylvania State University [email protected] [email protected] Sachin Sapatnekar Department of Electrical and Computer Engineering University of Minnesota [email protected] ISBN 978-1-4419-0783-7 e-ISBN 978-1-4419-0784-4 DOI 10.1007/978-1-4419-0784-4 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2009939282 © Springer Science+Business Media, LLC 2010 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Foreword We live in a time of great change.
    [Show full text]
  • Declustering Spatial Databases on a Multi-Computer Architecture
    Declustering spatial databases on a multi-computer architecture 1 2 ? 3 Nikos Koudas and Christos Faloutsos and Ibrahim Kamel 1 Computer Systems Research Institute University of Toronto 2 AT&T Bell Lab oratories Murray Hill, NJ 3 Matsushita Information Technology Lab oratory Abstract. We present a technique to decluster a spatial access metho d + on a shared-nothing multi-computer architecture [DGS 90]. We prop ose a software architecture with the R-tree as the underlying spatial access metho d, with its non-leaf levels on the `master-server' and its leaf no des distributed across the servers. The ma jor contribution of our work is the study of the optimal capacity of leaf no des, or `chunk size' (or `striping unit'): we express the resp onse time on range queries as a function of the `chunk size', and we show how to optimize it. We implemented our metho d on a network of workstations, using a real dataset, and we compared the exp erimental and the theoretical results. The conclusion is that our formula for the resp onse time is very accurate (the maximum relative error was 29%; the typical error was in the vicinity of 10-15%). We illustrate one of the p ossible ways to exploit such an accurate formula, by examining several `what-if ' scenarios. One ma jor, practical conclusion is that a chunk size of 1 page gives either optimal or close to optimal results, for a wide range of the parameters. Keywords: Parallel data bases, spatial access metho ds, shared nothing ar- chitecture. 1 Intro duction One of the requirements for the database management systems (DBMSs) of the future is the ability to handle spatial data.
    [Show full text]
  • Chap01: Computer Abstractions and Technology
    CHAPTER 1 Computer Abstractions and Technology 1.1 Introduction 3 1.2 Eight Great Ideas in Computer Architecture 11 1.3 Below Your Program 13 1.4 Under the Covers 16 1.5 Technologies for Building Processors and Memory 24 1.6 Performance 28 1.7 The Power Wall 40 1.8 The Sea Change: The Switch from Uniprocessors to Multiprocessors 43 1.9 Real Stuff: Benchmarking the Intel Core i7 46 1.10 Fallacies and Pitfalls 49 1.11 Concluding Remarks 52 1.12 Historical Perspective and Further Reading 54 1.13 Exercises 54 CMPS290 Class Notes (Chap01) Page 1 / 24 by Kuo-pao Yang 1.1 Introduction 3 Modern computer technology requires professionals of every computing specialty to understand both hardware and software. Classes of Computing Applications and Their Characteristics Personal computers o A computer designed for use by an individual, usually incorporating a graphics display, a keyboard, and a mouse. o Personal computers emphasize delivery of good performance to single users at low cost and usually execute third-party software. o This class of computing drove the evolution of many computing technologies, which is only about 35 years old! Server computers o A computer used for running larger programs for multiple users, often simultaneously, and typically accessed only via a network. o Servers are built from the same basic technology as desktop computers, but provide for greater computing, storage, and input/output capacity. Supercomputers o A class of computers with the highest performance and cost o Supercomputers consist of tens of thousands of processors and many terabytes of memory, and cost tens to hundreds of millions of dollars.
    [Show full text]
  • Arch2030: a Vision of Computer Architecture Research Over
    Arch2030: A Vision of Computer Architecture Research over the Next 15 Years This material is based upon work supported by the National Science Foundation under Grant No. (1136993). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. Arch2030: A Vision of Computer Architecture Research over the Next 15 Years Luis Ceze, Mark D. Hill, Thomas F. Wenisch Sponsored by ARCH2030: A VISION OF COMPUTER ARCHITECTURE RESEARCH OVER THE NEXT 15 YEARS Summary .........................................................................................................................................................................1 The Specialization Gap: Democratizing Hardware Design ..........................................................................................2 The Cloud as an Abstraction for Architecture Innovation ..........................................................................................4 Going Vertical ................................................................................................................................................................5 Architectures “Closer to Physics” ................................................................................................................................5 Machine Learning as a Key Workload ..........................................................................................................................6 About this
    [Show full text]
  • Computer Architecture Techniques for Power-Efficiency
    MOCL005-FM MOCL005-FM.cls June 27, 2008 8:35 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY i MOCL005-FM MOCL005-FM.cls June 27, 2008 8:35 ii MOCL005-FM MOCL005-FM.cls June 27, 2008 8:35 iii Synthesis Lectures on Computer Architecture Editor Mark D. Hill, University of Wisconsin, Madison Synthesis Lectures on Computer Architecture publishes 50 to 150 page publications on topics pertaining to the science and art of designing, analyzing, selecting and interconnecting hardware components to create computers that meet functional, performance and cost goals. Computer Architecture Techniques for Power-Efficiency Stefanos Kaxiras and Margaret Martonosi 2008 Chip Mutiprocessor Architecture: Techniques to Improve Throughput and Latency Kunle Olukotun, Lance Hammond, James Laudon 2007 Transactional Memory James R. Larus, Ravi Rajwar 2007 Quantum Computing for Computer Architects Tzvetan S. Metodi, Frederic T. Chong 2006 MOCL005-FM MOCL005-FM.cls June 27, 2008 8:35 Copyright © 2008 by Morgan & Claypool All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations in printed reviews, without the prior permission of the publisher. Computer Architecture Techniques for Power-Efficiency Stefanos Kaxiras and Margaret Martonosi www.morganclaypool.com ISBN: 9781598292084 paper ISBN: 9781598292091 ebook DOI: 10.2200/S00119ED1V01Y200805CAC004 A Publication in the Morgan & Claypool Publishers
    [Show full text]
  • COSC 6385 Computer Architecture - Multi-Processors (IV) Simultaneous Multi-Threading and Multi-Core Processors Edgar Gabriel Spring 2011
    COSC 6385 Computer Architecture - Multi-Processors (IV) Simultaneous multi-threading and multi-core processors Edgar Gabriel Spring 2011 Edgar Gabriel Moore’s Law • Long-term trend on the number of transistor per integrated circuit • Number of transistors double every ~18 month Source: http://en.wikipedia.org/wki/Images:Moores_law.svg COSC 6385 – Computer Architecture Edgar Gabriel 1 What do we do with that many transistors? • Optimizing the execution of a single instruction stream through – Pipelining • Overlap the execution of multiple instructions • Example: all RISC architectures; Intel x86 underneath the hood – Out-of-order execution: • Allow instructions to overtake each other in accordance with code dependencies (RAW, WAW, WAR) • Example: all commercial processors (Intel, AMD, IBM, SUN) – Branch prediction and speculative execution: • Reduce the number of stall cycles due to unresolved branches • Example: (nearly) all commercial processors COSC 6385 – Computer Architecture Edgar Gabriel What do we do with that many transistors? (II) – Multi-issue processors: • Allow multiple instructions to start execution per clock cycle • Superscalar (Intel x86, AMD, …) vs. VLIW architectures – VLIW/EPIC architectures: • Allow compilers to indicate independent instructions per issue packet • Example: Intel Itanium series – Vector units: • Allow for the efficient expression and execution of vector operations • Example: SSE, SSE2, SSE3, SSE4 instructions COSC 6385 – Computer Architecture Edgar Gabriel 2 Limitations of optimizing a single instruction
    [Show full text]
  • Adéquation Algorithme Architecture : Aspects Logiciels, Matériels Et Cognitifs Dominique Ginhac
    Adéquation Algorithme architecture : Aspects logiciels, matériels et cognitifs Dominique Ginhac To cite this version: Dominique Ginhac. Adéquation Algorithme architecture : Aspects logiciels, matériels et cognitifs. Traitement du signal et de l’image [eess.SP]. Université de Bourgogne, 2008. tel-00646480 HAL Id: tel-00646480 https://tel.archives-ouvertes.fr/tel-00646480 Submitted on 30 Nov 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Habilitation à Diriger des Recherches LE2I UMR CNRS 5158 Université de Bourgogne ADÉQUATION ALGORITHME ARCHITECTURE ASPECTS LOGICIELS, MATÉRIELS ET COGNITIFS présentée par DOMINIQUE GINHAC Composition du Jury Pr. PIERRE MAGNAN - Institut Supérieur de l'Aéronautique et de l'Espace - Rapporteur Pr. ALAIN MÉRIGOT - Université Paris Sud - Rapporteur Pr. MICHEL ROBERT - Université Montpellier II - Rapporteur DR AXEL CLEEREMANS - Université Libre de Bruxelles - Examinateur Pr PATRICK MARQUIE - Université de Bourgogne - Examinateur Pr MICHEL PAINDAVOINE - Université de Bourgogne - Directeur de l’HDR Remerciements Sommaire
    [Show full text]
  • A Hybrid-Parallel Architecture for Applications in Bioinformatics
    A Hybrid-parallel Architecture for Applications in Bioinformatics M.Sc. Jan Christian Kässens Dissertation zur Erlangung des akademischen Grades Doktor der Ingenieurwissenschaften (Dr.-Ing.) der Technischen Fakultät der Christian-Albrechts-Universität zu Kiel eingereicht im Jahr 2017 Kiel Computer Science Series (KCSS) 2017/4 dated 2017-11-08 URN:NBN urn:nbn:de:gbv:8:1-zs-00000335-a3 ISSN 2193-6781 (print version) ISSN 2194-6639 (electronic version) Electronic version, updates, errata available via https://www.informatik.uni-kiel.de/kcss The author can be contacted via [email protected] Published by the Department of Computer Science, Kiel University Computer Engineering Group Please cite as: Ź Jan Christian Kässens. A Hybrid-parallel Architecture for Applications in Bioinformatics Num- ber 2017/4 in Kiel Computer Science Series. Department of Computer Science, 2017. Dissertation, Faculty of Engineering, Kiel University. @book{Kaessens17, author = {Jan Christian K\"assens}, title = {A Hybrid-parallel Architecture for Applications in Bioinformatics}, publisher = {Department of Computer Science, CAU Kiel}, year = {2017}, number = {2017/4}, doi = {10.21941/kcss/2017/4}, series = {Kiel Computer Science Series}, note = {Dissertation, Faculty of Engineering, Kiel University.} } © 2017 by Jan Christian Kässens ii About this Series The Kiel Computer Science Series (KCSS) covers dissertations, habilitation theses, lecture notes, textbooks, surveys, collections, handbooks, etc. written at the Department of Computer Science at Kiel University. It was initiated in 2011 to support authors in the dissemination of their work in electronic and printed form, without restricting their rights to their work. The series provides a unified appearance and aims at high-quality typography. The KCSS is an open access series; all series titles are electronically available free of charge at the department’s website.
    [Show full text]
  • CHAPTER 1 Introduction
    CHAPTER 1 Introduction 1.1 Overview 1 1.2 The Main Components of a Computer 3 1.3 An Example System: Wading through the Jargon 4 1.4 Standards Organizations 15 1.5 Historical Development 16 1.5.1 Generation Zero: Mechanical Calculating Machines (1642–1945) 17 1.5.2 The First Generation: Vacuum Tube Computers (1945–1953) 19 1.5.3 The Second Generation: Transistorized Computers (1954–1965) 23 1.5.4 The Third Generation: Integrated Circuit Computers (1965–1980) 26 1.5.5 The Fourth Generation: VLSI Computers (1980–????) 26 1.5.6 Moore’s Law 30 1.6 The Computer Level Hierarchy 31 1.7 The von Neumann Model 34 1.8 Non-von Neumann Models 37 Chapter Summary 40 CMPS375 Class Notes (Chap01) Page 1 / 11 by Kuo-pao Yang 1.1 Overview 1 • Computer Organization o We must become familiar with how various circuits and components fit together to create working computer system. o How does a computer work? • Computer Architecture: o It focuses on the structure and behavior of the computer and refers to the logical aspects of system implementation as seen by the programmer. o Computer architecture includes many elements such as instruction sets and formats, operation code, data types, the number and types of registers, addressing modes, main memory access methods, and various I/O mechanisms. o How do I design a computer? • The computer architecture for a given machine is the combination of its hardware components plus its instruction set architecture (ISA). • The ISA is the agreed-upon interface between all the software that runs on the machine and the hardware that executes it.
    [Show full text]
  • A Theoretical Framework for Algorithm-Architecture Co-Design
    Preprint – To appear in the IEEE Int’l. Parallel & Distributed Processing Symp. (IPDPS), May 2013 A theoretical framework for algorithm-architecture co-design Kenneth Czechowski, Richard Vuduc School of Computational Science and Engineering Georgia Institute of Technology, Atlanta, Georgia fkentcz,[email protected] Abstract—We consider the problem of how to en- 28, 44], as well as the classical theory of cir- able computer architects and algorithm designers to cuit models and the area-time trade-offs studied reason directly and analytically about the relationship in models based on very large-scale integration between high-level architectural features and algo- rithm characteristics. We propose a modeling frame- (VLSI) [37, 49]. Our analysis is in many ways work designed to help understand the long-term most similar to several recent theoretical exascale and high-level impacts of algorithmic and technol- modeling studies [22, 47], combined with trends ogy trends. This model connects abstract commu- analysis [34]. However, our specific methods re- nication complexity analysis—with respect to both turn to higher-level I/O-centric complexity analy- the inter-core and inter-processor networks and the memory hierarchy—with current technology proposals sis [4, 5, 10, 13, 21, 54], pushing it further by trying and projections. We illustrate how one might use the to resolve analytical constants, which is necessary framework by instantiating a particular model for a to connect abstract complexity measures with the class of architectures and sample algorithms (three- physical constraints imposed by power and die dimensional fast Fourier transforms, matrix multiply, area. This approach necessarily will not yield cycle- and three-dimensional stencil).
    [Show full text]
  • An Unprivileged OS Kernel for General Purpose Distributed Computing
    Graduate School ETD Form 9 (Revised 12/07) PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance This is to certify that the thesis/dissertation prepared By Jeffrey A. Turkstra Entitled Metachory: An Unprivileged OS Kernel for General Purpose Distributed Computing For the degree of Doctor of Philosophy Is approved by the final examining committee: DAVID G. MEYER SAMUEL P. MIDKIFF Chair CHARLIE HU MARK C. JOHNSON RICHARD L. KENNELL To the best of my knowledge and as understood by the student in the Research Integrity and Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material. Approved by Major Professor(s): ____________________________________DAVID G. MEYER ____________________________________ Approved by: V. Balakrishnan 04-17-2013 Head of the Graduate Program Date METACHORY: AN UNPRIVILEGED OS KERNEL FOR GENERAL PURPOSE DISTRIBUTED COMPUTING A Dissertation Submitted to the Faculty of Purdue University by Jeffrey A. Turkstra In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2013 Purdue University West Lafayette, Indiana ii I dedicate this dissertation to... my wife, Shelley L. Turkstra. I would have given up long ago were it not for her|you are the love of my life and my strength; my son, Jefferson E. Turkstra, the joy of my life and hope for the future; my grandmother, Aleatha J. Turkstra, my connection to the past and source of limitless endurance. iii ACKNOWLEDGMENTS It is impossible to enumerate all of the people that have made this dissertation possible|my memory is just not that good.
    [Show full text]
  • Integral Estimation in Quantum Physics
    INTEGRAL ESTIMATION IN QUANTUM PHYSICS by Jane Doe A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematical Physics Department of Mathematics The University of Utah May 2016 Copyright c Jane Doe 2016 All Rights Reserved The University of Utah Graduate School STATEMENT OF DISSERTATION APPROVAL The dissertation of Jane Doe has been approved by the following supervisory committee members: Cornelius L´anczos , Chair(s) 17 Feb 2016 Date Approved Hans Bethe , Member 17 Feb 2016 Date Approved Niels Bohr , Member 17 Feb 2016 Date Approved Max Born , Member 17 Feb 2016 Date Approved Paul A. M. Dirac , Member 17 Feb 2016 Date Approved by Petrus Marcus Aurelius Featherstone-Hough , Chair/Dean of the Department/College/School of Mathematics and by Alice B. Toklas , Dean of The Graduate School. ABSTRACT Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah.
    [Show full text]