A Location Guide for Rock Hounds in the United States

Total Page:16

File Type:pdf, Size:1020Kb

A Location Guide for Rock Hounds in the United States A Location Guide for Rock Hounds in the United States Collected By: Robert C. Beste, PG 1996 Second Edition A Location Guide for Rock Hounds in the United States Published by Hobbit Press 2435 Union Road St. Louis, Missouri 63125 December, 1996 ii A Location Guide for Rock Hounds in the United States Table of Contents Page Preface..................................................................................................................v Mineral Locations by State Alabama ...............................................................................................................1 Alaska.................................................................................................................11 Arizona ...............................................................................................................19 Arkansas ............................................................................................................39 California ...........................................................................................................47 Colorado .............................................................................................................80 Connecticut ......................................................................................................116 Delaware ..........................................................................................................121 Florida ..............................................................................................................122 Georgia .............................................................................................................126 Hawaii ..............................................................................................................139 Idaho.................................................................................................................140 Illinois...............................................................................................................150 Indiana .............................................................................................................155 Iowa ..................................................................................................................160 Kansas..............................................................................................................165 Kentucky ..........................................................................................................171 Louisiana..........................................................................................................177 Maine................................................................................................................179 Maryland..........................................................................................................198 Massachusetts..................................................................................................205 Michigan...........................................................................................................209 Minnesota.........................................................................................................215 Mississippi .......................................................................................................219 Missouri............................................................................................................221 Montana ...........................................................................................................236 Nebraska ..........................................................................................................243 Nevada .............................................................................................................247 New Hampshire ...............................................................................................264 New Jersey.......................................................................................................270 New Mexico ......................................................................................................280 New York..........................................................................................................295 North Carolina.................................................................................................302 North Dakota ...................................................................................................333 iii A Location Guide for Rock Hounds in the United States Ohio ..................................................................................................................336 Oklahoma.........................................................................................................340 Oregon ..............................................................................................................343 Pennsylvania....................................................................................................352 Rhode Island ....................................................................................................366 South Carolina.................................................................................................368 South Dakota ...................................................................................................374 Tennessee.........................................................................................................380 Texas ................................................................................................................387 Utah..................................................................................................................400 Vermont............................................................................................................408 Virginia ............................................................................................................411 Washington ......................................................................................................429 West Virginia ...................................................................................................437 Wisconsin .........................................................................................................442 Wyoming ..........................................................................................................450 APPENDIX & GLOSSARY Appendix A - Instability of Selected Minerals................................................458 Appendix B - Quartz Family Gemstones ........................................................459 Appendix C - The Various Names & Forms of Agate.....................................467 Appendix D - The Various names & Forms of Opal.......................................473 Appendix E - Fluorescent Minerals ................................................................477 Appendix F - Classification of Mineral Deposits............................................490 Appendix G - Ideal Scheme of the Zonal Theory of Ore Deposits..................493 Appendix H - Igneous and Metamorphic Rock Types ....................................495 Appendix I - Buddington’s Theory for Magmatic Separation ........................497 Glossary............................................................................................................499 Bibliography.....................................................................................................510 iv A Location Guide for Rock Hounds in the United States Preface Each year I vacation in the field, collecting gem and mineral samples somewhere in the United States or Canada, and each year I spend hours looking through reference materials to plot out my trip (to include locations which interest me). Last year as I started this annual process, I decided to find a new and more complete reference to reduce my research time. To my dismay, there were some new references for individual states, but the most useful references were no longer in print and were rarely available to collectors at local libraries outside of USGS repositories. This prompted me to collect all my books and personal references, along with many trips to the reference library, and try to put together a useful tool for some of my friends. It should be said that my personal contribution, outside of editing, was only about 1% of this effort. Be sure to examine the Biography for excellent sources for further information. The format used was from Gems and Minerals of America, my favorite reference (even considering its age — this could almost be considered an updated version). This is by no means a complete end all reference and some of the references are more of historical value for new exploration than anything else, but there is enough information to be useful to most gem and mineral collectors. Generally, Minerals are capitalized while rocks have been left lower case. This is the 5th printing and each time updates have been added (and each time I tell myself that I will not do this again). It goes without saying that property owners should be asked for access and collecting rights, so remember you were told. If in doubt, a county map will tell you who the legal owner is. Good Hunting. I would like to thank many people for the career opportunities and encouragement needed to complete this listing. Mitch Albert, Andy Bettman, Eric Kurtz, Vince Kurtz, Erwin Mantei, Art Rueff and others for their help through the years. Special thanks
Recommended publications
  • Crystalline Silica, Cristobalite (CAS No
    Crystalline Silica, Quartz (CAS No. 14808-60-7) Crystalline Silica, Cristobalite (CAS No. 14464-46-1) Crystalline Silica, Tridymite (CAS No. 15468-32-3) Diatomaceous earth (CAS No. 61790-53-2) This dossier on crystalline silica, quartz, cristobalite and tridymite and diatomaceous earth presents the most critical studies pertinent to the risk assessment of these substances in their use in drilling muds and cement additives. This dossier does not represent an exhaustive or critical review of all available data. The majority of information presented in this dossier was obtained from the ECHA database that provides information on chemicals that have been registered under the EU REACH (ECHA). Where possible, study quality was evaluated using the Klimisch scoring system (Klimisch et al., 1997). For the purpose of this dossier, crystalline silica, quartz (CAS No. 14808-60-7) has been reviewed as representative of crystalline silica cristobalite and tridymite. Crystalline silica, quartz is also considered representative of diatomaceous earth, as they both consist mainly of silicon dioxide. Screening Assessment Conclusion – Crystalline silica, quartz, cristobalite and tridymite and diatomaceous earth are classified as tier 1 chemicals and require a hazard assessment only. 1 BACKGROUND Crystalline silica is a common mineral found in the earth's crust. Materials like sand, stone, concrete and mortar contain crystalline silica. It is also used to make products such as glass, pottery, ceramics, bricks and artificial stone. Silica, in the form of sand, is used as the main ingredient in sand casting for the manufacture of metallic components in engineering and other applications. The high melting point of silica enables it to be used in such applications.
    [Show full text]
  • Rhodochrosite Gems Unstable Colouration of Padparadscha-Like
    Volume 36 / No. 4 / 2018 Effect of Blue Fluorescence on the Colour Appearance of Diamonds Rhodochrosite Gems The Hope Diamond Unstable Colouration of in London Padparadscha-like Sapphires Volume 36 / No. 4 / 2018 Cover photo: Rhodochrosite is prized as both mineral specimens and faceted stones, which are represented here by ‘The Snail’ (5.5 × 8.6 cm, COLUMNS from N’Chwaning, South Africa) and a 40.14 ct square-cut gemstone from the Sweet Home mine, Colorado, USA. For more on rhodochrosite, see What’s New 275 the article on pp. 332–345 of this issue. Specimens courtesy of Bill Larson J-Smart | SciAps Handheld (Pala International/The Collector, Fallbrook, California, USA); photo by LIBS Unit | SYNTHdetect XL | Ben DeCamp. Bursztynisko, The Amber Magazine | CIBJO 2018 Special Reports | De Beers Diamond ARTICLES Insight Report 2018 | Diamonds — Source to Use 2018 The Effect of Blue Fluorescence on the Colour 298 Proceedings | Gem Testing Appearance of Round-Brilliant-Cut Diamonds Laboratory (Jaipur, India) By Marleen Bouman, Ans Anthonis, John Chapman, Newsletter | IMA List of Gem Stefan Smans and Katrien De Corte Materials Updated | Journal of Jewellery Research | ‘The Curse Out of the Blue: The Hope Diamond in London 316 of the Hope Diamond’ Podcast | By Jack M. Ogden New Diamond Museum in Antwerp Rhodochrosite Gems: Properties and Provenance 332 278 By J. C. (Hanco) Zwaan, Regina Mertz-Kraus, Nathan D. Renfro, Shane F. McClure and Brendan M. Laurs Unstable Colouration of Padparadscha-like Sapphires 346 By Michael S. Krzemnicki, Alexander Klumb and Judith Braun 323 333 © DIVA, Antwerp Home of Diamonds Gem Notes 280 W.
    [Show full text]
  • Tiger's Eye Is Not a Pseudomorph Glenn Morita in the Early 1800’S, Mineralogists Recognized That Tiger’S Eye Was a Fibrous Variey of Quartz
    Minutes of the 05/20/03 Westside Board Meeting VP Stu Earnst opened the meeting at 7:31pm. Treasurer’s report read by Kathy Earnst. Minutes approved as published in the newsletter. Old business: Lease on Walker valley discussed. The expiration notice was sent but we are not sure who it went to. We do not see any obstacle to renewal as communication between the council and DNR are open and ongoing. Special thanks, to DNR representative, Laurie Bergvall and DNR staff for their time and effort in hearing our concerns and working towards mutually beneficial solutions on the Walker Valley issues. Sign production is on hold until the sign committee decides where and what the signs will say. We have decided that they will not be on the gate but separate from it. There will be a gate going up at Walker Valley but we will have access to that lock and it will probably be a combo type of thing that we can easily give to other rockhound clubs going there. Talked about the possibility of posing the combo on website but that will depend on the type of gate they put up and what ends up being possible with the mechanics of that gate. New business: Thank you from Bob Pattie and Ed Lehman to Bruce Himko and AAA Printing for donation of the paper. Thank you to Danny Vandenberg for providing sample Walker Valley Material to DNR to show the value of the material we are trying to preserve and enjoy. Bob Pattie is pursuing with the retrieval of our state seized funds through the unclaimed property process.
    [Show full text]
  • The Anjahamiary Pegmatite, Fort Dauphin Area, Madagascar
    The Anjahamiary pegmatite, Fort Dauphin area, Madagascar Federico Pezzotta* & Marc Jobin** * Museo Civico di Storia Naturale, Corso Venezia 55, I-20121 Milano, Italy. ** SOMEMA, BP 6018, Antananarivo 101, Madagascar. E-mail:<[email protected]> 21 February, 2003 INTRODUCTION Madagascar is among the most important areas in the world for the production, mainly in the past, of tourmaline (elbaite and liddicoatite) gemstones and mineral specimens. A large literature database documents the presence of a number of pegmatites rich in elbaite and liddicoatite. The pegmatites are mainly concentrated in central Madagascar, in a region including, from north to south, the areas of Tsiroanomandidy, Itasy, Antsirabe-Betafo, Ambositra, Ambatofinandrahana, Mandosonoro, Ikalamavony, Fenoarivo and Fianarantsoa (e.g. Pezzotta, 2001). In general, outside this large area, elbaite-liddicoatite-bearing pegmatites are rare and only minor discoveries have been made in the past. Nevertheless, some recent work made by the Malagasy company SOMEMEA, discovered a great potential for elbaite-liddicoatite gemstones and mineral specimens in a large, unusual pegmatite (the Anjahamiary pegmatite), hosted in high- metamorphic terrains. The Anjahamiary pegmatite lies in the Fort Dauphin (Tôlanaro) area, close to the southern coast of Madagascar. This paper reports a general description of this locality, and some preliminary results of the analytical studies of the accessory minerals collected at the mine. Among the most important analytical results is the presence of gemmy blue liddicoatite crystals with a very high Ca content, indicating the presence in this tourmaline crystal of composition near the liddicoatite end-member. LOCATION AND ACCESS The Anjahamiary pegmatite is located about 70 km NW of the town of Fort Dauphin (Tôlanaro) (Fig.
    [Show full text]
  • March 2019 Agate Explorer.Pub
    Cuyuna Rock, Gem and Mineral Society The Agate Explorer March 2019 Summer Field Trip Plans are being made for a long weekend trip to Thunder Bay to collect amethyst. The tentative dates are Friday -Sunday, July 5 -7. A sign -up sheet will be available at upcoming meeting in order to plan this trip. It is necessary to have a passport to travel to Canada. You may also check to see if an enhanced driver’s license is acceptable. March meeting Open Shop from 9 a.m. —noon Franklin Art Center Club member, Ray Strassberg, will be available for members to learn how Club Information to cut rocks using the 10” or 16” inch saws. Website -www.cuyunarockclub.org - Email [email protected] Bring rocks of your own or purchase something in the Rock Room. Meeting Place Lower level Franklin Arts Center Kids’ Program 1001 Kingwood St, Brainerd, MN 56401 Did you know that there are many Directions .4 mile east of Business Hwy. 371 different kinds of Lake Superior & Hwy. 210 intersection. agates? Lisa will tell you all about it (Castle turret water tower.) at the March meeting! Date/Time the 2nd Saturday of each month Rock Wrappers at 2 p.m. unless otherwise noted. Meets starting at 10 a.m. on meeting Saturdays. Club Dues $20/ family ,An open gathering for wire wrappers. Hang out with other wrappers, Free /unaccompanied juniors and work on your projects. (Bring all supplies needed.) Membership runs Learn tricks to make wrapping easier, a new design, from Jan. 1-Dec. 31st. or perhaps a new place to find supplies.
    [Show full text]
  • Ajoite: New Data
    American Mineralogist, Volume 66, pages 201-203, 1981 Ajoite: new data GEORGE Y. CHAO Department of Geology, Carleton University Ottawa, Ontario Kl S 5B6, Canada Abstract New data show that ajoite is triclinic, PI or pI, a ==13.637, b ==14.507, c ==13.620A, a == 107.16, f3 = 105.45, y = 110.57°; Z ==3. The mineral is biaxial positive, 2V ==80°, a ==1.550, f3 = 1.583, y = 1.641 (in Na light); pleochroic: X = very light bluish green, Y -- Z ==brilliant bluish green. {010} cleavage is perfect. The orientation of the principal vibration directions is defined by the spherical coordinates X(26.5°, 80°), Y(118°, 79°), Z(-104.5°, 15°). The ex- tinction angle c: Z' on (0 I0) is 150. Electron microprobe and chemical analyses gave Si02 41.2, Al203 3.81, CuO 42.2, MnO 0.02, FeO 0.11, CaO 0.04, Na20 0.84, K20 2.50, H20 (TGA to 1000°C) 8.35, sum 99.07 wt.%. The analysis corresponds to (Ko.70NaO.36Cao.Ol)(CUt,.97 Feo.o2)Alo.98Si9.oo024(OH)6'3.09H20 or ideally, (K,Na)Cu7AISi9024(OH)6' 3H20. TGA showed a two-stage dehydration; 50% of the total water was released between 70° and 425°C and the rest between 4250 and 800°C. Half of the water is zeolitic in nature. Introduction are always present. The termination on c may be ei- Ajoite, first described by Schaller and Vlisidis ther {001} or {203} or both. (1958) from Ajo, Pima County, Arizona, was thought to be monoclinic on the basis of optical studies.
    [Show full text]
  • Minnesota's Mineral Resources
    CHAPTER • 9 Minnesota's Mineral Resources IN MINNESOTA the production of iron ore is far more valuable economically than the total of all other mineral products, but im­ portant industries are based on Minnesota's other geological forma­ tions as well. Architectural, monumental, and structural stone are produced from granite, limestone, dolomite, and other Minnesota rocks. Gravel and sand are excavated and processed, and clay is used for many ceramic products. :Manganese in important amounts occurs in the iron ores of the Cuyuna district. Finally, although they are often not thought of as mineral products, two of our most im­ portant mineral resources are water and soil. The iron ores and mining operations of the Mesabi, Vermilion, and Cuyuna iron-bearing districts and of the southeastern lYlinnesota counties will be discussed in detail in later chapters, but a few sta­ tistics on Minnesota's iron ore industry may remind us how impor­ tant this geological heritage is. The following is an estimate of Min­ nesota's iron ore reserves, made on lYlay 1, 1961: Gross Tons Mesabi Range 500,799,179 Vermilion Range 9,755,974 Cuyuna Range 36,530,000 Fillmore County 'il,860,337 Total iron ore 549,945,490 172 MI NESOTA'S MINERAL RESOURCES The total production of iron ore in Minne ota to January 1, 1962, was 2,529,737,553 tons. Total taxes paid on iron ore to January 1, 1961 , were approximately $1,257,448,400, a very important source of funds for the state government. Slightly over 60 per cent of the total iron ore produced in the United States has come from l\1inne- ota.
    [Show full text]
  • Key to Rocks & Minerals Collections
    STATE OF MICHIGAN MINERALS DEPARTMENT OF NATURAL RESOURCES GEOLOGICAL SURVEY DIVISION A mineral is a rock substance occurring in nature that has a definite chemical composition, crystal form, and KEY TO ROCKS & MINERALS COLLECTIONS other distinct physical properties. A few of the minerals, such as gold and silver, occur as "free" elements, but by most minerals are chemical combinations of two or Harry O. Sorensen several elements just as plants and animals are Reprinted 1968 chemical combinations. Nearly all of the 90 or more Lansing, Michigan known elements are found in the earth's crust, but only 8 are present in proportions greater than one percent. In order of abundance the 8 most important elements Contents are: INTRODUCTION............................................................... 1 Percent composition Element Symbol MINERALS........................................................................ 1 of the earth’s crust ROCKS ............................................................................. 1 Oxygen O 46.46 IGNEOUS ROCKS ........................................................ 2 Silicon Si 27.61 SEDIMENTARY ROCKS............................................... 2 Aluminum Al 8.07 METAMORPHIC ROCKS.............................................. 2 Iron Fe 5.06 IDENTIFICATION ............................................................. 2 Calcium Ca 3.64 COLOR AND STREAK.................................................. 2 Sodium Na 2.75 LUSTER......................................................................... 2 Potassium
    [Show full text]
  • Contributions to the Mineralogy of Norway
    NORSK GEOLOGISK TIDSSKRIFT CONTRIBUTIONS TO THE MINERALOGY OF NORWAY No. 5. Trace element variations in three generations of felds­ pars from the Landsverk I pegmatite, Evje, southern Norway. BY S. R. TAYLOR l, K. S. HEIER 2 and T. L. SvERDRUP3 A bstract: Li, Na, K, Rb, Cs, Pb, Tl, Ca, Sr and Ba have been determined in potassium feldspars and coexisting albites of three different generations from one large pegmatite (Landsverk I, Evje, southern Norway). In additio n Fe, Cr, Mn, Cu, Co, Ni, V, Sn and F were determined in a pink microcline and a green amazonite which were seen to grade into each other. Same element concentrations and ratios reflect the different conditions of formation of the feldspars fro m the three generations. The data indicate that the amazonite formed through metasomatic action of a "pegmatitic rest liquid" (fro m which cleavelandite crystallised) on the pink microcline of the first gene­ ration. The trace element data also indicate that the youngest K- feldspar is no t a late fractio nation product of the pegmatite, but rather a late seco ndary mineralisati on. The cause of the colouring of the amazonite is discussed and it is concluded that it is not to be found in a signi fi cant difference in compositio n fro m the pink mi crocline for any of the elements determined. lntroduction. Two of the authors (K. S. H. and S. R. T.) have made previously an extensive study of the distribution of trace elements in K-feld­ spars from a variety of pre-Cambrian basement rocks from southern Norway (TAYLOR and HEIER; 1958 a, b, 1960; HEIER and TAYLOR, l Dept.
    [Show full text]
  • Wickenburgite Pb3caal2si10o27² 3H2O
    Wickenburgite Pb3CaAl2Si10O27 ² 3H2O c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Hexagonal. Point Group: 6=m 2=m 2=m: Tabular holohedral crystals, dominated by 0001 and 1011 , to 1.5 mm. As spongy aggregates of small, highly perfect f g f g individuals; as subparallel aggregates or rosettes; granular. Physical Properties: Cleavage: 0001 , indistinct. Tenacity: Brittle but tough. Hardness = 5 D(meas.) = 3.85 D(cfalc.) g= 3.88 Fluoresces dull orange under SW UV. Optical Properties: Transparent to translucent. Color: Colorless to white; rarely salmon-pink. Luster: Vitreous. Optical Class: Uniaxial ({). Dispersion: r < v; moderate. ! = 1.692 ² = 1.648 Cell Data: Space Group: P 63=mmc: a = 8.53 c = 20.16 Z = 2 X-ray Powder Pattern: Near Wickenburg, Arizona, USA. 10.1 (100), 3.26 (80), 3.93 (60), 3.36 (40), 2.639 (40), 5.96 (30), 5.04 (30) Chemistry: (1) (2) SiO2 42.1 40.53 Al2O3 7.6 6.88 PbO 44.0 45.17 CaO 3.80 3.78 H2O 3.77 3.64 Total 101.27 100.00 (1) Near Wickenburg, Arizona, USA. (2) Pb3CaAl2Si10O24(OH)6: [needsnew??formula] Occurrence: In oxidized hydrothermal veins, carrying galena and sphalerite, in quartz and °uorite gangue (near Wickenburg, Arizona, USA). Association: Phoenicochroite, mimetite, cerussite, willemite, crocoite, duftite, hemihedrite, alamosite, melanotekite, luddenite, ajoite, shattuckite, vauquelinite, descloizite, laumontite. Distribution: In the USA, in Arizona, at several localities south of Wickenburg, Maricopa Co., including the Potter-Cramer property, Belmont Mountains, and the Moon Anchor mine; on dumps at a Pb-Ag-Cu prospect in the Artillery Peaks area, Mohave Co.; and in the Dives (Padre Kino) mine, Silver district, La Paz Co.
    [Show full text]
  • AMETHYSTINE CHALCEDONY by James E
    NOTES ANDa NEW TECHNIQUES AMETHYSTINE CHALCEDONY By James E. Shigley and John I. Koivula A new amethystine chalcedony has been discovered in that this is one of the few reported occurrences Arizona. The material, marketed under the trade name where an amethyst-like, or amethystine, chalced- "Damsonite," is excellent for both jewelry and carv- ony has been found in quantities of gemological ings. The authors describe thegemological properties of importance (see Frondel, 1962). Popular gem this new type of chalcedony, and report the effects of hunters' guides, such as MacFall (1975) and heat treatment on it. Although this purple material is Anthony et al. (19821, describe minor occurrences apparently b.new color type of chalcedony, it has the same gemological properties as the other better-known in Arizona of banded purple agate, but give no types. It corresponds to a microcrystalline form of ame- indication of deposits of massive purple chalced- thyst which, when heat treated at approximately ony similar to that described here. This article 500°C becomes yellowish orange, as does some briefly summarizes the occurrence, gemological single-crystal amethyst. properties, and reaction to heat treatment of this material. LOCALITY AND OCCURRENCE The purple chalcedony described here has been Chalcedony is a microcrystalline form of quartz found at a single undisclosed locality in central that occurs in a wide variety of patterns and colors. Arizona. It was first noted as detrital fragments in Numerous types of chalcedony, such as chryso- the bed of a dry wash that cuts through a series of prase, onyx, carnelian, agate, and others, have been sedimentary rocks.
    [Show full text]
  • Origin of Fibrosity and Banding in Agates from Flood Basalts: American Journal of Science, V
    Agates: a literature review and Electron Backscatter Diffraction study of Lake Superior agates Timothy J. Beaster Senior Integrative Exercise March 9, 2005 Submitted in partial fulfillment of the requirements for a Bachelor of Arts degree from Carleton College, Northfield, Minnesota. 2 Table of Contents AGATES: A LITERATURE REVEW………………………………………...……..3 Introduction………………....………………………………………………….4 Structural and compositional description of agates………………..………..6 Some problems concerning agate genesis………………………..…………..11 Silica Sources…………………………………………..………………11 Method of Deposition………………………………………………….13 Temperature of Formation…………………………………………….16 Age of Agates…………………………………………………………..17 LAKE SUPERIOR AGATES: AN ELECTRON BACKSCATTER DIFFRACTION (EBSD) ANALYSIS …………………………………………………………………..19 Abstract………………………………………………………………………...19 Introduction……………………………………………………………………19 Geologic setting………………………………………………………………...20 Methods……………………………………………………...…………………20 Results………………………………………………………….………………22 Discussion………………………………………………………………………26 Conclusions………………………………………………….…………………26 Acknowledgments……………………………………………………..………………28 References………………………………………………………………..……………28 3 Agates: a literature review and Electron Backscatter Diffraction study of Lake Superior agates Timothy J. Beaster Carleton College Senior Integrative Exercise March 9, 2005 Advisor: Cam Davidson 4 AGATES: A LITERATURE REVEW Introduction Agates, valued as semiprecious gemstones for their colorful, intricate banding, (Fig.1) are microcrystalline quartz nodules found in veins and cavities
    [Show full text]