Selling Academic Commercialism As an “Engine” of Economic Development in Milwaukee

Total Page:16

File Type:pdf, Size:1020Kb

Selling Academic Commercialism As an “Engine” of Economic Development in Milwaukee The False Promise of the Entrepreneurial University Selling Academic Commercialism as an “Engine” of Economic Development in Milwaukee by: Marc V. Levine University of Wisconsin‐Milwaukee Center for Economic Development Working Paper September 2009 Table of Contents Abstract 4 Introduction 6 Entrepreneurial Research Universities and Local Economic Development: A Review of the Evidence 9 Why Do Entrepreneurial Research Universities Fail as “Engines” of Urban and Regional Economic Development? 35 The Costs of Academic Entrepreneurialism 42 Academic Commercialism and Local Economic Development: The Case of the University of Wisconsin-Milwaukee 51 Biomedical Sciences, Engineering, and the UWM “Innovation Park” 61 The “Silicon Valley” of Water Technology 68 Whither UWM? 90 Conclusion: Beyond the Entrepreneurial University 93 Acknowledgments 99 Notes 100 Works Cited 111 2 List of Tables and Charts Table 1: University Research Expenditures and Commercialization Indicators in Selected Metropolitan Areas 24 Table 2: Academic R&D and Economic Indicators in Selected Regions 25 Table 3: University Research Expenditures in Fastest Growing Regions 26 Table 4: The Classic Success Stories 26 Table 5: High University R&D…But Low Economic Performance 26 Table 6: Low University R&D…But High Economic Performance 27 Table 7: University Research Expenditures and Regional Economic Outcomes: By Quintiles 27 Table 8: University Research Expenditures and Regional Economic Outcomes: Correlation Coefficients 35 Table 9: Gross Licensing Revenues Among U.S. Universities, 2004 45 Table 10: Cracking the “Top 100” in Research Funding 47 Table 11: Research Expenditures at the University of Wisconsin-Milwaukee, 1985-2007 52 Table 12: Sources of Research Expenditures at the University of Wisconsin-Milwaukee, 1985-2007 53 Table 13: UWM’s Ranking in Research Expenditures Among US Universities, 1985-2007 55 Table 14: Getting to $100 Million in Academic R&D in Ten Years? 59 Table 15: Regional Concentrations in Biomedical Engineering in the US 64 Table 16: US Regional Leaders in Water Technology Patents 77 Table 17: Regional Concentrations of Hydrologists in the US 79 Table 18: The Migration of College-Educated Residents in Metropolitan Milwaukee: 1995-2000 94 Chart 1: Leading US Locations of Offices and Plants of “Top 40” Global Water Companies 76 3 Abstract “Entrepreneurial universities,” in which academic research is commercialized and technology transferred through patents, licensing, and university-based business startups, are increasingly touted as the key driver of city and regional economic development. This paper reviews the relationship between research universities and local economic development in 55 major US regions, and finds no meaningful correlations between any gauges of entrepreneurial university activity (research expenditures, patents, or licensing) and core measures of city and regional economic well-being. Notwithstanding tendentious accounts of “success stories” such as Silicon Valley or Boston’s Route 128, as if they represent the general historical pattern, these data as well as case studies such as Johns Hopkins University and Yale University reveal that even world-class research universities are neither necessary nor sufficient in promoting local economic development. University research parks are particularly oversold as engines of local economic growth. While proponents of academic commercialism routinely overstate its economic benefits for cities and regions, they rarely mention the significant costs. These include potential undermining of the system of basic research and open science that has been the cornerstone of scientific discovery in the US, and, ironically, undercutting innovation. Contrary to claims by many university leaders that research commercialization will generate revenues for their institutions, for most universities tech transfer is a money- losing proposition. Tech transfer is a classic example of jackpot or casino economics, with very few big winners, and over half of US universities lose money in academic commercialization. Research funding and commercialization revenues are heavily skewed to the same “top 15” universities that have dominated these statistics for decades, and, as one expert has argued, outside of this top group most universities are getting nothing out of tech transfer “except a lot of economic development rhetoric.” This paper also includes an in-depth case study of efforts to transform the University of Wisconsin-Milwaukee (UWM) into an entrepreneurial university. All of the dubious claims regarding the impact of entrepreneurial universities on local economies and the revenue-generating potential of academic commercialism have been advanced by UWM leaders, with little debate, analysis, or public scrutiny. “Entrepreneurial” UWM is pursuing two core “economic development” initiatives: 1) a suburban technology park, oriented around biomedical engineering; and 2) a School of Freshwater Studies, to propel Milwaukee as the alleged “Silicon Valley of water technology.” The economic logic underpinning both initiatives, however, is deeply flawed. Biomedical engineering is not a field in which the Milwaukee region or UWM either start in an advantageous position or have obviously propitious prospects. The suburban Wauwatosa technology park has been vastly oversold as a potential engine of economic development. Urban universities have increasingly become anchor institutions in city economies, yet UWM plans to invest an estimated $150 million outside a city that has been buffeted over the past 30 years by growing joblessness, poverty, and the suburbanization of industry. Ironically, for an initiative deemed crucial to the economic future of Milwaukee, UWM’s suburban tech park, by disinvesting in the 4 city, will help undermine the economics of agglomeration that economists and urban planners concur is a central ingredient of economic development. UWM is already a major research institution in the field of Great Lakes ecology and freshwater science, and the new school will build on this tradition. But the economic development arguments for the SFS as the centerpiece of an emerging Milwaukee water technology “hub” are based on spurious claims and, to borrow a phrase, “irrational exuberance.” The key points: 1) Measured by the location of water company headquarters, plants, or offices; the generation of water technology patents; or jobs in the industry, there is little evidence that Milwaukee is a “hub” or even an “emerging hub” of the industry; 2) The job creation potential of water technology in Milwaukee has been vastly exaggerated by boosters; in fact, the two leading companies of the local water lobby have created more jobs outside of Milwaukee than in it over the past decade; 3) UWM’s water school will be neither a unique presence nor a “first-mover” in the field of water technology already brimming with university and corporate research facilities; and 4) As evidenced by the politics of locating a building for the SFS, the risks of excessive industry influence over the new school are significant. The essay concludes with a call for alternatives to entrepreneurial universities. Although the economic logic of the entrepreneurial university is highly flawed, that does not mean that universities and university research are irrelevant to local economic development and urban vitality. Educating students and generating human capital; nurturing talent and intellectual curiosity; supporting the research commons through open, public science; and helping solve real-world, community problems – these are the ways in which engaged universities, rather than entrepreneurial ones, have historically contributed to community economic well-being. 5 Introduction Across the United States (as well as Europe and Canada), academic leaders now routinely promote research universities as “engines” of local economic development. “Entrepreneurial universities,” in which academic research is commercialized and technology transferred through patents, licensing, and university-based business startups, are touted as a sine qua non for cities and regions in the 21st century knowledge-based economy. Indeed, in many economically struggling cities, the entrepreneurial university is portrayed as nothing less than an “economic savior.” (Fischer, 2006). Improving regional economic competitiveness by forging partnerships with local businesses and commercializing university-generated knowledge is now regularly cited as one of the core missions of the modern university (Slaughter and Rhoades, 2004; Washburn, 2005). In Milwaukee, similar rhetoric has accompanied efforts in the last decade to reorganize the University of Wisconsin-Milwaukee (UWM) into a center of academic commercialism with, in the current chancellor’s words, a “research portfolio that can truly transform this region” (Santiago, 2009). An entrepreneurial UWM has been heralded as a “driver” of the regional economy (Milwaukee Journal Sentinel, 2009c); an “economic piston” (Schmid, 2005) and “idea hatchery” (Haynes, 2008) whose commercialized research would be a “game changer” for Milwaukee (Milwaukee Journal Sentinel, 2009a); and a future “hothouse” of patents, licenses, and business spinoffs (Milwaukee Journal Sentinel, 2009b) that “will drive Milwaukee’s economic reinvention” and “create jobs throughout southeastern Wisconsin” (The Business Journal of Milwaukee, 2009). Such characterizations have taken on an aura of conventional wisdom, not only in Milwaukee but also in cities
Recommended publications
  • Book Tribute to George Low –“The Ultimate Engineer”
    Book Tribute to George Low –“The Ultimate Engineer” The Ultimate Engineer: The Remarkable Life of NASA's Visionary Leader George M. Low by Richard Jurek Foreword by Gerald D. Griffin From the late 1950s to 1976 the U.S. manned spaceflight program advanced as it did largely due to the extraordinary efforts of Austrian immigrant George M. Low. Described as the "ultimate engineer" during his career at NASA, Low was a visionary architect and leader from the agency's inception in 1958 to his retirement in 1976. As chief of manned spaceflight at NASA, Low was instrumental in the Mercury, Gemini, and Apollo programs. Low's pioneering work paved the way for President Kennedy's decision to make a lunar landing NASA's primary goal in the 1960s. After the tragic 1967 Apollo I fire that took the lives of three astronauts and almost crippled the program, Low took charge of the redesign of the Apollo spacecraft, and helped lead the program from disaster and toward the moon. In 1968, Low made the bold decision to go for lunar orbit on Apollo 8 before the lunar module was ready for flight and after only one Earth orbit test flight of the Command and Service modules. Under Low there were five manned missions, including Apollo 11, the first manned lunar landing. Low's clandestine negotiations with the Soviet Union resulted in a historic joint mission in 1975 that was the precursor to the Shuttle-MIR and International Space Station programs. At the end of his NASA career, Low was one of the leading figures in the development of the Space Shuttle in the early1970s, and was instrumental in NASA's transition into a post-Apollo world.
    [Show full text]
  • Chapter 6.Qxd
    CHAPTER 6: The NASA Family The melding of all of the NASA centers, contractors, universities, and often strong personalities associated with each of them into the productive and efficient organization necessary to complete NASA’s space missions became both more critical and more difficult as NASA turned its attention from Gemini to Apollo. The approach and style and, indeed, the personality of each NASA center differed sharply. The Manned Spacecraft Center was distinctive among all the rest. Fortune magazine suggested in 1967 that the scale of NASA’s operation required a whole new approach and style of management: “To master such massively complex and expensive problems, the agency has mobilized some 20,000 individual firms, more than 400,000 workers, and 200 colleges and universities in a combine of the most advanced resources of American civilization.” The author referred to some of the eight NASA centers and assorted field installations as “pockets of sovereignty” which exercised an enormous degree of independence and autonomy.1 An enduring part of the management problem throughout the Mercury and Gemini programs that became compounded under Apollo, because of its greater technical challenges, was the diversity and distinctiveness of each of the NASA centers. The diverse cultures and capabilities represented by each of the centers were at once the space program’s greatest resource and its Achilles’ heel. NASA was a hybrid organization. At its heart was Langley Memorial Aeronautical Laboratory established by Congress in 1917 near Hampton, Virginia, and formally dedicated in 1920. It became the Langley Research Center. Langley created the Ames Aeronautical Laboratory at Moffett Field, California, in 1939.
    [Show full text]
  • The New Engineering Research Centers: Purposes, Goals, and Expectations
    DOCUMENT RESUME ED 315 272 SE 051 142 TITLE The New Engineering Research Centers: Purposes, Goals, and Expectations. Symposium (District of Colombia, April 29-30, 1985). INSTITUTION National Academy of Sciences - National Research Council, Washington, DC. Commission on Engineering and Technical Systems. SPONS AGENCY National Science Foundation, Washington, D. REPORT NO ISBN-0-309-03598-8 PUB DATE 86 GRANT NSF-MEG-8505051 NOTE 213p.; Prepared by the Cross-Disciplinary Engineering Research Committee. AVAILABLE FROM National Academy Press, 1201 Constitution Ave. N.W., Washington, DC 20418 ($25.95). PUB TYPE Collected Works - Conference Proceedings (021) -- Viewpoints (120) EDRS PRICE MF01 Plus Postage. PC Not Available from EDRS. DESCRIPTORS *Engineering; *Engineering Education; *Engineering Technology; *Research Administration; Research and Development; *Research and Development Centers; Research Directors; Research Proposals; Scientific Research IDENTIFIERS *Engineering Research Centers ABSTRACT The aympoisum was held to describe the roots and future plans of the Engineering Research Center's (ERC's) concept and program. The first section of this symposium compilation describes the national goals that the ERCs represent. The second section presents the point of view of the National Science Foundation on the ERCs--the concept behind them, their goals, selection criteria, and mechanisms for support. The next section provides the plans and programs of the six existing centers:(1) Systems Research Center; (2) Center for Intelligent Manufacturin3 Systems;(3) Center for Robotic Systems in Microelectronics; (4) Center for Composites Manufacturing Science and Engineering; (5) Engineering Center for Telecommunications; and (6) Biotechnology Process Engineering Center. Two of the presentations were on exchange methods among the centers and the relationship between engineering.education and research.
    [Show full text]
  • Project Apollo: Americans to the Moon John M
    Chapter Two Project Apollo: Americans to the Moon John M. Logsdon Project Apollo, the remarkable U.S. space effort that sent 12 astronauts to the surface of Earth’s Moon between July 1969 and December 1972, has been extensively chronicled and analyzed.1 This essay will not attempt to add to this extensive body of literature. Its ambition is much more modest: to provide a coherent narrative within which to place the various documents included in this compendium. In this narrative, key decisions along the path to the Moon will be given particular attention. 1. Roger Launius, in his essay “Interpreting the Moon Landings: Project Apollo and the Historians,” History and Technology, Vol. 22, No. 3 (September 2006): 225–55, has provided a com­ prehensive and thoughtful overview of many of the books written about Apollo. The bibliography accompanying this essay includes almost every book-length study of Apollo and also lists a number of articles and essays interpreting the feat. Among the books Launius singles out for particular attention are: John M. Logsdon, The Decision to Go to the Moon: Project Apollo and the National Interest (Cambridge: MIT Press, 1970); Walter A. McDougall, . the Heavens and the Earth: A Political History of the Space Age (New York: Basic Books, 1985); Vernon Van Dyke, Pride and Power: the Rationale of the Space Program (Urbana, IL: University of Illinois Press, 1964); W. Henry Lambright, Powering Apollo: James E. Webb of NASA (Baltimore: Johns Hopkins University Press, 1995); Roger E. Bilstein, Stages to Saturn: A Technological History of the Apollo/Saturn Launch Vehicles, NASA SP-4206 (Washington, DC: Government Printing Office, 1980); Edgar M.
    [Show full text]
  • America's Greatest Projects and Their Engineers - VII
    America's Greatest Projects and Their Engineers - VII Course No: B05-005 Credit: 5 PDH Dominic Perrotta, P.E. Continuing Education and Development, Inc. 22 Stonewall Court Woodcliff Lake, NJ 076 77 P: (877) 322-5800 [email protected] America’s Greatest Projects & Their Engineers-Vol. VII The Apollo Project-Part 1 Preparing for Space Travel to the Moon Table of Contents I. Tragedy and Death Before the First Apollo Flight A. The Three Lives that Were Lost B. Investigation, Findings & Recommendations II. Beginning of the Man on the Moon Concept A. Plans to Land on the Moon B. Design Considerations and Decisions 1. Rockets – Launch Vehicles 2. Command/Service Module 3. Lunar Module III. NASA’s Objectives A. Unmanned Missions B. Manned Missions IV. Early Missions V. Apollo 7 Ready – First Manned Apollo Mission VI. Apollo 8 - Orbiting the Moon 1 I. Tragedy and Death Before the First Apollo Flight Everything seemed to be going well for the Apollo Project, the third in a series of space projects by the United States intended to place an American astronaut on the Moon before the end of the 1960’s decade. Apollo 1, known at that time as AS (Apollo Saturn)-204 would be the first manned spaceflight of the Apollo program, and would launch a few months after the flight of Gemini 12, which had occurred on 11 November 1966. Although Gemini 12 was a short duration flight, Pilot Buzz Aldrin had performed three extensive EVA’s (Extra Vehicular Activities), proving that Astronauts could work for long periods of time outside the spacecraft.
    [Show full text]
  • Project Apollo: Americans to the Moon 440 Document II-1 Document Title
    440 Project Apollo: Americans to the Moon Document II-1 Document Title: NASA, “ Minutes of Meeting of Research Steering Committee on Manned Space Flight,” 25–26 May 1959. Source: Folder 18675, NASA Historical Reference Collection, History Division, NASA Headquarters, Washington, DC. Within less than a year after its creation, NASA began looking at follow-on programs to Project Mercury, the initial human spacefl ight effort. A Research Steering Committee on Manned Space Flight was created in spring 1959; it consisted of top-level representatives of all of the NASA fi eld centers and NASA Headquarters. Harry J. Goett from Ames, but soon to be head of the newly created Goddard Space Flight Center, was named chair of the committee. The fi rst meeting of the committee took place on 25 and 26 May 1959, in Washington. Those in attendance provided an overview of research and thinking related to human spacefl ight at various NASA centers, the Jet Propulsion Laboratory (JPL), and the High Speed Flight Station (HSFS) at Edwards Air Force Base. George Low, then in charge of human spacefl ight at NASA Headquarters, argued for making a lunar landing NASA’s long-term goal. He was backed up by engineer and designer Maxime Faget of the Space Task Group of the Langley Research Center and Bruce Lundin of the Lewis Research Center. After further discussion at its June meeting, the Committee agreed on the lunar landing objective, and by the end of the year a lunar landing was incorporated into NASA’s 10-year plan as the long-range objective of the agency’s human spacefl ight program.
    [Show full text]
  • Slated Next Week
    untveislty ot Alabama Rcr SPACE DIVISION Slated Next Week NOlCTH AMERICAN ROCKWELL COrCPOKATION FEBRUARY 7, 1969 VOL. XXIX, No. 6 (Aerospxe and Systems Group) PDR To Consider Spacecraft I Configuration, Program Specs A major division Apollo Applications Program effort will culminate nest week in a combined division-NASA Preliminary Design Review. Paving the way this week for the PDR was a four-day astronaut review, attended by a team of six astronauts and more week will be to review the AAP than 30 representatives of configuration and program plans NASA's Manned Spacecraft and technical specifications cov- Center, Marshall Space Flight ering such areas as engineering, Center and Kennedy Space Cen- quality assurance, reliability , ter. On the astronaut team are safety and production, said Len Walt Cunningham, lead astro- Tinnan, division AAP program naut for AAP, and Owen Gar- manager. Approximately 200 di- riott, Paul Weitz, Joe Kerwin, vision and NASA representa- Bruce McCandless, and Edward tives will take part. Gibson. Tinnan explained that the Purpose of the PDR next PDR is the third in a series of I major program milestones lead- ing toward a hardware program Thousands Praised to modify the Apollo Block II- 1 lunar mission-type - command and service modules for use in 1 for Successful long duration Apollo Applica- tions missions. He added that the division is AAP MOCKUPS - Donna Otten of Apollo Applications Program and Ralph Flugel of Apollo working under a six-month, Engineering look over AAP mockups that will be among major topics of interest in next week's /Apollo 8 Flight joint division-NASA AAP preliminary design review.
    [Show full text]
  • The Space to Lead
    Washington University in St. Louis Washington University Open Scholarship All Theses and Dissertations (ETDs) Summer 8-1-2013 The pS ace to Lead Mack A. Bradley Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/etd Part of the International Relations Commons Recommended Citation Bradley, Mack A., "The pS ace to Lead" (2013). All Theses and Dissertations (ETDs). 1172. https://openscholarship.wustl.edu/etd/1172 This Thesis is brought to you for free and open access by Washington University Open Scholarship. It has been accepted for inclusion in All Theses and Dissertations (ETDs) by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON$UNIVERSITY$IN$ST.$LOUIS University$College InternaSonal$Affairs The$Space$to$Lead by Mack$A.$Bradley A$thesis$presented$to the of$Washington$University$in$ partial$fulfillment$of$the$ requirements$for$the$degree$of$ Master$of$Arts August$2013 St.$Louis,$Missouri i © 2013$MACK$A.$BRADLEY ii TABLE$OF$CONTENTS Acknowledgements iii Dedication v Abstract vi Chapter 1: Leading from Behind p.1 Chapter 2: Shuttle, Station, and International Space p. 8 Chapter 3: We Need Our Space p. 23 Chapter 4: Economy of Space p. 30 Chapter 5: Space for Sale or Lease p. 38 Chapter 6: Space Security p. 49 Chapter 7: Houston, We Have Problems p. 56 America in search of a mission p. 57 Russia’s launch program needs a boost p. 72 Trouble in the debris belt p. 74 Living in a dangerous neighborhood p. 78 Chapter 8: Conclusions and Recommendations p.
    [Show full text]
  • NASA's First A
    NASA’s First A Aeronautics from 1958 to 2008 National Aeronautics and Space Administration Office of Communications Public Outreach Division History Program Office Washington, DC 2013 The NASA History Series NASA SP-2012-4412 NASA’s First A Aeronautics from 1958 to 2008 Robert G. Ferguson Library of Congress Cataloging-in-Publication Data Ferguson, Robert G. NASA’s first A : aeronautics from 1958 to 2008 / Robert G. Ferguson. p. cm. -- (The NASA history series) (NASA SP ; 2012-4412) 1. United States. National Aeronautics and Space Administration--History. 2. United States. National Advisory Committee for Aeronautics--History. I. Title. TL521.312.F47 2012 629.130973--dc23 2011029949 This publication is available as a free download at http://www.nasa.gov/ebooks. TABLE OF CONTENTS Acknowledgments vii Chapter 1: The First A: The Other NASA ..................................1 Chapter 2: NACA Research, 1945–58 .................................... 25 Chapter 3: Creating NASA and the Space Race ........................57 Chapter 4: Renovation and Revolution ................................... 93 Chapter 5: Cold War Revival and Ideological Muddle ............141 Chapter 6: The Icarus Decade ............................................... 175 Chapter 7: Caught in Irons ................................................... 203 Chapter 8: Conclusion .......................................................... 229 Appendix: Aeronautics Budget 235 The NASA History Series 241 Index 259 v ACKNOWLEDGMENTS Before naming individuals, I must express my gratitude to those who have labored, and continue to do so, to preserve and share NASA’s history. I came to this project after years of studying private industry, where sources are rare and often inaccessible. By contrast, NASA’s History Program Office and its peers at the laboratories have been toiling for five decades, archiving, cataloging, interviewing, supporting research, and underwriting authors.
    [Show full text]
  • Facing the Heat Barrier: a History of Hypersonics
    Thomas A. Heppenheimer has been a freelance Facing the Heat Barrier: writer since 1978. He has written extensively on aerospace, business and government, and the A History of Hypersonics history of technology. He has been a frequent of Hypersonics A History Facing the Heat Barrier: T. A. Heppenheimer contributor to American Heritage and its affiliated publications, and to Air & Space Smithsonian. He has also written for the National Academy of Hypersonics is the study of flight at speeds where Sciences, and contributed regularly to Mosaic of the aerodynamic heating dominates the physics of National Science Foundation. He has written some the problem. Typically this is Mach 5 and higher. 300 published articles for more than two dozen Hypersonics is an engineering science with close publications. links to supersonics and engine design. He has also written twelve hardcover books. Within this field, many of the most important results Three of them–Colonies in Space (1977), Toward Facing the Heat Barrier: have been experimental. The principal facilities Distant Suns (1979) and The Man-Made Sun have been wind tunnels and related devices, which (1984)-have been alternate selections of the A History of Hypersonics have produced flows with speeds up to orbital Book-of-the-Month Club. His Turbulent Skies velocity. (1995), a history of commercial aviation, is part of the Technology Book Series of the Alfred P. T. A. Heppenheimer Why is it important? Hypersonics has had Sloan Foundation. It also has been produced as two major applications. The first has been to a four-part, four-hour Public Broadcasting System provide thermal protection during atmospheric television series Chasing the Sun.
    [Show full text]
  • Download Chapter 176KB
    Memorial Tributes: Volume 3 GEORGE MICHAEL LOW 250 Copyright National Academy of Sciences. All rights reserved. Memorial Tributes: Volume 3 GEORGE MICHAEL LOW 251 George Michael Low 1926–1984 By James C. Fletcher George Michael Low, a long-term pioneer in the nation's space program and a key figure in the success of the Apollo lunar landing, died of cancer at age fifty- eight on July 17, 1984. During the previous eight years, George Low was president of Rensselaer Polytechnic Institute and, in addition to developing the institute into one of the nation's finest, played a leading role in formulating the nation's science and technology policy. In fact, in recent years, whenever strong leadership was needed to resolve a new problem or to pursue a new opportunity in any branch of science or technology, George Low's name was always at the top of the list. His contributions covered a broad span of disciplines: aviation, education, manufacturing technology, research, space automation—almost anything on the "cutting edge" of technology. George Low was born in a small town just outside of Vienna, Austria, in 1926. His family emigrated to America when George was only fourteen, by which time his obsession with engineering and technical matters was already well established. After graduating from high school in only two years, he entered Rensselaer Polytechnic Institute in Troy, New York, but was drafted into the army at the age of eighteen. During his army service, he became a naturalized citizen Copyright National Academy of Sciences. All rights reserved. Memorial Tributes: Volume 3 GEORGE MICHAEL LOW 252 (in 1945) and received his pilot's license.
    [Show full text]
  • Ideas Into Hardware: a History of the Rocket Engine Test Facility
    Ideas Into Hardware IDEAS INTO HARDWARE A History of the Rocket Engine Test Facility at the NASA Glenn Research Center Virginia P. Dawson National Aeronautics and Space Administration NASA Glen Research Center Cleveland, Ohio 2004 This document was generated for the NASA Glenn Research Center, in accor- dance with a Memorandum of Agreement among the Federal Aviation Administration, National Aeronautics and Space Administration (NASA), The Ohio State Historic Preservation Officer, and the Advisory Council on Historic Preservation. The City of Cleveland’s goal to expand the Cleveland Hopkins International Airport required the NASA Glenn Research Center’s Rocket Engine Test Facility, located adjacent to the airport, to be removed before this expansion could be realized. To mitigate the removal of this registered National Historic Landmark, the National Park Service stipulated that the Rocket Engine Test Facility be documented to Level I standards of the Historic American Engineering Record (HAER). This history project was initiated to fulfill and supplement that requirement. Produced by History Enterprises, Inc. Cover and text design by Diana Dickson. Library of Congress Cataloging-in-Publication Data Dawson, Virginia P. (Virginia Parker) —Ideas into hardware : a history of NASA’s Rocket Engine Test Facility / by Virginia P. Dawson. ——p.——cm. —Includes bibliographical references. —1. Rocket engines—Research—United States—History.—2.—United States. National Aeronautics and Space Administration—History.—I. Title. TL781.8.U5D38 2004 621.43'56'072077132—dc22 2004024041 Table of Contents Introduction / v 1. Carving Out a Niche / 1 2. RETF: Complex, Versatile, Unique / 37 3. Combustion Instability and Other Apollo Era Challenges, 1960s / 64 4.
    [Show full text]