A Palynological Study from Sweden Reveals Stable Terrestrial

Total Page:16

File Type:pdf, Size:1020Kb

A Palynological Study from Sweden Reveals Stable Terrestrial Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 105, 149–158, 2015 (for 2014) A palynological study from Sweden reveals stable terrestrial environments during Late Silurian extreme marine conditions Kristina Mehlqvist, Jane Wigforss-Lange and Vivi Vajda Department of Geology, Lund University, So¨lvegatan 12, SE-223 62 Lund, Sweden. Email: [email protected] ABSTRACT: A palynological study of the upper Silurian O¨ ved–Ramsa˚sa Group in Ska˚ne, Sweden yields a well preserved spore assemblage with low relative abundances of marine micro- fossils. In total, 26 spore taxa represented by 15 genera were identified. The spore assemblage is dominated by long-ranging cryptospore taxa, and the trilete spore Ambitisporites avitus-dilutus. However, key-species identified include Artemopyra radiata, Hispanaediscus lamontii, H. major, H. verrucatus, Scylaspora scripta and Synorisporites cf. libycus. Importantly, Scylaspora klintaensis was identified, allowing correlation with the Klinta 1 drillcore (Ska˚ne). A Ludlow age is inferred for the exposed succession, which agrees well with previous conodont stratigraphy. The organic residue is dominated by phytodebris and spores, but with high relative abundances of acritarchs at two levels, possibly related to flooding surfaces. Based on the palynofacies analysis, a near-shore marine environment is proposed. The close prox- imity to land is inferred by the high proportions of spores, and the dispersed assemblage most likely represents the local flora growing on delta plains. The palynological signal also infers a stable terrestrial environment and vegetation, in contrast to unstable conditions in the marine environment characterised by ooid formation in an evaporitic environment. Comparisons with coeval spore as- semblages from Gotland, Avalonia and Laurentia show relatively close similarities in taxonomic composition at the generic level. KEY WORDS: cryptospores, early land plants, Klinta, Ludfordian, sea level, stratigraphy Records of early land plants from Baltica have previously comprise research on conodonts (Jeppsson 1975; Jeppsson & been described from Ro¨sta˚nga, Ska˚ne (Sweden). These Late Laufeld 1986), tentaculitids (Larsson 1979), chitinozoans (Grahn Ordovician (Katian) spores represent the oldest record of land 1996) and d13C composition (Wigforss-Lange 1999; Jeppsson plants from Baltica (Badawy et al. 2014). Other records of cryp- et al. 2012). However, all these studies focus on the marine tospores are from Ordovician (latest Katian–Hirnantian) de- microfossils or sedimentological/geochemical aspects and no posits from the Valga-10 core in southern Estonia (Vecoli et contributions concern terrestrial microfossils. Our study focuses al. 2011). Studies concerning terrestrial palynomorphs from on upper Silurian successions from southern Sweden, with the the top Ordovician to the Wenlock successions of Baltica are aim of describing the dispersed spore assemblages and other scarce, but middle Llandovery to late Ludlow spore assemb- organic debris recovered from exposures at Klinta, providing lages were described by Hagstro¨m (1997) from the Na¨rborrnin- the first record of terrestrial palynology in these strata. We gen 1 and Burgsvikborrningen 1 cores and from outcrops on correlate our results with zonation schemes based on marine Gotland. A rich and well-preserved palynoflora of crypto- microfossils and compare our terrestrial palynological signal spores, vascular plant spores, fungal spores and hyphae was to the environmental changes within the marine realm. recovered especially from the Ludfordian Burgsvik Beds by Hagstro¨m (1997). Sherwood-Pike & Gray (1985) also reported fungal spores and hyphae from these beds. Silurian spores have 1. Geological setting also been studied from Ska˚ne and Gotland by Gray et al. By the time of the Silurian, Baltica was located south of the (1974). Hagstro¨m & Mehlqvist (2012) described further early Equator in the tropical climate zone (Fig. 1a; Moore et al. (Ludlow) land plant remains from Gotland. Upper Silurian 1994). The platform was partly covered by an epicontinental outcrop sections and bore cores from Ska˚ne have also yielded sea and remnants of Silurian deposits are found in Norway, spore assemblages (Mehlqvist et al. 2012, 2014). mid and south Sweden, the Baltic Sea, the East Baltic States, ¨ The upper Silurian Oved-Ramsa˚sa Group in Ska˚ne, Sweden Denmark and Poland. The Baltoscandian Platform was, during has been subjected to numerous investigations over the two the Palaeozoic, strongly affected by the Caledonian orogenic last centuries. The strata representing the youngest Palaeozoic cycle that resulted in the collision of the continents Laurentia, are mainly exposed in limestone and sandstone quarries, and Baltica and Avalonia (Fig 1a). The Iapetus and Rheic Oceans along the shore of Lake Ringsjo¨n, the so-called Klinta expo- were closing up and the active fold belts on the western and sure. The first publication, from 1725, is a documentation of southeastern margins of the Baltic platform formed the Arctic– the fossil content (Bromell 1725–1729). Succeeding compre- North Atlantic Caledonides and the North German–Polish hensive publications concerning the exposed successions at Caledonides (Frost et al. 1981; Ziegler 1984; Zeh & Gerdes Klinta include, for example, Eichsta¨dt (1888), Gro¨nwall (1897), 2010). The former, wide shelf areas transformed to marginal Hadding (1927, 1933), Regne´ll (1960); and detailed studies basins where clastics, derived from the mountain ranges, were Downloaded6 2015 from Thehttps://www.cambridge.org/core Royal Society of Edinburgh.. IP address: doi:10.1017/S1755691015000043 170.106.202.8, on 27 Sep 2021 at 09:04:40, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1755691015000043 150 KRISTINA MEHLQVIST ET AL. FD0D (a) (b) 3UHFDPEULDQ%DVHPHQW 6LEHULD bQJHOKROP 0D 0D 6NnQH 3DOHR]RLF (TXDWRU 0HVR]RLF .ULVWLDQVWDG +HOVLQJERUJ %DOWLFD 5LQJVM|Q .OLQWD /XQG /DXUHQWLD %MlUVM|ODJnUG $YDORQLD 0DOP| &HQR]RLF 0D 6NDOD *RQGZDQD NP Figure 1 (a) Palaeogeographic map showing the position of Baltica, during the late Silurian to Early Devonian. Red circle marks the study site in Ska˚ne, Sweden. Numbers show the location of other study sites, compared with Klinta: 1 ¼ Gotland; 2 ¼ Wales; 3 ¼ Scotland; 4 ¼ Nova Scotia. (Map modified after Scotese et al. 1985). (b) The principal exposures of the O¨ ved Ramsa˚sa Group are found in Klinta and Bja¨rsjo¨laga˚rd, Sweden (Locality map modified after Wikman & Bergstro¨m 1987). deposited (Zeh & Gerdes 2010). The sedimentary strata reflect In sedimentological and petrographic studies, these deposits a gradual shallowing-up from deep-water graptolitic shales to have been shown to contain cerebroid ooids and evaporite shallow marine limestones and sandstones. Following the pro- tracers, which are linked to changes in faunas (Wigforss-Lange grading, shoreline marine deposition ceased, as indicated by 2007; Jeppsson et al. 2012). The depositional setting has been the onset of early Devonian ‘‘Old Red Sandstone’’ deposition interpreted as a near-shore tidally-influenced environment grad- (Bassett 1985). ing from open marine shallow subtidal to lagoonal intertidal The youngest Palaeozoic stratum in southern Sweden is conditions (Wigforss-Lange 2007). the O¨ ved–Ramsa˚sa Group, which is sub-divided into the Klinta The present stratigraphical scheme and nomenclature for Formation (Jeppsson & Laufeld 1986) and the overlying O¨ veds the O¨ ved-Ramsa˚sa Group is primarily based on conodont Sandstone Formation (Hadding 1927). These sediments are stratigraphy established by Jeppsson (1975) and Jeppsson & dominated by mudstones, inter-layered with shallow marine Laufeld (1986), and on spores from land plants studied from carbonates, grading into sandstones in the younger part of the the drillcores Klinta 1 and Bja¨rsjo¨laga˚rd 2 (Mehlqvist et al. succession. The majority of the outcrops representing the 2012). O¨ ved-Ramsa˚sa Group are found in central Ska˚ne at Klinta The section at Klinta investigated herein comprises the and Bja¨rsjo¨laga˚rd (Fig. 1b). The Klinta exposures are located Bja¨r and Bja¨rsjo¨ members containing the conodont faunas along the shoreline of the eastern lake Ringsjo¨n (Figs 1b, 2). Ozarkodina excavata (former Hindeodella excavata), older Figure 2 One of the studied exposures at Klinta, located by the shore of the eastern Lake Ringsjo¨n, Sweden. Downloaded from https://www.cambridge.org/core. IP address: 170.106.202.8, on 27 Sep 2021 at 09:04:40, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1755691015000043 LUDFORDIAN TERRESTRIAL SPORE ASSEMBLAGES FROM SWEDEN 151 Table I Raw data, % of spore taxa identified in each sample. Taxa highlighted in yellow are trilete spore species; the rest are cryptospores. $ " ! % % % ! % # # !! " " " !! ! ! " ! ! ! !! ! ! " " ! ! ! ! "
Recommended publications
  • Extent and Duration of Marine Anoxia During the Frasnian– Famennian (Late Devonian) Mass Extinction in Poland, Germany, Austria and France
    This is a repository copy of Extent and duration of marine anoxia during the Frasnian– Famennian (Late Devonian) mass extinction in Poland, Germany, Austria and France. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/297/ Article: Bond, D.P.G., Wignall, P.B. and Racki, G. (2004) Extent and duration of marine anoxia during the Frasnian– Famennian (Late Devonian) mass extinction in Poland, Germany, Austria and France. Geological Magazine, 141 (2). pp. 173-193. ISSN 0016-7568 https://doi.org/10.1017/S0016756804008866 Reuse See Attached Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Geol. Mag. 141 (2), 2004, pp. 173–193. c 2004 Cambridge University Press 173 DOI: 10.1017/S0016756804008866 Printed in the United Kingdom Extent and duration of marine anoxia during the Frasnian– Famennian (Late Devonian) mass extinction in Poland, Germany, Austria and France DAVID BOND*, PAUL B. WIGNALL*† & GRZEGORZ RACKI‡ *School of Earth Sciences, University of Leeds, Leeds LS2 9JT, UK ‡Department of Palaeontology and Stratigraphy, University of Silesia, ul. Bedzinska 60, PL-41-200 Sosnowiec, Poland (Received 25 March 2003; accepted 10 November 2003) Abstract – The intensity and extent of anoxia during the two Kellwasser anoxic events has been investigated in a range of European localities using a multidisciplinary approach (pyrite framboid assay, gamma-ray spectrometry and sediment fabric analysis).
    [Show full text]
  • SILURIAN TIMES NEWSLETTER of the INTERNATIONAL SUBCOMMISSION on SILURIAN STRATIGRAPHY (ISSS) (INTERNATIONAL COMMISSION on STRATIGRAPHY, ICS) No
    SILURIAN TIMES NEWSLETTER OF THE INTERNATIONAL SUBCOMMISSION ON SILURIAN STRATIGRAPHY (ISSS) (INTERNATIONAL COMMISSION ON STRATIGRAPHY, ICS) No. 27 (for 2019) Edited by ZHAN Renbin INTERNATIONAL UNION OF GEOLOGICAL SCIENCES President: CHENG Qiuming (Canada) Vice-Presidents: Kristine ASCH (Germany) William CAVAZZA (Italy) Secretary General: Stanley C. FINNEY (USA) Treasurer: Hiroshi KITAZATO (Japan) INTERNATIONAL COMMISSION ON STRATIGRAPHY Chairman: David A.T. HARPER (UK) Vice-Chairman: Brian T. HUBER (USA) Secretary General: Philip GIBBARD (UK) SUBCOMMISSION ON SILURIAN STRATIGRAPHY Chairman: Petr ŠTORCH (Czech Republic) Vice-Chairman: Carlo CORRADINI (Italy) Secretary: ZHAN Renbin (China) Other titular members: Anna ANTOSHKINA (Russia) Carlton E. BRETT (USA) Bradley CRAMER (USA) David HOLLOWAY (Australia) Jisuo JIN (Canada) Anna KOZŁOWSKA (Poland) Jiří KŘÍŽ (Czech Republic) David K. LOYDELL (UK) Peep MÄNNIK (Estonia) Michael J. MELCHIN (Canada) Axel MUNNECKE (Germany) Silvio PERALTA (Argentina) Thijs VANDENBROUCKE (Belgium) WANG Yi (China) Živilė ŽIGAITĖ (Lithuania) Silurian Subcommission website: http://silurian.stratigraphy.org 1 CONTENTS CHAIRMAN’S CORNER 3 ANNUAL REPORT OF SILURIAN SUBCOMMISSION FOR 2019 7 INTERNATIONAL COMMISSION ON STRATGRAPHY STATUTES 15 REPORTS OF ACTIVITIES IN 2019 25 1. Report on the ISSS business meeting 2019 25 2. Report on the 15th International Symposium on Early/Lower Vertebrates 28 3. Report on the 13th International Symposium on the Ordovician System in conjunction with the 3rd Annual Meeting of IGCP 653 32 GUIDELINES FOR THE ISSS AWARD: KOREN' AWARD 33 ANNOUNCEMENTS OF MEETINGS and ACTIVITIES 34 1. Lithological Meeting: GEOLOGY OF REEFS 34 SILURIAN RESEARCH 2019: NEWS FROM THE MEMBERS 36 RECENT PUBLICATIONS ON THE SILURIAN RESEARCH 67 MEMBERSHIP NEWS 77 1. List of all Silurian workers and interested colleagues 77 2.
    [Show full text]
  • The Classic Upper Ordovician Stratigraphy and Paleontology of the Eastern Cincinnati Arch
    International Geoscience Programme Project 653 Third Annual Meeting - Athens, Ohio, USA Field Trip Guidebook THE CLASSIC UPPER ORDOVICIAN STRATIGRAPHY AND PALEONTOLOGY OF THE EASTERN CINCINNATI ARCH Carlton E. Brett – Kyle R. Hartshorn – Allison L. Young – Cameron E. Schwalbach – Alycia L. Stigall International Geoscience Programme (IGCP) Project 653 Third Annual Meeting - 2018 - Athens, Ohio, USA Field Trip Guidebook THE CLASSIC UPPER ORDOVICIAN STRATIGRAPHY AND PALEONTOLOGY OF THE EASTERN CINCINNATI ARCH Carlton E. Brett Department of Geology, University of Cincinnati, 2624 Clifton Avenue, Cincinnati, Ohio 45221, USA ([email protected]) Kyle R. Hartshorn Dry Dredgers, 6473 Jayfield Drive, Hamilton, Ohio 45011, USA ([email protected]) Allison L. Young Department of Geology, University of Cincinnati, 2624 Clifton Avenue, Cincinnati, Ohio 45221, USA ([email protected]) Cameron E. Schwalbach 1099 Clough Pike, Batavia, OH 45103, USA ([email protected]) Alycia L. Stigall Department of Geological Sciences and OHIO Center for Ecology and Evolutionary Studies, Ohio University, 316 Clippinger Lab, Athens, Ohio 45701, USA ([email protected]) ACKNOWLEDGMENTS We extend our thanks to the many colleagues and students who have aided us in our field work, discussions, and publications, including Chris Aucoin, Ben Dattilo, Brad Deline, Rebecca Freeman, Steve Holland, T.J. Malgieri, Pat McLaughlin, Charles Mitchell, Tim Paton, Alex Ries, Tom Schramm, and James Thomka. No less gratitude goes to the many local collectors, amateurs in name only: Jack Kallmeyer, Tom Bantel, Don Bissett, Dan Cooper, Stephen Felton, Ron Fine, Rich Fuchs, Bill Heimbrock, Jerry Rush, and dozens of other Dry Dredgers. We are also grateful to David Meyer and Arnie Miller for insightful discussions of the Cincinnatian, and to Richard A.
    [Show full text]
  • Chitinozoan Implications in the Palaeogeography of the East Moesia, Romania ⁎ Marioara Vaida A,1, Jacques Verniers B
    Palaeogeography, Palaeoclimatology, Palaeoecology 241 (2006) 561–571 www.elsevier.com/locate/palaeo Chitinozoan implications in the palaeogeography of the East Moesia, Romania ⁎ Marioara Vaida a,1, Jacques Verniers b, a Geological Institute of Romania, 1 Caransebes St., Bucharest 32, 78 344, Romania b Research Unit Palaeontology, Department of Geology and Pedology, Ghent University, Krijgslaan 281/S8, B-9000 Ghent, Belgium Received 5 August 2005; received in revised form 29 March 2006; accepted 6 April 2006 Abstract Palaeomagnetic data from Moesia are absent and previous palynological and macrofaunal studies could not show clearly the palaeogeographical position of Moesia between the larger palaeocontinents Gondwana, Baltica, or Avalonia. Cutting samples from three boreholes on East Moesia (SE Romania) have been investigated in this study using S.E.M technique. Chitinozoan assemblages prove the presence of Wenlock–Ludlow (possibly Homerian and Gorstian), Přídolí, and Lochkovian. Those of the last have a pronounced distribution in North Gondwanan localities; one of them, Cingulochitina plusquelleci, is illustrative only in North Gondwanan regions. These chitinozoans argue that East Moesia and probably West Moesia were in good communication with the Ibarmaghian Domain of the Northern Gondwana palaeocontinent. © 2006 Elsevier B.V. All rights reserved. Keywords: Chitinozoans; Přídolí; Lochkovian; Palaeogeography; East Moesia; Romania 1. Introduction sedimentary cover including Palaeozoic, Mesozoic and Cenozoic deposits. The core material has been used for The Moesian Platform lies in the foreland of the palynological investigations in the hereby study. The Carpathians and of the Balkans. Its basement is divided by main purpose of the present investigation is an attempt to the Intra-Moesian Fault (IMF) (Fig.
    [Show full text]
  • Age and Palaeoenvironments of the Manacapuru Formation, Presidente Figueiredo (AM) Region, Lochkovian of the Amazonas Basin
    SILEIR RA A D B E E G D E A O D L E O I G C I A O ARTICLE BJGEO S DOI: 10.1590/2317-4889201920180130 Brazilian Journal of Geology D ESDE 1946 Age and palaeoenvironments of the Manacapuru Formation, Presidente Figueiredo (AM) region, Lochkovian of the Amazonas Basin Patrícia Ferreira Rocha1* , Rosemery Rocha da Silveira1 , Roberto Cesar de Mendonça Barbosa1 Abstract The Manacapuru Formation, Amazonas Basin, outcrops on the margins of a highway in the region of Presidente Figueiredo, state of Amazo- nas. A systematic palynological and a lithofaciological analysis was carried out aiming to contribute to the paleoenvironmental understanding of the Manacapuru Formation and its respective age. The present work uses the analysis of the chitinozoan for biostratigraphic purposes as a tool. A total of 27 samples were collected in which an assemblage of lower Lochkovian can be recognized, whose characteristic species are Angochitina filosa, Cingulochitina ervensis, Lagenochitina navicula, and Pterochitina megavelata. It was possible to identify an intense reworking in the exposure, evidenced by the presence of paleofaunas ranging from Ludfordian to Pridolian, which may be associated to the constant storm events that reached the shelf. The lithofaciological analysis allowed the recognition of 6 predominantly muddy sedimentary lithofacies with sandy intercalations that suggest deposition in an offshore region inserted in a shallow marine shelf and influenced by storms. KEYWORDS: Chitinozoan; Devonian; Manacapuru Formation; Amazonas Basin. INTRODUCTION the results with more intensively investigated areas in Brazil and In the Silurian and Devonian period, the South Pole proposed five chitinozoan assemblages. Reworking was recog- was located close to the South American paleoplate margins nized in some sections.
    [Show full text]
  • Carbonaceous and Siliceous Neoproterozoic Vase-Shaped Microfossils (Urucum Formation, Brazil) and the Question of Early Protistan Biomineralization
    Journal of Paleontology, 91(3), 2017, p. 393–406. Copyright © 2017, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/15/0088-0906 doi: 10.1017/jpa.2017.16 Carbonaceous and siliceous Neoproterozoic vase-shaped microfossils (Urucum Formation, Brazil) and the question of early protistan biomineralization Luana Morais,1 Thomas Rich Fairchild,2 Daniel J.G. Lahr,3 Isaac D. Rudnitzki,4,5 J. William Schopf,6,7,8,9 Amanda K. Garcia,6,7 Anatoliy B. Kudryavtsev,6,7 and Guilherme R. Romero1 1Graduate program in Geochemistry and Geotectonics, Institute of Geosciences, University of São Paulo. Rua do Lago, 562, Cidade Universitaria, CEP: 05508-080, São Paulo, Brazil 〈[email protected]〉, 〈[email protected]〉 2Department of Sedimentary and Environmental Geology, Institute of Geosciences, University of São Paulo, Rua do Lago, 562, Cidade Universitária, CEP: 05508-080, São Paulo, Brazil 〈[email protected]〉 3Department of Zoology, Institute of Biosciences, University of São Paulo, Rua do Matão, travessa 14, 101, Cidade Universitária, CEP: 05508-090, São Paulo, Brazil 〈[email protected]〉 4Departament of Geophysics, Institute of Astronomy, Geophysics and Atmospheric Sciences, University of São Paulo, Rua do Matão, 1226, CEP: 05508-900 São Paulo, Brazil 〈[email protected]〉 5Federal University of Ouro Preto, Department of Geology, Ouro Preto, Rua Diogo de Vasconcelos, 122, Minas Gerais, CEP: 35400-000 6Department of Earth, Planetary, and Space Sciences, 595 Charles E.
    [Show full text]
  • Sedimentology and Palaeontology of the Withycombe Farm Borehole, Oxfordshire, UK
    Sedimentology and Palaeontology of the Withycombe Farm Borehole, Oxfordshire, England By © Kendra Morgan Power, B.Sc. (Hons.) A thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Master of Science Department of Earth Sciences Memorial University of Newfoundland May 2020 St. John’s Newfoundland Abstract The pre-trilobitic lower Cambrian of the Withycombe Formation is a 194 m thick siliciclastic succession dominated by interbedded offshore red to purple and green pyritic mudstone with minor sandstone. The mudstone contains a hyolith-dominated small shelly fauna including: orthothecid hyoliths, hyolithid hyoliths, the rostroconch Watsonella crosbyi, early brachiopods, the foraminiferan Platysolenites antiquissimus, the coiled gastropod-like Aldanella attleborensis, halkieriids, gastropods and a low diversity ichnofauna including evidence of predation by a vagile infaunal predator. The assemblage contains a number of important index fossils (Watsonella, Platysolenites, Aldanella and the trace fossil Teichichnus) that enable correlation of strata around the base of Cambrian Stage 2 from Avalonia to Baltica, as well as the assessment of the stratigraphy within the context of the lower Cambrian stratigraphic standards of southeastern Newfoundland. The pyritized nature of the assemblage has enabled the study of some of the biota using micro-CT, augmented with petrographic studies, revealing pyritized microbial filaments of probable giant sulfur bacteria. We aim to produce the first complete description of the core and the abundant small pyritized fossils preserved in it, and develop a taphonomic model for the pyritization of the “small” shelly fossils. i Acknowledgements It is important to acknowledge and thank the many people who supported me and contributed to the successful completion of this thesis.
    [Show full text]
  • Global and Regional Chitinozoan Biodiversity Dynamics in the Ordovician: Relationships to Sea-Level, Carbon Cycling and Tectonics
    University of Dayton eCommons Honors Theses University Honors Program 4-2016 Global and Regional Chitinozoan Biodiversity Dynamics in the Ordovician: Relationships to Sea-Level, Carbon Cycling and Tectonics Jordan Watson University of Dayton Follow this and additional works at: https://ecommons.udayton.edu/uhp_theses Part of the Geology Commons eCommons Citation Watson, Jordan, "Global and Regional Chitinozoan Biodiversity Dynamics in the Ordovician: Relationships to Sea-Level, Carbon Cycling and Tectonics" (2016). Honors Theses. 130. https://ecommons.udayton.edu/uhp_theses/130 This Honors Thesis is brought to you for free and open access by the University Honors Program at eCommons. It has been accepted for inclusion in Honors Theses by an authorized administrator of eCommons. For more information, please contact [email protected], [email protected]. Global and Regional Chitinozoan Biodiversity Dynamics in the Ordovician: Relationships to Sea-Level, Carbon Cycling and Tectonics Honors Thesis Jordan Watson Department: Geology Advisor: Daniel Goldman, Ph.D. April 2016 Global and Regional Chitinozoan Biodiversity Dynamics in the Ordovician: Relationships to Sea-Level, Carbon Cycling and Tectonics Honors Thesis Jordan Watson Department: Geology Advisor: Daniel Goldman, Ph.D. April 2016 Abstract Fossil species provide extensive information about the past history of life on Earth. This thesis focuses on the global and regional biodiversity dynamics of the extinct fossil group Chitinozoa, and analyzes the impact and influences of sea-level, global carbon cycling and tectonics on their biodiversity. Biodiversity curves were generated from three different paleo-continents, Laurentia, Baltica, and Gondwana using the automated graphic correlation computer program CONOP9. Traditional methods of biodiversity analysis count fossil taxa in individual intervals of geologic time.
    [Show full text]
  • Waveren IM.Pdf
    GEOLOGICA ULTRAIECTINA Medelingen van de Faculteit Aardwetenschappen Universiteit Utrecht No. 104 PLANKTONIC ORGANIC MATTER IN SURFICIAL SEDIMENTS OF THE BANDA SEA (INDONESIA) - A PALYNOLOGICAL APPROACH CIP-GEGEVENS KONINKLlJKE BIBLIOTHEEK, DEN HAAG Waveren, Isabel Maria van Planktonic organic matter in surficial sediments of the Banda Sea (Indonesia) ­ A palynological approach/ Isabel Maria van Waveren. ­ Utrecht: Faculteit Biologie Universiteit Utrecht.- (Geologica Ultraiectina, ISSN 0072-1026; no. 104) Proefschrift Universiteit Utrecht. -Met lit. opg.- Met samenvatting in het Nederlands. ISBN 90-71577-58-9 Trefw.: Bandazee; palynologie. druk: OMI Offset Utrecht PLANKTONIC ORGANIC MATTER IN SURFICIAL SEDIMENTS OF THE BANDA SEA (INDONESIA) - A PALYNOLOGICAL APPROACH PLANKTONISCH ORGANISCH MATERIAAL UIT SUB-RECENTE SEDIMENTEN VAN DE BANDA ZEE (INDONESIE)- EEN PALYNOLOGISCHE BENADERING (met een samenvatting in het Nederlands) PROEFSCHRIFT TER VERKRIJGING VAN DE GRAAD VAN DOCTOR AAN DE UNIVERSITEIT UTRECHT OP GEZAG VAN DE RECTOR MAGNIFICUS PROF. DR. J. A. VAN GINKEL INGEVOLGE HEr BESLUIT VAN HEr COLLEGE VAN DEKANEN IN HEr OPENBAAR TE VERDEDIGEN OP MAANDAG 25 OKTOBER 1993 DES NAMIDDAGS TE 12.45 UUR DOOR ISABEL MARIA VAN WAVER EN GEBOREN 21 JANUARI 1957 TE HAARLEM Promotor: Prof. Dr. H. Visscher Laboratory for Palaeobotany and Palynology State University of Utrecht Heidelberglaan 2 3584 CS Utrecht The Netherlands CONTENT Acknowlegments 7 Samenvatting (Summary in Dutch) 9 Synopsis 13 Chapter 1 Palynological analysis of the composition and
    [Show full text]
  • Silurian and Lower Devonian Chitinozoan Taxonomy and Biostratigraphy of the Trombetas Group, Amazonas Basin, Northern Brazil
    Bulletin of Geosciences, Vol. 80, No. 4, 245–276, 2005 © Czech Geological Survey, ISSN 1214-1119 Silurian and Lower Devonian chitinozoan taxonomy and biostratigraphy of the Trombetas Group, Amazonas Basin, northern Brazil Yngve Grahn Universidade do Estado do Rio de Janeiro, Faculdade de Geologia, Bloco A – Sala 4001, Rua São Francisco Xavier 524, 20550-013 Rio de Janeiro, RJ, Brazil. E-mail: [email protected] Abstract. Silurian and Devonian (Lower Lochkovian) chitinozoans from the Trombetas Group, and the basal Jatapu Member of the Maecuru Forma- tion, have been studied in outcrops and shallow borings from the Amazonas Basin, northern Brazil. Outcrops were examined along the Trombetas River and its tributaries, the Cachorro and Mapuera rivers, situated on the northern margin of the Amazonas Basin, and from shallow borings in the Pitinga For- mation along the Xingu River at Altamira and Belo Monte, together with outcrops along Igarapé da Rainha and Igarapé Ipiranga on the southern margin of the Amazonas Basin. In addition, nine deep borings in the central part of the Amazonas Basin were used as reference sections. The chitinozoans confirm a Llandovery (Late Rhuddanian–Late Telychian) to Early Wenlock (Sheinwoodian) age for the lower part of the Pitinga Formation, and a Ludlow to Early Pridoli age for the upper part of the Pitinga Formation. The overlying Manacapuru Formation is comprised of lower Pridoli rocks in the basal part, but middle and upper Pridoli strata are missing. The upper part of the formation and the basal part of the Jatapu Member of the Maecuru Formation consist of Lower Lochkovian rocks.
    [Show full text]
  • Integrated Graptolite and Chitinozoan Biostratigraphy of the Upper Telychian (Llandovery, Silurian) of the Ventspils D-3 Core, Latvia
    Geol. Mag. 142 (4), 2005, pp. 369–376. c 2005 Cambridge University Press 369 doi:10.1017/S0016756805000531 Printed in the United Kingdom Integrated graptolite and chitinozoan biostratigraphy of the upper Telychian (Llandovery, Silurian) of the Ventspils D-3 core, Latvia D. K. LOYDELL* & V. NESTOR† *School of Earth and Environmental Sciences, University of Portsmouth, Burnaby Road, Portsmouth PO1 3QL, UK †Institute of Geology at Tallinn University of Technology, 7 Estonia Avenue, 10143 Tallinn, Estonia (Received 13 July 2004; accepted 14 February 2005) Abstract – Integrated graptolite and chitinozoan biostratigraphical data are presented from the upper Telychian (Oktavites spiralis and Cyrtograptus lapworthi graptolite biozones) of the VentspilsD-3 core, Latvia. The base of the Angochitina longicollis chitinozoan Biozone is approximately coincident with that of the spiralis graptolite Biozone, as it is elsewhere in the East Baltic, although in Wales it lies within the upper spiralis graptolite Biozone. Conochitina proboscifera appears in the upper spiralis graptolite Biozone in the Ventspils D-3 core, but at lower and higher horizons elsewhere, presumably reflecting its patchy distribution during the lower part of its stratigraphical range. Ramochitina ruhnuensis appears to be a stratigraphically useful, although geographically restricted, species, appearing at a level close to the base of the lapworthi graptolite Biozone. The most remarkable feature of the Ventspils D-3 chitinozoan record is the very early occurrence, in the upper spiralis graptolite Biozone, of two chitinozoan biozonal index species: Margachitina banwyensis and M. margaritana. Previously, these two taxa were considered unequivocal indicators of the uppermost Telychian to Sheinwoodian or Homerian, respectively. Keywords: graptolites, Chitinozoa, Llandovery, Silurian, biostratigraphy.
    [Show full text]
  • Ordovician News
    ORDOVICIAN NEWS SUBCOMMISSION ON ORDOVICIAN STRATIGRAPHY INTERNATIONAL COMMISSION ON STRATIGRAPHY Number 38 (for 2020) Edited by Bertrand Lefebvre INTERNATIONAL UNION OF GEOLOGICAL SCIENCES President: John LUDDEN (United Kingdom) Vice-Presidents: Daekyo CHEONG (Korea) Hassina MOURI (South Africa) Secretary General: Stanley C. FINNEY (USA) Treasurer: Hiroshi KITAZATO (Japan) INTERNATIONAL COMMISSION ON STRATIGRAPHY Chairman: David A.T. HARPER (United Kingdom) Vice-Chairman: Shuzhong SHEN (China) Secretary General: Philip GIBBARD (United Kingdom) SUBCOMMISSION ON ORDOVICIAN STRATIGRAPHY Chairman: Thomas SERVAIS (France) Vice-Chairman: ZHAN Renbin (China) Secretary: Bertrand LEFEBVRE (France) Sachiko AGEMATSU-WATANABE (Japan) Matilde BERESI (Argentina) André DESROCHERS (Canada) Mansoureh GHOBADI POUR (Iran) Daniel GOLDMAN (USA) Lars HOLMER (Sweden) Petr KRAFT (Czech Republic) Patrick I. McLAUGHLIN (USA) Tõnu MEIDLA (Estonia) Leon NORMORE (Australia) Elena RAEVSKAYA (Russia) Alycia STIGALL (USA) Tatiana TOLMACHEVA (Russia) WANG Wenhui (China) Charles WELLMAN (United Kingdom) Seth YOUNG (USA) Yong Yi ZHEN (Australia) Ordovician Subcommission website : http://ordovician.stratigraphy.org CONTENTS Page CHAIRMAN'S MESSAGE 2 SECRETARY’S MESSAGE 5 ANNUAL REPORT OF ORDOVICIAN SUBCOMMISSION FOR 2020 6 ONLINE MEETING OF THE VOTING MEMBERS OF THE SUBCOMMISSION 15 BOOK REVIEW • The Ordovician Period – a new contribution chapter to Geologic Time Scale 2020 (Gradstein et al., eds.: Elsevier, 2020) 17 REPORTS OF RECENT CONFERENCES • IGCP 653 virtual Annual Meeting, Copenhagen, September 2020 19 CONFERENCE ANNOUNCEMENTS • IGCP 668 virtual Annual Meeting, Tsukuba, July 2021 21 • IGCP 653/735 virtual Annual Meeting, Lille, September 2021 24 • International Conference on Palaeobiology, High Resolution Stratigraphy and Fossil Energy, Nanjing, November 2021 26 • IGCP 735 – SOS Regional Meeting, Lille, May–June 2022 30 • 14th International Symposium on the Ordovician System, Estonia, 2023 38 NEW IGCP PROJECT • IGCP 735: Rocks and the Rise of Ordovician Life (Rocks n'ROL).
    [Show full text]