Removal Properties of Arsenic Compounds with Synthetic

Total Page:16

File Type:pdf, Size:1020Kb

Removal Properties of Arsenic Compounds with Synthetic Removal properties of arsenic compounds with Water Science and Technology: Water Supply synthetic hydrotalcite compounds Y. Kiso*, Y. J. Jung*, T. Yamada**, M. Nagai*** and K. S. Min**** *Department of Ecological Engineering, Toyohashi University of Technology, Toyohashi, Japan (E-mail: [email protected]) **Department of Architecture and Civil Engineering, Toyohashi University of Technology, Japan ***Department of Human Environment, University of Human Environment, Okazaki, Japan ****Department of Environmental Engineering, Kyungpook National University, Daegu, Korea Abstract The contamination of underground water with inorganic arsenic compounds has caused serious problems, particularly in developing countries. For water containing low-level arsenic compounds, an adsorption process may be more effective than other processes such as RO membrane and precipitation. In this study, the removal performance for arsenic compounds was examined with synthetic hydrotalcite (HTAL) Vol 5 No 5 pp 75–81 compounds as an adsorbent process from the following viewpoints: the adsorption capacity, adsorption isotherm, the effects of pH and co-existing anions. The HTAL-Cl, which contains Cl2 ions as an intercalate, showed very high adsorption capacity in the neutral pH region. The maximum adsorption capacity was 105 mg-As(V) g21. The adsorption isotherm was approximated by the following modified Langmuir equation: pffiffiffiffi 263 Ce qe ¼ pffiffiffiffi 1 þ 2:39 Ce Q The equation suggests that one mol of As(V) occupies two adsorption sites of HTAL-Cl, and the IWA Publishing 2005 experimental result indicated that 2.64 mol of Cl2 ions in the HTAL-Cl were substituted with one mol of As(V). The interfering effects of co-existing anions were relatively low, and the magnitude of the effects was 2 22 22 2 observed in the order of HCO3 . HPO4 . SO4 . Cl . Keywords Arsenic compounds; adsorbent; hydrotalcite; adsorption isotherm; co-existing anions Introduction Many people in the world are dependent on groundwater as their drinking water sources, and it has been reported that contamination with trace elements has caused serious health problems in developing countries (Hodi, 1995; Karim, 2000; Roberts et al., 2004). One of typical environmental incidences is caused by the inorganic arsenic compounds, and new regulations for arsenic levels in drinking water have been established for each country: 0.01 mgL21 for EC, 0.025 mgL21 for Canada, 0.01 mgL21 for the US EPA, and 0.01 mgL21 for Japan (Smedley and Kinniburgh, 2002). The arsenic compounds in a natural system are primarily found in the forms of arsenate and arsenite depending on the prevailing redox conditions. Their environmental behavior and mobilization are also influenced by some factors such as pH and the pre- sence of co-existing ions, which should be considered in the selection of the removal technologies for arsenic compounds. For water containing low-level arsenic compounds, sorption processes may be more effective than other methods, such as RO membrane and precipitation, from the view- points of treatment efficiencies and water losses under normal conditions (EPA, 2000). In addition, the sorption process appears to be the most attractive technique owing to the following advantages: sludge-free operation, easy operation, and reuse of the adsorbent after regeneration (Nriagu, 1994). 75 Several adsorbents, such as aluminium oxide, cerium oxide, and manganese dioxide, have been developed and examined for the removal of arsenic compounds. However, the adsorbents except cerium oxide have relatively low adsorption capacity, and cerium oxide is very expensive. In addition, the currently available adsorbents require acidic con- ditions for the effective removal of arsenic. Some alternative adsorbents have been inves- tigated to remove arsenite and/or arsenate: ferrihydrite (Pierce and Moore, 1982), iron Y. Kiso oxide-coated sand (Joshi and Chaudhuri, 1996), hematite/feldspar (Singh et al., 1996), and biopolymers (Zouboulis and Katsoyiannis, 2002). The similar subjects mentioned et al. above also remain for these adsorbents. Hydrotalcite compounds (HTALs), which have a layered structure consisting of mag- nesium and aluminium hydroxides and which include the interlayer anions, are known as anionic clay (Orthman et al., 2003). They have been developed as adsorbents for toxic anions as well as for the removal of Cl2 and NO32 from water (Lazaridis et al., 2002; Toraishi et al., 2002). Considering that the chemical properties of arsenate are similar to those of phosphate, the appropriate adsorbents for phosphate removal may be also useful for arsenic removal in spite of competing for the same adsorption sites. In our previous investigations (Kindaichi et al., 2002; Kuzawa et al., 2005), we reported that HTAL-Cl, which contains Cl2 ion as an intercalate, was an effective adsor- bent for the removal of phosphate in a wide range of pH. In addition, the phosphate adsorption capacity of HTAL was effectively recovered by desorption with alkaline solution and regeneration with MgCl2 solution. In the current study, the removal perform- ance of HTAL-Cl for arsenic compounds was examined from the following viewpoints: the adsorption capacity, adsorption isotherm, the effects of pH and co-existing anions. Experimental Materials Three kinds of synthetic HTALs listed in Table 1 were used in this study: HTAL-Cl and 2 22 HTAL-CO3 containing Cl and CO3 as intercalates, respectively, and HT-500 prepared by baking HTAL-CO3 at 5008 C. Both stock solutions of As(III) and As(V) were prepared z with NaAsO2 and Na2HAsO47H2O, respectively, and they were diluted to an appropriate concentration for the experiments. Adsorption procedure The adsorption experiments were performed by batch type procedures. When the adsorp- tion properties of three type of HTALs were compared, HTALs (1.0 g of As(III) or 0.3 g of As(V)) were brought come into contact with an aliquot of the 100 mL solution (100 mg-As(III) L21 or 450 mg-As(V) L21)at258 C for 24 hours. Since HTAL-Cl indicated the effective adsorption properties for As(V), the adsorption isotherm was measured with HTAL-Cl under the following conditions: 0.3–1.0 g of HTAL-Cl and 100 mL of As(V) solution (450 mg-As L21). The effects of pH on the adsorption capacity were examined under the following conditions: 0.3 g of HTAL-Cl and 100 mL of As(V) solution (450 mg-As L21) and pH adjustment with dil-HCl and dil- NaOH. Table 1 Chemical formula and denotation of HTALs used in this work Chemical formula Denotation z Mg0.683Al0.317(OH)1.995(CO3)0.028Cl0.2260.54H2O HTAL-Cl z Mg6Al2(OH)16CO34H2O HTAL-CO3 Mg0.7Al0.3O1.15 HT-500 76 The adsorbents in the mixed solutions were removed by filtration with a H-PTFE membrane filter (0.1 mm), and the arsenic concentrations of the filtrates were analyzed by the membrane extraction method for molybdenum blue, which was developed in our lab- oratory (Kiso et al., 2005) and which can detect up to the level of 1 mgL21 of As(V). The analysis of As(III) was conducted after oxidation to As(V) with potassium peroxodisul- fate. During the experiments, no pH adjustment was conducted with the exception of the case of the experiments for the pH effects. Y. Kiso Effects of co-existing anion et al. The effects of co-existing anions on the adsorption capacity were examined by the addition of NaCl, Na2SO4,Na2HPO4, or NaHCO3 under the following conditions: 450 mgL21 of As(V), 0–2000 mgL21 of the concentrations of the other salts, and 22 2 22 24 hours of the reaction time at 258 C. Anions (HPO4 ,Cl SO4 ) were analyzed by ion-chromatography under the following conditions: ion-chromatograph (DX-120, DIO- NEX, USA); suppressor column: ASRS-ULTRA (4 mm, 50 mA); separation column: AS14A (4 mm i.d. £ 250 mm long); mobile phase: 8.0 mM-Na2CO3-1.0 mM-NaHCO3. The concentration of carbonate ions was determined by a TOC analyzer (TOC 5000, Shi- madzu, Japan). Results and discussion Adsorption capacity The adsorption amounts of As(III) and As(V) on the three kinds of synthetic HTAL are summarized in Figure 1, where the adsorption amounts are plotted against the equilibrium pH. As(III) was not adsorbed effectively on each adsorbent, because As(III) exists as a nonionic species under neutral pH conditions. On the other hand, As(V) was entrapped effectively by HTAL-Cl and HT-500. The adsorption amount on HTAL-CO3 was very 22 low, because the property that HTAL has the highest selectivity for CO3 . In the case of HT-500, since the equilibrium pH shifted to alkaline conditions, pH adjustment is required before or after the adsorption process. In addition, since HT-500 can easily adsorb carbonate from the atmosphere, HT-500 should be stored in a container isolated from air. However, in the case of HTAL-Cl, only a slight increase of pH was observed. Therefore, HTAL-Cl was used in further experiments. The relation between the adsorption amount of As(V) and equilibrium pH is shown in Figure 2, where the HTAL-Cl was used as an adsorbent. The maximum adsorption was observed under neutral pH conditions, and the adsorption amounts decreased in acidic and alkaline regions. It is pointed out that the HTAL-Cl was dissolved under the con- dition of pH , 2. In the case of phosphate adsorption on the HTAL-Cl, the phosphate removal rate was not affected in the region of pH ¼ 5.5–8.8 (Kindaichi et al., 2002), Figure 1 Adsorption amounts for As(III) and As(V) on HTALs 77 Y. Kiso et al. Figure 2 Effects of pH on As(V) adsorption and the results shown in Figure 2 indicate the characteristics of HTAL-Cl adsorbent for As(V) removal. In the neutral pH region, a stable adsorption amount was observed, its deviation was less than 3% in the region of pH ¼ 6.3–7.8.
Recommended publications
  • Hydrotalcite-Like Compounds: a Way to Recover A
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC HYDROTALCITE-LIKE COMPOUNDS: A WAY TO RECOVER A HAZARDOUS WASTE IN THE ALUMINIUM TERTIARY INDUSTRY R. Galindoa, A. López-Delgadoa*, I. Padillaa and M. Yatesb aNational Centre for Metallurgical Research, CSIC. Avda./ Gregorio del Amo, 8. 28040 Madrid, Spain bInstitute of Catalysis and Petrochemistry, CSIC. C./ Marie Curie, 2. 28049 Madrid, Spain *Author to whom correspondence should be addressed: [email protected] Abstract Magnesium-aluminium hydrotalcite-like compounds at ratios of 2:1, 3:1 and 4:1 were prepared using a non-conventional aluminium source, the hazardous wastes from the aluminium tertiary industry. The method consisted in a conventional coprecipitation at constant pH 10 with magnesium chloride hexahydrate and stable solutions of Al3+ from dispersions of the fine powder from the sleeve filter suction system in the aluminium slag milling process. Resulting materials were strongly dependent on the presence of iron in the layers, as well as the carbonate-chloride content in the interlayer which affected the final properties. XRD and SAED indicated low crystallinity for these materials. Furthermore, as can be seen by SEM, the formation of disordered tiny nuclei was significant causing small spherical agglomerates. The infrared spectra showed a change of symmetry in the interlayer for the different ratios and the textural data suggested the “ink-bottle shaped” mesopores and type IIb isotherms, similar to the 1 results obtained for pillared clays, and the transition to H2 type in the hysteresis loops as function of the higher ratio.
    [Show full text]
  • Minerals of the Hydrotalcite Group in Metasomatically Altered Carbonate Rocks from Zawiercie, S Poland
    MINERALOGIA POLONICA Vol. 32, No 1, 2001 PL ISSSN 0032-6267 Ewa KOSZOWSKA1, Dorota SAŁATA1 MINERALS OF THE HYDROTALCITE GROUP IN METASOMATICALLY ALTERED CARBONATE ROCKS FROM ZAWIERCIE, S POLAND A b s t a c t . Minerals of the hydrotalcite-manasseite group were identified in samples from two borehols in Zawiercie (ZMZ-9, RK-1). The minerals were found in calciphire bodies (RK-1) and in one small, metasomatic veinlet (ZMZ-9) formed in Middle Devonian dolomites. Alteration of dolomitic sediments was genetically connected with infiltration fluids that caused formation of a gamet-pyroxene skam. Inves­ tigations have revealed the presence of both hydrotalcite and manasseite. Besides, in few places of the veinlet there occurs a mineral, which has been recognized as iowaite. Key-words: hydrotalcite-manasseite group, calciphires, ska ms, metasomatic veins, Zawiercie, S Poland INTRODUCTION The hydrotalcite group minerals belong to a large group of natural and synthetic dihydroxides named also as "layered double hydroxides" or "anionic clays". Their general formula can be written as: M |2XM (0 H)2 (Am“)x/mn H 2 0 (where M+2, M +3 are cations in the hydroxide layers and Am_ is the interlayer anion) and is based on positively charged brucite-like layers with C 03-like anions and water molecules in interlayer positions (Drits et al. 1987) (Fig. la). Within the group, depending on the composition of the octahedral brucite-type cationic layers, three subgroups can be distinguished in which the cations are: a) M g +2 + Al+3, b) Mg +2 + Fe+3 , c) M g + 2 + C r+3.
    [Show full text]
  • Infrare D Transmission Spectra of Carbonate Minerals
    Infrare d Transmission Spectra of Carbonate Mineral s THE NATURAL HISTORY MUSEUM Infrare d Transmission Spectra of Carbonate Mineral s G. C. Jones Department of Mineralogy The Natural History Museum London, UK and B. Jackson Department of Geology Royal Museum of Scotland Edinburgh, UK A collaborative project of The Natural History Museum and National Museums of Scotland E3 SPRINGER-SCIENCE+BUSINESS MEDIA, B.V. Firs t editio n 1 993 © 1993 Springer Science+Business Media Dordrecht Originally published by Chapman & Hall in 1993 Softcover reprint of the hardcover 1st edition 1993 Typese t at the Natura l Histor y Museu m ISBN 978-94-010-4940-5 ISBN 978-94-011-2120-0 (eBook) DOI 10.1007/978-94-011-2120-0 Apar t fro m any fair dealin g for the purpose s of researc h or privat e study , or criticis m or review , as permitte d unde r the UK Copyrigh t Design s and Patent s Act , 1988, thi s publicatio n may not be reproduced , stored , or transmitted , in any for m or by any means , withou t the prio r permissio n in writin g of the publishers , or in the case of reprographi c reproductio n onl y in accordanc e wit h the term s of the licence s issue d by the Copyrigh t Licensin g Agenc y in the UK, or in accordanc e wit h the term s of licence s issue d by the appropriat e Reproductio n Right s Organizatio n outsid e the UK. Enquirie s concernin g reproductio n outsid e the term s state d here shoul d be sent to the publisher s at the Londo n addres s printe d on thi s page.
    [Show full text]
  • Crystal Structure and Comparative Crystal Chemistry of AI2M~(OH)12(C03) · 3H20, a New Mineral from the Hydrotalcite-Manasseite Group A
    Crystallography,Repons, Vol. 41, No.6, 1996, pp. 972-981. Transltnedfrom Kristallograjiya, VoL 41, No.6, 1996, pp. 1024-1034. @ Original Russian Text Copyright 1996 by Aralccheeva, Pushcharovskii, Rastwetaeva, Atencio, Luhman. Crystal Structure and Comparative Crystal Chemistry of AI2M~(OH)12(C03) · 3H20, a New Mineral from the Hydrotalcite-Manasseite Group A. v. Arakcheeva*, D. Yu. Pushcharovskii**, R. K. Rastsvetaeva***, D. Atencio****, and G. U. Lubman* Baikov Institute of Metallurgy, Russian Academy of Sciences, Leninskii pro 49, Moscow, 117334 Russia * Moscow State University, Moscow, 119899 Russia ** *** Shubnikov Institute of Crystallography, Russian Academy of Sciences, Leninskii pro 59, Moscow, //7333 Russia **** University of Sao Paulo, Sao Paulo, Brazil Received April 9, 1996 . 3H~O from Ihe Abstract-The crystal structure of a new mineral of the composition AI2Mg4(OH)12(C03) hydrotalcite-manasseite group has been determined by X-ray structure analysis. The parameters of Ihe hexag- onal unit cell are a =5.283(3), c = 15.150(9) A; sp. gr. P6 2m. The structure was refined over 52 cryslallograph- ically nonequivalent reflections up to R =0.039. The hydrogen atoms of hydroxyl groups are localized. The new mineral differs from otherrepresentatives oHhis group by the complete order of all the atoms, which is rctkl'!ed in a lower structure symmetry. The variety of minerals within the group is considered and interpreled in lerms of polytypism, the atomic order in the structure of sublattices, and isomorphous substitutions. INTRODUCTION Later on, one more mineral-chlormagaluminite (Mg, Fe)4A12(OH)dCI, (C03)o.sh 2H:O-w~ Depending on the composition of the octahedral included into the hydrotalcite-manasseite ..ubgroup.
    [Show full text]
  • A Specific Gravity Index for Minerats
    A SPECIFICGRAVITY INDEX FOR MINERATS c. A. MURSKyI ern R. M. THOMPSON, Un'fuersityof Bri.ti,sh Col,umb,in,Voncouver, Canad,a This work was undertaken in order to provide a practical, and as far as possible,a complete list of specific gravities of minerals. An accurate speciflc cravity determination can usually be made quickly and this information when combined with other physical properties commonly leads to rapid mineral identification. Early complete but now outdated specific gravity lists are those of Miers given in his mineralogy textbook (1902),and Spencer(M,i,n. Mag.,2!, pp. 382-865,I}ZZ). A more recent list by Hurlbut (Dana's Manuatr of M,i,neral,ogy,LgE2) is incomplete and others are limited to rock forming minerals,Trdger (Tabel,l,enntr-optischen Best'i,mmungd,er geste,i,nsb.ildend,en M,ineral,e, 1952) and Morey (Encycto- ped,iaof Cherni,cal,Technol,ogy, Vol. 12, 19b4). In his mineral identification tables, smith (rd,entifi,cati,onand. qual,itatioe cherai,cal,anal,ys'i,s of mineral,s,second edition, New york, 19bB) groups minerals on the basis of specificgravity but in each of the twelve groups the minerals are listed in order of decreasinghardness. The present work should not be regarded as an index of all known minerals as the specificgravities of many minerals are unknown or known only approximately and are omitted from the current list. The list, in order of increasing specific gravity, includes all minerals without regard to other physical properties or to chemical composition. The designation I or II after the name indicates that the mineral falls in the classesof minerals describedin Dana Systemof M'ineralogyEdition 7, volume I (Native elements, sulphides, oxides, etc.) or II (Halides, carbonates, etc.) (L944 and 1951).
    [Show full text]
  • Layered Double Hydroxides with Intercalated Permanganate and Peroxydisulphate Anions for Oxidative Removal of Chlorinated Organic Solvents Contaminated Water
    minerals Article Layered Double Hydroxides with Intercalated Permanganate and Peroxydisulphate Anions for Oxidative Removal of Chlorinated Organic Solvents Contaminated Water Karen Maria Dietmann 1 , Tobias Linke 2, Miguel del Nogal Sánchez 3 , José Luis Pérez Pavón 3 and Vicente Rives 1,* 1 Grupo de Investigación Reconocido—Química del Estado Sólido, Materiales y Catálisis Heterogénea (GIR-QUESCAT), Departamento de Química Inorgánica, Universidad de Salamanca, 37008 Salamanca, Spain; [email protected] 2 Institute of Earth Sciences, University of Iceland, Sturlugata 7, 101 Reykjavík, Iceland; [email protected] 3 Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Salamanca, 37008 Salamanca, Spain; [email protected] (M.d.N.S.); [email protected] (J.L.P.P.) * Correspondence: [email protected] Received: 9 April 2020; Accepted: 18 May 2020; Published: 20 May 2020 Abstract: The contamination by chlorinated organic solvents is a worldwide problem as they can deeply penetrate aquifers, accumulating in the sub-surface as lenses of highly hazardous pollutants. In recent years, so called in situ oxidation processes have been developed to remediate chlorinated organic solvents from groundwater and soil by injecting solutions of oxidising agents such as permanganate or peroxydisulphate. We here present modified layered double hydroxides (LDHs) with intercalated oxidising agents that might serve as new reactants for these remediation strategies. LDHs might serve as support and stabiliser materials for selected oxidising agents during injection, as the uncontrolled reaction and consumption might be inhibited, and guarantee that the selected oxidants persist in the subsurface after injection. In this study, LDHs with hydrotalcite- and hydrocalumite-like structures intercalated with permanganate and peroxydisulphate anions were synthesised and their efficiency was tested in batch experiments using trichloroethene or 1,1,2-trichloroethane as the target contaminants.
    [Show full text]
  • 12Cl23h2o, a New Gibbsite-Based Hydrotalcite Supergroup
    minerals Article Dritsite, Li2Al4(OH)12Cl2·3H2O, a New Gibbsite-Based Hydrotalcite Supergroup Mineral Elena S. Zhitova 1,2,* , Igor V. Pekov 3, Ilya I. Chaikovskiy 4, Elena P. Chirkova 4, Vasiliy O. Yapaskurt 3, Yana V. Bychkova 3, Dmitry I. Belakovskiy 5, Nikita V. Chukanov 6, Natalia V. Zubkova 3, Sergey V. Krivovichev 1,7 and Vladimir N. Bocharov 8 1 Department of Crystallography, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg 199034, Russia 2 Laboratory of Mineralogy, Institute of Volcanology and Seismology, Russian Academy of Sciences, Bulvar Piypa 9, Petropavlovsk-Kamchatsky 683006, Russia 3 Faculty of Geology, Moscow State University, Vorobievy Gory, Moscow 119991, Russia 4 Mining Institute, Ural Branch of the Russian Academy of Sciences, Sibirskaya str., 78a, Perm 614007, Russia 5 Fersman Mineralogical Museum, Russian Academy of Sciences, Leninsky Prospekt 18-2, Moscow 119071, Russia 6 Institute of Problems of Chemical Physics, Russian Academy of Sciences, Akad. Semenova 1, Chernogolovka, Moscow Region 142432, Russia 7 Nanomaterials Research Centre, Kola Science Centre, Russian Academy of Sciences, Fersman Street 14, Apatity 184209, Russia 8 Resource Center Geomodel, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg 199034, Russia * Correspondence: [email protected]; Tel.: +7-924-587-51-91 Received: 2 August 2019; Accepted: 14 August 2019; Published: 17 August 2019 Abstract: Dritsite, ideally Li Al (OH) Cl 3H O, is a new hydrotalcite supergroup mineral formed 2 4 12 2· 2 as a result of diagenesis in the halite carnallite rock of the Verkhnekamskoe salt deposit, Perm Krai, − Russia. Dritsite forms single lamellar or tabular hexagonal crystals up to 0.25 mm across.
    [Show full text]
  • Hydrotalcites in Construction Materials
    applied sciences Review Hydrotalcites in Construction Materials Anna-Marie Lauermannová 1 , Iva Paterová 2, Jan Patera 2, Kryštof Skrbek 1, OndˇrejJankovský 1 and Vilém Bart ˚unˇek 1,* 1 Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic; [email protected] (A.-M.L.); [email protected] (K.S.); [email protected] (O.J.) 2 Department of Organic Technology, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic; [email protected] (I.P.); [email protected] (J.P.) * Correspondence: [email protected]; Tel.: +42-022-0443-765 Received: 25 September 2020; Accepted: 9 November 2020; Published: 11 November 2020 Featured Application: In this contribution, the applications of the hydrotalcites and hydrotalcite-like materials in the building materials, cements, mortars, and concretes are summarized. Abstract: Hydrotalcites are layered double hydroxides displaying a variety of stoichiometry caused by the different arrangement of the stacking of the layers, ordering of the metal cations, as well as the arrangement of anions and water molecules, in the interlayer galleries. The compounds of the hydrotalcite group show a wide range of the possible applications due to their specific properties, such as their large surface area, ion exchange ability, the insolubility in water and most of the organic sorbents, and others. Affordability, wide possibilities of manufacturing, and presence of sufficient natural deposits make hydrotalcites potentially very useful for the construction industry, as either a building material itself or an additive in mortars, concrete or in polymers composites used in constructions.
    [Show full text]
  • Pauloabibite, Trigonal Nanbo3, Isostructural with Ilmenite, from the Jacupiranga Carbonatite, Cajati, São Paulo, Brazil
    American Mineralogist, Volume 100, pages 442–446, 2015 Pauloabibite, trigonal NaNbO3, isostructural with ilmenite, from the Jacupiranga carbonatite, Cajati, São Paulo, Brazil LUIZ A.D. MENEZES FILHO1,†, DANIEL ATENCIO2,*, MARCELO B. ANDRADE3, ROBERT T. DOWNS4, MÁRIO L.S.C. CHAVES1, ANTÔNIO W. ROMANO1, RICARDO SCHOLZ5 AND ABA I.C. PERSIANO6 1Instituto de Geociências, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil 2Instituto de Geociências, Universidade de São Paulo, Rua do Lago 562, 05508-080, São Paulo, São Paulo, Brazil 3Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-970, São Carlos, São Paulo, Brazil 4Department of Geosciences, University of Arizona, Tucson, Arizona 85721-0077, U.S.A. 5Departamento de Geologia da Escola de Minas da Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, 35400-000, Minas Gerais, Brazil 6Departamento de Física do Instituto de Ciências Exatas da Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, 31279-901, Belo Horizonte, Minas Gerais, Brazil ABSTRACT Pauloabibite (IMA 2012-090), trigonal NaNbO3, occurs in the Jacupiranga carbonatite, in Cajati County, São Paulo State, Brazil, associated with dolomite, calcite, magnetite, phlogopite, pyrite, pyr- rhotite, ancylite-(Ce), tochilinite, fluorapatite, “pyrochlore”, vigezzite, and strontianite. Pauloabibite occurs as encrustations of platy crystals, up to 2 mm in size, partially intergrown with an unidentified Ca-Nb-oxide, embedded in dolomite crystals, which in this zone of the mine can reach centimeter sizes. Cleavage is perfect on {001}. Pauloabibite is transparent and displays a sub-adamantine luster; it is pinkish brown and the streak is white.
    [Show full text]
  • A Novel Route for the Preparation of Hydrotalcite and Synthesis of Intercalated Reversible Dioxygen-Carrying Cobalt (II) Complexes
    A Novel Route for the Preparation of Hydrotalcite and Synthesis of Intercalated Reversible Dioxygen-Carrying Cobalt (II) Complexes M. ZIKMUND, К. PUTYERA, and K. HRNCIAROVÁ Institute of Inorganic Chemistry, Slovak Academy of Sciences, SK-842 36 Bratislava Received 17 May 1996 Reacting a solid MgCC>3-3H20 or Mg5(C03)4(OH)2 • 5H2O (nesquehonite, hydromagnesite, dypingite) with an aqueous solution of sodium aluminate and sodium hydroxide is a novel pro­ cedure to synthesize solid solutions with desired stoichiometric Mg/Al ratios in the hydrotalcite series [Мёз-*А1(ОН)8-2хЫ(СОз)(Н20)4-х] (0 < x < 1). By mixing of an intermediate solid solution of magnesium aluminium oxide obtained by thermal decomposition of hydrotalcite with an aqueous solution of mono- or a, u-dicarboxylates which con­ tain N-donor atom in the presence of ethylene glycol as a swelling agent pillared aminocarboxylate derivatives of hydrotalcite are produced. Nitrogen donor atoms of aminocarboxylate pillars may react with cobalt(II) complexes to form coordinatively unsaturated cobalt(II) chelates. The synthe­ sized model Co(salen) and Co(salophen) complexes immobilized in the interlayer region of anionic clays reversibly bind dioxygen and enjoy high stability in the course of oxygenation-deoxygenation cycles. A relatively scarce natural mineral of the chemi­ tion of divalent cations (e.g. Mn = Mg, Zn, Fe, Co, Ni, 111 cal composition ranged from [Mg6Al2(OH)i6][(C03) Cu) and trivalent cations (e.g. M = AI, Fe, Co, Mn, (H20)4] to [Mg4Al2(OH)12][(C03)(H20)3] occurs in Cr, V) into the brucite-like layers; replacing of anions 71 2 2 two polytype modifications, C03-hydrotalcite-3ič (hy­ (e.g.
    [Show full text]
  • Nickel Speciation, Microbial Community Structure, And
    University of Kentucky UKnowledge Theses and Dissertations--Plant and Soil Sciences Plant and Soil Sciences 2020 NICKEL SPECIATION, MICROBIAL COMMUNITY STRUCTURE, AND CHEMICAL ATTRIBUTES IN THE RHIZOSPHERE OF NICKEL HYPERACCUMULATING AND NON-ACCUMULATING PLANTS GROWING IN SERPENTINE SOILS James W. Morris University of Kentucky, [email protected] Digital Object Identifier: https://doi.org/10.13023/etd.2020.154 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Morris, James W., "NICKEL SPECIATION, MICROBIAL COMMUNITY STRUCTURE, AND CHEMICAL ATTRIBUTES IN THE RHIZOSPHERE OF NICKEL HYPERACCUMULATING AND NON-ACCUMULATING PLANTS GROWING IN SERPENTINE SOILS" (2020). Theses and Dissertations--Plant and Soil Sciences. 131. https://uknowledge.uky.edu/pss_etds/131 This Doctoral Dissertation is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Plant and Soil Sciences by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • Eprints.Qut.Edu.Au
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Queensland University of Technology ePrints Archive QUT Digital Repository: http://eprints.qut.edu.au/ This is the author version published as: This is the accepted version of this article. To be published as : This is the author version published as: Frost, Ray L. and Palmer, Sara J. and Grand, Laure-Marie (2010) Synthesis and thermal stability of hydrotalcites containing manganese. Journal of Thermal Analysis and Calorimetry, 100(3). pp. 981-985. Copyright 2010 Akadémiai Kiadó/Springer Science+Business Media B.V. 1 Synthesis and thermal stability of hydrotalcites containing manganese 2 3 Laure-Marie Grand, 1, 2 Sara J. Palmer 1 and Ray L. Frost 1 4 5 1 Inorganic Materials Research Program, School of Physical and Chemical Sciences, 6 Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001, 7 Australia. 8 9 2 ENSICAEN, 6 Boulevard Marechal Juin, 14050 CAEN Cedex 4, France 10 11 ABSTRACT 12 13 The hydrotalcite based upon manganese known as charmarite 14 Mn4Al2(OH)12CO3·3H2O has been synthesised with different Mn/Al ratios from 4:1 to 2:1. 15 Impurities of manganese oxide, rhodochrosite and bayerite at low concentrations were also 16 produced during the synthesis. The thermal stability of charmarite was investigated using 17 thermogravimetry. The manganese hydrotalcite decomposed in stages with mass loss steps at 18 211, 305 and 793°C. The product of the thermal decomposition was amorphous material 19 mixed with manganese oxide. A comparison is made with the thermal decomposition of the 20 Mg/Al hydrotalcite.
    [Show full text]