Parent of Origin Genetic Effects on Methylation in Humans Are Common

Total Page:16

File Type:pdf, Size:1020Kb

Parent of Origin Genetic Effects on Methylation in Humans Are Common Edinburgh Research Explorer Parent of origin genetic effects on methylation in humans are common and influence complex trait variation Citation for published version: Zeng, Y, Amador, C, Xia, C, Marioni, R, Sproul, D, Walker, RM, Morris, SW, Bretherick, A, Canela-Xandri, O, Boutin, TS, Clark, DW, Campbell, A, Rawlik, K, Hayward, C, Nagy, R, Tenesa, A, Porteous, DJ, Wilson, JF, Deary, IJ, Evans, KL, McIntosh, AM, Navarro, P & Haley, CS 2019, 'Parent of origin genetic effects on methylation in humans are common and influence complex trait variation', Nature Communications, vol. 10, 1383. https://doi.org/10.1038/s41467-019-09301-y Digital Object Identifier (DOI): 10.1038/s41467-019-09301-y Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Nature Communications General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 26. Sep. 2021 ARTICLE https://doi.org/10.1038/s41467-019-09301-y OPEN Parent of origin genetic effects on methylation in humans are common and influence complex trait variation Yanni Zeng1, Carmen Amador 1, Charley Xia1,2, Riccardo Marioni3,4, Duncan Sproul 1,5, Rosie M. Walker3,4, Stewart W. Morris4, Andrew Bretherick1, Oriol Canela-Xandri1,2, Thibaud S. Boutin 1, David W. Clark6, Archie Campbell 4, Konrad Rawlik 2, Caroline Hayward 1, Reka Nagy1, Albert Tenesa 1,2, David J. Porteous 3,4, James F. Wilson 1,6, Ian J. Deary3,7, Kathryn L. Evans3,4, Andrew M. McIntosh 3,8, Pau Navarro 1 & Chris S. Haley 1,2 1234567890():,; Parent-of-origin effects (POE) exist when there is differential expression of alleles inherited from the two parents. A genome-wide scan for POE on DNA methylation at 639,238 CpGs in 5,101 individuals identifies 733 independent methylation CpGs potentially influenced by POE at a false discovery rate ≤ 0.05 of which 331 had not previously been identified. Cis and trans methylation quantitative trait loci (mQTL) regulate methylation variation through POE at 54% (399/733) of the identified POE-influenced CpGs. The combined results provide strong evidence for previously unidentified POE-influenced CpGs at 171 independent loci. Methy- lation variation at 14 of the POE-influenced CpGs is associated with multiple metabolic traits. A phenome-wide association analysis using the POE mQTL SNPs identifies a previously unidentified imprinted locus associated with waist circumference. These results provide a high resolution population-level map for POE on DNA methylation sites, their local and distant regulators and potential consequences for complex traits. 1 MRC Human Genetic Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK. 2 The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh EH25 9RG, UK. 3 Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9JZ, UK. 4 Centre for Genomic and Experimental Medicine, IGMM, University of Edinburgh, Edinburgh EH4 2XU, UK. 5 Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK. 6 Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh EH8 9AG, UK. 7 Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK. 8 Division of Psychiatry, University of Edinburgh, Edinburgh EH10 5HF, UK. Correspondence and requests for materials should be addressed to C.S.H. (email: [email protected]) NATURE COMMUNICATIONS | (2019) 10:1383 | https://doi.org/10.1038/s41467-019-09301-y | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09301-y NA methylation plays a crucial role in regulating gene SNPs which play a regulatory role in DNA methylation through expression and maintaining genomic stability1. Inter- POEs also have significant associations in GWAS performed D 13 individual variation of DNA methylation levels at CpG using an additive model . Combining these with previous sites (henceforth methylation CpGs) has been associated with observations that disease-associated loci are enriched in reg- complex diseases, quantitative traits, environmental exposures ulatory regions23, analyses that link POE regulation to DNA and the aging process2–6. Previous studies have estimated that on methylation and POE regulation to complex traits potentially average across sites, 19% of variation in DNA methylation level is provide important insights for the understanding of both non- contributed by the additive genetic effects7. A number of genetic additive genetic and epigenetic control mechanisms for complex variants have been shown to regulate methylation CpGs (such traits and diseases. variants being termed methylation quantitative trait loci (mQTL)) We propose here a variance component method to detect in an additive manner, acting locally (cis) or distantly (trans)8,9. signatures of POEs caused by imprinting in the human DNA In contrast, shared family environment has been shown to have a methylome, by identifying methylation CpGs showing an unu- relatively smaller overall contribution (3% on average across sites) sually increased full-sibling and/or one-parent–offspring simi- to variation in DNA methylation7,10. larity. Using this method, we perform a genome-wide scan for DNA methylation can also be affected by parent-of-origin POE on each of 639,238 methylation CpGs in a homogenous effects (POEs), which are non-additive genetic effects that man- Scottish sample (N = 5101) with complex pedigree structure24,in ifest as phenotypic differences depending on the allelic parent-of- which both previously unknown and known POE-influenced origin11. There are several possible causes of observed POEs, CpG sites are identified. We then perform a POE–mQTL analysis but the most common is genomic imprinting11. These POEs to identify local and distant regulatory genetic variants of caused by imprinting can lead to different phenotypic patterns, methylation at the POE-influenced CpG sites identified in the including classical paternal or maternal imprinting, and other variance component analyses. This is followed by an analysis to complex forms (Supplementary Fig. 1)11. (We use the standard identify complex traits associated with the detected POE- definition of maternal imprinting, where the maternal allele is influenced methylation CpGs. We also use identified silenced and the paternal expressed and vice versa for paternal POE–mQTL SNPs to guide a phenome-wide association analysis, imprinting.) Although previous studies estimated the number of through which we identify one locus affecting waist cir- imprinted expressed genes in the human genome at around cumference through a previously unidentified POE, demonstrat- 10012, POEs caused by imprinting can spread to wider genomic ing that the use of methylation data and the proposed set of regions through regulatory variants located in imprinted regions analyses contribute to increase our understanding of the non- transmitting the POEs to their genomic targets (Supplemen- additive genetic control of complex traits. tary Fig. 1)13,14. POEs caused by imprinting have been detected at the DNA methylation, gene expression and phenotypic – Results levels13 15. The precise regulation of expression of genes influ- Overview of the study design. Table 1 shows a summary of the enced by imprinting is crucial for embryonic development, fi metabolism and behavioural traits, and the effect can last into study design. An established ve-component variance component 16–18 analysis accounting for genetic and environmental variation was later life . Given the regulatory role of DNA methylation on fi gene expression, the identification of POEs on DNA methylation rst used to partition DNA methylation variation for each mea- is of particular importance to facilitate understanding of the sured CpG. Following this, a two-stage pipeline was applied to identify potential POE-influenced methylation CpGs among all molecular mechanism of the POEs observed at the gene expres- fi sion or phenotypic level16. measured CpGs. The rst stage applied a POE variance compo- fi nent method that targeted the localisation of POE-influenced Recent progress has been made towards pro ling genome-wide – imprinted regions and POE caused by imprinting in DNA methylation CpGs. The second stage applied a POE mQTL methylation13,19–21. Imprinted regions can be identified by (parent-of-origin effect mQTL) analysis that accounted for POE fi to localise the SNPs that introduce the POE on the identified CpG bisul te sequencing detecting CpGs that display imbalanced or fi bimodal methylation between paired chromosomes, which could candidates from the rst stage. This was followed by two addi- 19,21 tional analyses to profile the phenotypic consequence of the POE- be caused by imprinting . POEs in
Recommended publications
  • Analysis of Gene Expression Data for Gene Ontology
    ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Robert Daniel Macholan May 2011 ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION Robert Daniel Macholan Thesis Approved: Accepted: _______________________________ _______________________________ Advisor Department Chair Dr. Zhong-Hui Duan Dr. Chien-Chung Chan _______________________________ _______________________________ Committee Member Dean of the College Dr. Chien-Chung Chan Dr. Chand K. Midha _______________________________ _______________________________ Committee Member Dean of the Graduate School Dr. Yingcai Xiao Dr. George R. Newkome _______________________________ Date ii ABSTRACT A tremendous increase in genomic data has encouraged biologists to turn to bioinformatics in order to assist in its interpretation and processing. One of the present challenges that need to be overcome in order to understand this data more completely is the development of a reliable method to accurately predict the function of a protein from its genomic information. This study focuses on developing an effective algorithm for protein function prediction. The algorithm is based on proteins that have similar expression patterns. The similarity of the expression data is determined using a novel measure, the slope matrix. The slope matrix introduces a normalized method for the comparison of expression levels throughout a proteome. The algorithm is tested using real microarray gene expression data. Their functions are characterized using gene ontology annotations. The results of the case study indicate the protein function prediction algorithm developed is comparable to the prediction algorithms that are based on the annotations of homologous proteins.
    [Show full text]
  • Anti-VPS25 Monoclonal Antibody, Clone T3 (DCABH-13967) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
    Anti-VPS25 monoclonal antibody, clone T3 (DCABH-13967) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Antigen Description VPS25, VPS36 (MIM 610903), and SNF8 (MIM 610904) form ESCRT-II (endosomal sorting complex required for transport II), a complex involved in endocytosis of ubiquitinated membrane proteins. VPS25, VPS36, and SNF8 are also associated in a multiprotein complex with RNA polymerase II elongation factor (ELL; MIM 600284) (Slagsvold et al., 2005 [PubMed 15755741]; Kamura et al., 2001 [PubMed 11278625]). Immunogen VPS25 (AAH06282.1, 1 a.a. ~ 176 a.a) full-length recombinant protein with GST tag. MW of the GST tag alone is 26 KDa. Isotype IgG1 Source/Host Mouse Species Reactivity Human Clone T3 Conjugate Unconjugated Applications Western Blot (Cell lysate); Western Blot (Recombinant protein); ELISA Sequence Similarities MAMSFEWPWQYRFPPFFTLQPNVDTRQKQLAAWCSLVLSFCRLHKQSSMTVMEAQESPLFNN VKLQRKLPVESIQIVLEELRKKGNLEWLDKSKSSFLIMWRRPEEWGKLIYQWVSRSGQNNSVFT LYELTNGEDTEDEEFHGLDEATLLRALQALQQEHKAEIITVSDGRGVKFF Size 1 ea Buffer In ascites fluid Preservative None Storage Store at -20°C or lower. Aliquot to avoid repeated freezing and thawing. GENE INFORMATION Gene Name VPS25 vacuolar protein sorting 25 homolog (S. cerevisiae) [ Homo sapiens ] 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 1 © Creative Diagnostics All Rights Reserved Official Symbol VPS25 Synonyms VPS25; vacuolar protein sorting 25 homolog (S. cerevisiae);
    [Show full text]
  • Endosome-Associated Complex, ESCRT-II, Recruits Transport Machinery for Protein Sorting at the Multivesicular Body
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Developmental Cell, Vol. 3, 283–289, August, 2002, Copyright 2002 by Cell Press Endosome-Associated Complex, ESCRT-II, Recruits Transport Machinery for Protein Sorting at the Multivesicular Body Markus Babst,2,4 David J. Katzmann,4 plays a critical role in the sorting of multiple cargo pro- William B. Snyder,2 Beverly Wendland,3 teins within the endosomal membrane system. and Scott D. Emr1 In a recent study, it has been demonstrated that sort- Department of Cellular and Molecular Medicine and ing of the yeast hydrolase carboxypeptidase S (CPS) Howard Hughes Medical Institute into the MVB pathway requires monoubiquitination of School of Medicine the short cytoplasmic tail of the protein (Katzmann et University of California, San Diego al., 2001). Mutations in CPS that block this ubiquitin La Jolla, California 92093 modification result in mislocalization of the protein to the limiting membrane of the vacuole. Furthermore, a protein complex called ESCRT-I (endosomal sorting complex required for transport) binds to ubiquitinated Summary CPS and thereby directs sorting of the hydrolase into the MVB pathway (Katzmann et al., 2001). ESCRT-I is Sorting of ubiquitinated endosomal membrane pro- composed of three different protein subunits (Vps23, teins into the MVB pathway is executed by the class Vps28, and Vps37) which belong to the class E vacuolar E Vps protein complexes ESCRT-I, -II, and -III, and protein sorting (Vps) proteins, a group of 15 proteins the AAA-type ATPase Vps4. This study characterizes required for proper endosomal function, including the ف ESCRT-II, a soluble 155 kDa protein complex formed formation of MVBs (Odorizzi et al., 1998).
    [Show full text]
  • Identification of Novel Dna Damage Response Genes Using Functional Genomics
    IDENTIFICATION OF NOVEL DNA DAMAGE RESPONSE GENES USING FUNCTIONAL GENOMICS by Michael Chang A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Biochemistry University of Toronto © Copyright by Michael Chang (2005) Identification of novel DNA damage response genes using functional genomics Doctor of Philosophy, 2005; Michael Chang; Department of Biochemistry, University of Toronto ABSTRACT The genetic information required for life is stored within molecules of DNA. This DNA is under constant attack as a result of normal cellular metabolic processes, as well as exposure to genotoxic agents. DNA damage left unrepaired can result in mutations that alter the genetic information encoded within DNA. Cells have consequently evolved complex pathways to combat damage to their DNA. Defects in the cellular response to DNA damage can result in genomic instability, a hallmark of cancer cells. Identifying all the components required for this response remains an important step in fully elucidating the molecular mechanisms involved. I used functional genomic approaches to identify genes required for the DNA damage response in Saccharomyces cerevisiae. I conducted a screen to identify genes required for resistance to a DNA damaging agent, methyl methanesulfonate, and identified several poorly characterized genes that are necessary for proper S phase progression in the presence of DNA damage. Among the genes identified, ESC4/RTT107 has since been shown to be essential for the resumption of DNA replication after DNA damage. Using genome-wide genetic interaction screens to identify genes that are required for viability in the absence of MUS81 and MMS4, two genes required for resistance to DNA damage, I helped identify ELG1, deletion of which causes DNA replication defects, genomic instability, and an inability to properly recover from DNA damage during S phase.
    [Show full text]
  • VPS25 Goat Polyclonal Antibody – TA303080 | Origene
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TA303080 VPS25 Goat Polyclonal Antibody Product data: Product Type: Primary Antibodies Applications: IHC, WB Recommended Dilution: ELISA: 1:1,000. WB: 0.5-1.5 µg/ml. IHC: 10µg/ml. Reactivity: Human (Expected from sequence similarity: Mouse, Rat, Dog) Host: Goat Isotype: IgG Clonality: Polyclonal Immunogen: Peptide with sequence C-QPNVDTRQKQ, from the internal region of the protein sequence according to NP_115729.1. Formulation: Supplied at 0.5 mg/ml in Tris saline, 0.02% sodium azide, pH7.3 with 0.5% bovine serum albumin. Concentration: lot specific Purification: Purified from goat serum by ammonium sulphate precipitation followed by antigen affinity chromatography using the immunizing peptide. Supplied at 0.5 mg/ml in Tris saline, 0.02% sodium azide, pH7.3 with 0.5% bovine serum albumin. Aliquot and store at -20°C. Minimize freezing and thawing. Conjugation: Unconjugated Storage: Store at -20°C as received. Stability: Stable for 12 months from date of receipt. Gene Name: vacuolar protein sorting 25 homolog Database Link: NP_115729 Entrez Gene 28084 MouseEntrez Gene 681059 RatEntrez Gene 612774 DogEntrez Gene 84313 Human Q9BRG1 This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 VPS25 Goat Polyclonal Antibody – TA303080 Background: VPS25, VPS36 (MIM 610903), and SNF8 (MIM 610904) form ESCRT-II (endosomal sorting complex required for transport II), a complex involved in endocytosis of ubiquitinated membrane proteins.
    [Show full text]
  • Variation in Protein Coding Genes Identifies Information Flow
    bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 1 1 2 3 4 5 Variation in protein coding genes identifies information flow as a contributor to 6 animal complexity 7 8 Jack Dean, Daniela Lopes Cardoso and Colin Sharpe* 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Institute of Biological and Biomedical Sciences 25 School of Biological Science 26 University of Portsmouth, 27 Portsmouth, UK 28 PO16 7YH 29 30 * Author for correspondence 31 [email protected] 32 33 Orcid numbers: 34 DLC: 0000-0003-2683-1745 35 CS: 0000-0002-5022-0840 36 37 38 39 40 41 42 43 44 45 46 47 48 49 Abstract bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 2 1 Across the metazoans there is a trend towards greater organismal complexity. How 2 complexity is generated, however, is uncertain. Since C.elegans and humans have 3 approximately the same number of genes, the explanation will depend on how genes are 4 used, rather than their absolute number.
    [Show full text]
  • Downloaded from NCBI on December 361 5Th, 2020
    bioRxiv preprint doi: https://doi.org/10.1101/2021.08.17.456605; this version posted August 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Characterisation of the Ubiquitin-ESCRT pathway in Asgard archaea sheds new light on 2 origins of membrane trafficking in eukaryotes 3 4 5 6 Tomoyuki Hatano1, Saravanan Palani1*, Dimitra Papatziamou2*, Diorge P. Souza3*, Ralf Salzer3*, 7 Daniel Tamarit4, 5* Mehul Makwana2, Antonia Potter2, Alexandra Haig2, Wenjue Xu2, David Townsend6, 8 David Rochester6, Dom Bellini3, Hamdi M. A. Hussain1, Thijs Ettema4, Jan Löwe3, Buzz Baum3§, 9 Nicholas P. Robinson2§, Mohan Balasubramanian1§ 10 11 12 13 1 Centre for Mechanochemical Cell Biology, Division of Biomedical Sciences, Warwick Medical School, 14 University of Warwick, Coventry CV4 7AL, United Kingdom 15 2 Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, 16 Lancaster LA1 4YG, United Kingdom 17 3 MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom 18 4 Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen 19 University, Wageningen 6708 WE, the Netherlands 20 5 Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE- 21 75007 Uppsala, Sweden 22 6 Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom 23 24 25 *These authors contributed equally to this work and are listed alphabetically 26 27 28 29 § Correspondence to Mohan Balasubramanian- [email protected]; Nick 30 Robinson- [email protected] ; Buzz Baum- [email protected] 31 32 33 34 bioRxiv preprint doi: https://doi.org/10.1101/2021.08.17.456605; this version posted August 17, 2021.
    [Show full text]
  • Agricultural University of Athens
    ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΩΝ ΖΩΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΖΩΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΕΡΓΑΣΤΗΡΙΟ ΓΕΝΙΚΗΣ ΚΑΙ ΕΙΔΙΚΗΣ ΖΩΟΤΕΧΝΙΑΣ ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ Εντοπισμός γονιδιωματικών περιοχών και δικτύων γονιδίων που επηρεάζουν παραγωγικές και αναπαραγωγικές ιδιότητες σε πληθυσμούς κρεοπαραγωγικών ορνιθίων ΕΙΡΗΝΗ Κ. ΤΑΡΣΑΝΗ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΑΝΤΩΝΙΟΣ ΚΟΜΙΝΑΚΗΣ ΑΘΗΝΑ 2020 ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ Εντοπισμός γονιδιωματικών περιοχών και δικτύων γονιδίων που επηρεάζουν παραγωγικές και αναπαραγωγικές ιδιότητες σε πληθυσμούς κρεοπαραγωγικών ορνιθίων Genome-wide association analysis and gene network analysis for (re)production traits in commercial broilers ΕΙΡΗΝΗ Κ. ΤΑΡΣΑΝΗ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΑΝΤΩΝΙΟΣ ΚΟΜΙΝΑΚΗΣ Τριμελής Επιτροπή: Aντώνιος Κομινάκης (Αν. Καθ. ΓΠΑ) Ανδρέας Κράνης (Eρευν. B, Παν. Εδιμβούργου) Αριάδνη Χάγερ (Επ. Καθ. ΓΠΑ) Επταμελής εξεταστική επιτροπή: Aντώνιος Κομινάκης (Αν. Καθ. ΓΠΑ) Ανδρέας Κράνης (Eρευν. B, Παν. Εδιμβούργου) Αριάδνη Χάγερ (Επ. Καθ. ΓΠΑ) Πηνελόπη Μπεμπέλη (Καθ. ΓΠΑ) Δημήτριος Βλαχάκης (Επ. Καθ. ΓΠΑ) Ευάγγελος Ζωίδης (Επ.Καθ. ΓΠΑ) Γεώργιος Θεοδώρου (Επ.Καθ. ΓΠΑ) 2 Εντοπισμός γονιδιωματικών περιοχών και δικτύων γονιδίων που επηρεάζουν παραγωγικές και αναπαραγωγικές ιδιότητες σε πληθυσμούς κρεοπαραγωγικών ορνιθίων Περίληψη Σκοπός της παρούσας διδακτορικής διατριβής ήταν ο εντοπισμός γενετικών δεικτών και υποψηφίων γονιδίων που εμπλέκονται στο γενετικό έλεγχο δύο τυπικών πολυγονιδιακών ιδιοτήτων σε κρεοπαραγωγικά ορνίθια. Μία ιδιότητα σχετίζεται με την ανάπτυξη (σωματικό βάρος στις 35 ημέρες, ΣΒ) και η άλλη με την αναπαραγωγική
    [Show full text]
  • Content Based Search in Gene Expression Databases and a Meta-Analysis of Host Responses to Infection
    Content Based Search in Gene Expression Databases and a Meta-analysis of Host Responses to Infection A Thesis Submitted to the Faculty of Drexel University by Francis X. Bell in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2015 c Copyright 2015 Francis X. Bell. All Rights Reserved. ii Acknowledgments I would like to acknowledge and thank my advisor, Dr. Ahmet Sacan. Without his advice, support, and patience I would not have been able to accomplish all that I have. I would also like to thank my committee members and the Biomed Faculty that have guided me. I would like to give a special thanks for the members of the bioinformatics lab, in particular the members of the Sacan lab: Rehman Qureshi, Daisy Heng Yang, April Chunyu Zhao, and Yiqian Zhou. Thank you for creating a pleasant and friendly environment in the lab. I give the members of my family my sincerest gratitude for all that they have done for me. I cannot begin to repay my parents for their sacrifices. I am eternally grateful for everything they have done. The support of my sisters and their encouragement gave me the strength to persevere to the end. iii Table of Contents LIST OF TABLES.......................................................................... vii LIST OF FIGURES ........................................................................ xiv ABSTRACT ................................................................................ xvii 1. A BRIEF INTRODUCTION TO GENE EXPRESSION............................. 1 1.1 Central Dogma of Molecular Biology........................................... 1 1.1.1 Basic Transfers .......................................................... 1 1.1.2 Uncommon Transfers ................................................... 3 1.2 Gene Expression ................................................................. 4 1.2.1 Estimating Gene Expression ............................................ 4 1.2.2 DNA Microarrays ......................................................
    [Show full text]
  • The Role of Lamin Associated Domains in Global Chromatin Organization and Nuclear Architecture
    THE ROLE OF LAMIN ASSOCIATED DOMAINS IN GLOBAL CHROMATIN ORGANIZATION AND NUCLEAR ARCHITECTURE By Teresa Romeo Luperchio A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland March 2016 © 2016 Teresa Romeo Luperchio All Rights Reserved ABSTRACT Nuclear structure and scaffolding have been implicated in expression and regulation of the genome (Elcock and Bridger 2010; Fedorova and Zink 2008; Ferrai et al. 2010; Li and Reinberg 2011; Austin and Bellini 2010). Discrete domains of chromatin exist within the nuclear volume, and are suggested to be organized by patterns of gene activity (Zhao, Bodnar, and Spector 2009). The nuclear periphery, which consists of the inner nuclear membrane and associated proteins, forms a sub- nuclear compartment that is mostly associated with transcriptionally repressed chromatin and low gene expression (Guelen et al. 2008). Previous studies from our lab and others have shown that repositioning genes to the nuclear periphery is sufficient to induce transcriptional repression (K L Reddy et al. 2008; Finlan et al. 2008). In addition, a number of studies have provided evidence that many tissue types, including muscle, brain and blood, use the nuclear periphery as a compartment during development to regulate expression of lineage specific genes (Meister et al. 2010; Szczerbal, Foster, and Bridger 2009; Yao et al. 2011; Kosak et al. 2002; Peric-Hupkes et al. 2010). These large regions of chromatin that come in molecular contact with the nuclear periphery are called Lamin Associated Domains (LADs). The studies described in this dissertation have furthered our understanding of maintenance and establishment of LADs as well as the relationship of LADs with the epigenome and other factors that influence three-dimensional chromatin structure.
    [Show full text]
  • Rabbit Anti-EAP30/FITC Conjugated Antibody
    SunLong Biotech Co.,LTD Tel: 0086-571- 56623320 Fax:0086-571- 56623318 E-mail:[email protected] www.sunlongbiotech.com Rabbit Anti-EAP30/FITC Conjugated antibody SL14482R-FITC Product Name: Anti-EAP30/FITC Chinese Name: FITC标记的EAP30蛋白抗体 Dot3; ELL associated protein of 30 kDa; ELL-associated protein of 30 kDa; ESCRT-II complex subunit VPS22; hVps22; snf8; SNF8 ESCRTII complex subunit homolog (S Alias: cerevisiae); SNF8_HUMAN; Vacuolar sorting protein SNF8; Vacuolar-sorting protein SNF8; VPS22. Organism Species: Rabbit Clonality: Polyclonal React Species: Human,Mouse,Rat,Chicken,Pig,Cow,Horse,Rabbit,Sheep, ICC=1:50-200IF=1:50-200 Applications: not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. Molecular weight: 29kDa Form: Lyophilized or Liquid Concentration: 1mg/ml immunogen: KLH conjugated synthetic peptide derived from human EAP30 Lsotype: IgG Purification: affinitywww.sunlongbiotech.com purified by Protein A Storage Buffer: 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year Storage: when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C. background: SNF8, VPS25 (MIM 610907), and VPS36 (MIM 610903) form ESCRT-II (endosomal sorting complex required for transport II), a complex involved in endocytosis of Product Detail: ubiquitinated membrane proteins. SNF8, VPS25, and VPS36 are also associated in a multiprotein complex with RNA polymerase II elongation factor (ELL; MIM 600284) (Slagsvold et al., 2005 [PubMed 15755741]; Kamura et al., 2001 [PubMed 11278625]).[supplied by OMIM, Mar 2008] Function: Component of the endosomal sorting complex required for transport II (ESCRT-II), which is required for multivesicular body (MVB) formation and sorting of endosomal cargo proteins into MVBs.
    [Show full text]
  • High-Density Array Comparative Genomic Hybridization Detects Novel Copy Number Alterations in Gastric Adenocarcinoma
    ANTICANCER RESEARCH 34: 6405-6416 (2014) High-density Array Comparative Genomic Hybridization Detects Novel Copy Number Alterations in Gastric Adenocarcinoma ALINE DAMASCENO SEABRA1,2*, TAÍSSA MAÍRA THOMAZ ARAÚJO1,2*, FERNANDO AUGUSTO RODRIGUES MELLO JUNIOR1,2, DIEGO DI FELIPE ÁVILA ALCÂNTARA1,2, AMANDA PAIVA DE BARROS1,2, PAULO PIMENTEL DE ASSUMPÇÃO2, RAQUEL CARVALHO MONTENEGRO1,2, ADRIANA COSTA GUIMARÃES1,2, SAMIA DEMACHKI2, ROMMEL MARIO RODRÍGUEZ BURBANO1,2 and ANDRÉ SALIM KHAYAT1,2 1Human Cytogenetics Laboratory and 2Oncology Research Center, Federal University of Pará, Belém Pará, Brazil Abstract. Aim: To investigate frequent quantitative alterations gastric cancer is the second most frequent cancer in men and of intestinal-type gastric adenocarcinoma. Materials and the third in women (4). The state of Pará has a high Methods: We analyzed genome-wide DNA copy numbers of 22 incidence of gastric adenocarcinoma and this disease is a samples and using CytoScan® HD Array. Results: We identified public health problem, since mortality rates are above the 22 gene alterations that to the best of our knowledge have not Brazilian average (5). been described for gastric cancer, including of v-erb-b2 avian This tumor can be classified into two histological types, erythroblastic leukemia viral oncogene homolog 4 (ERBB4), intestinal and diffuse, according to Laurén (4, 6, 7). The SRY (sex determining region Y)-box 6 (SOX6), regulator of intestinal type predominates in high-risk areas, such as telomere elongation helicase 1 (RTEL1) and UDP- Brazil, and arises from precursor lesions, whereas the diffuse Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypeptide 5 type has a similar distribution in high- and low-risk areas and (B4GALT5).
    [Show full text]