NASA's First A

Total Page:16

File Type:pdf, Size:1020Kb

NASA's First A NASA’s First A Aeronautics from 1958 to 2008 National Aeronautics and Space Administration Office of Communications Public Outreach Division History Program Office Washington, DC 2013 The NASA History Series NASA SP-2012-4412 NASA’s First A Aeronautics from 1958 to 2008 Robert G. Ferguson Library of Congress Cataloging-in-Publication Data Ferguson, Robert G. NASA’s first A : aeronautics from 1958 to 2008 / Robert G. Ferguson. p. cm. -- (The NASA history series) (NASA SP ; 2012-4412) 1. United States. National Aeronautics and Space Administration--History. 2. United States. National Advisory Committee for Aeronautics--History. I. Title. TL521.312.F47 2012 629.130973--dc23 2011029949 This publication is available as a free download at http://www.nasa.gov/ebooks. TABLE OF CONTENTS Acknowledgments vii Chapter 1: The First A: The Other NASA ..................................1 Chapter 2: NACA Research, 1945–58 .................................... 25 Chapter 3: Creating NASA and the Space Race ........................57 Chapter 4: Renovation and Revolution ................................... 93 Chapter 5: Cold War Revival and Ideological Muddle ............141 Chapter 6: The Icarus Decade ............................................... 175 Chapter 7: Caught in Irons ................................................... 203 Chapter 8: Conclusion .......................................................... 229 Appendix: Aeronautics Budget 235 The NASA History Series 241 Index 259 v ACKNOWLEDGMENTS Before naming individuals, I must express my gratitude to those who have labored, and continue to do so, to preserve and share NASA’s history. I came to this project after years of studying private industry, where sources are rare and often inaccessible. By contrast, NASA’s History Program Office and its peers at the laboratories have been toiling for five decades, archiving, cataloging, interviewing, supporting research, and underwriting authors. For a survey work such as this, the ability to quickly locate primary documents and published historical accounts has been a necessity and a pleasure. I am deeply indebted to countless individuals, some of whom I know, many of whom I do not, who have quietly saved documents, patiently cared for photographs, and generously shared these treasures. I wish to thank the NASA scientists and engineers who eagerly told their sto- ries—I hope that I have done their stories justice. I also wish to thank the many researchers who took the time to cast their work within a historical context. I need to make special mention of the historians who have gone before me and illuminated many of the case histories upon which this book depends. This undertaking would have been dramatically different, and probably impossible in my lifetime, had it been necessary to investigate every significant research program from scratch. While I share a general concern about the use of sec- ondary sources, the authors upon whom I have relied have been exceedingly thorough and skilled. Many at NASA provided their expert assistance, including Jane Odom, Colin Fries, John Hargenrader, Kathryn Goldberg, Anthony Springer, G. Michael Green, Glenn Bugos, Gail Langevin, and Nadine Andreassen. I also am indebted to Steve Garber, Glen Asner, Steve Dick, and Bill Barry for their patience, counsel, and encouragement. I also wish to thank my reviewers, who waded through a difficult manu- script. For introducing me to this particular topic and assisting me at the beginning of my research, I thank both Roger Launius and Erik Conway. A number of talented professionals helped transform my manuscript into a finished book. Kay Forrest carefully copyedited the manuscript. In the NASA Headquarters Communications Support Services Center, Lisa Jirousek, George vii NASA’s First A: Aeronautics from 1958 to 2008 Gonzalez, and Kurt von Tish performed additional copyediting; Christopher Yates designed and laid out the book; and Tun Hla oversaw the printing process. I have gained much over the years from my network of colleagues in the history of technology. Members of the Society for the History of Technology, especially those aerospace historians known affectionately as “the Albatrosses,” were extremely helpful in a variety of large and small ways. Lastly, I wish to thank my wife and children and all those I have not acknowledged for this opportunity to explore, reflect, and tell a story. viii Chapter 1: The First A: The Other NASA That NASA is more than a space agency may come as a surprise to some. Aeronautics, the first A of the NASA acronym, has always been a part of the National Aeronautics and Space Administration, but against the headline exploits of rocket launches, Moon landings, Space Shuttle missions, and Mars rovers, aeronautics is easily lost in the shadows of NASA’s marquee space programs. This relative obscurity belies what has been a remarkably creative, productive, and highly effective group of researchers who, at one time, even helped bring about the Space Age and invent a space agency. The list of accomplishments for NASA’s first A is long, and this book goes a modest way toward sketching these developments. Aeronautics really might be called the “other NASA,” distinct in its charge, methodologies, and scale. Aeronautics research is not mission-oriented in the same way that going to the Moon or Mars is. It is interested in learning about physical phenomena, such as turbulence, and how to do something, such as quieting the noise of helicopter blades. Aeronautics’ mission is not about going somewhere specific or building one particular thing; it is about supporting the country’s commercial and military needs with respect to aviation. The con- trast with the space program is telling: where NASA has gone to considerable lengths to justify the space program and explain how space innovations feed into the country’s more terrestrial needs, aeronautics research has had a direct and undeniable impact on commercial and military technology development. Its positive economic effects are generally accepted.1 1. A summary of studies on NASA’s economic impact may be found in U.S. Congress, Congressional Budget Office (CBO), “Reinventing NASA,” March 1994, pp. 2–4. Relating specifically to the question of government-funded aeronautical research, see David C. Mowery and Nathan Rosenberg, Technology and the Pursuit of Economic Growth (New York: Cambridge University Press, 1989), pp. 169–202; and George Eberstadt, “Government Support of the Large Commercial Aircraft Industries of Japan, Europe, and the United States,” chap. 8 in Competing Economies: America, Europe, and the Pacific Rim, OTA-ITE-498, by U.S. Congress, 1 NASA’s First A: Aeronautics from 1958 to 2008 Being research-oriented, aeronautics naturally has a different methodologi- cal bent. Its activities revolve almost entirely around experimentation, made up of a combination of cutting-edge basic research and more routine assistance to its patrons in the military and industry. It has encompassed the use of wind tunnels,2 the flight testing of revolutionary prototypes, and the creation of new methodologies, such as computational fluid dynamics. Finally, aeronautics research typically has been conducted on a small scale and on, relatively speak- ing, limited budgets. It has not been characterized by extremely large projects on the order of the Apollo or Space Shuttle programs. This is not for lack of desire within the aeronautical research community; rather, the political will to do in aeronautics what was done for the space program has not been similar. Ultimately, the bulk of aeronautics work has been performed on a fraction of NASA’s overall budget. Even so, NASA’s aeronautics has had an outsize impact. The nature of this impact deserves special attention because it locates NASA’s work within larger technical and historical narratives. The risk of detailing NASA’s technical achievements is to ascribe a kind of primacy and distinctiveness that is characteristic only some of the time. NASA researchers were not working in ivory towers, and they were not always the first link in a chain of innovation stretching from laboratory to industry. It is important to appreciate the ebb and flow of scientific and technological knowledge into and out of the various communities represented by NASA’s firstA . NASA was not alone in pursuing aeronautical research: the U.S. military had its own facilities and programs, as did industry, academia, and foreign governments. Published papers, conferences, technical committee meetings, and joint projects created a shifting area of known and unknown, possible and impossible, across all of these actors. Researchers picked up where others left off, often taking ideas in new directions and, in a spirit of collegiality, hoping to best the others. This competition extended to the various communities within NASA as well. That said, NASA has occupied a unique place within the research land- scape. It has been a pooled national investment, providing a cadre of talented Office of Technology Assessment (Washington, DC: U.S. Government Printing Office [GPO], October 1991). 2. Wind tunnels, to be brief, are laboratory devices for measuring the flow of air, especially as it moves around solid shapes. They may be used to simulate the performance of aircraft and parts of aircraft in a highly controlled environment, thus reducing the need for risky and potentially costly flight testing. There are plenty of aeronautical investigations that do not need or make use of wind tunnels. It is but
Recommended publications
  • Shelf List 05/31/2011 Matches 4631
    Shelf List 05/31/2011 Matches 4631 Call# Title Author Subject 000.1 WARBIRD MUSEUMS OF THE WORLD EDITORS OF AIR COMBAT MAG WAR MUSEUMS OF THE WORLD IN MAGAZINE FORM 000.10 FLEET AIR ARM MUSEUM, THE THE FLEET AIR ARM MUSEUM YEOVIL, ENGLAND 000.11 GUIDE TO OVER 900 AIRCRAFT MUSEUMS USA & BLAUGHER, MICHAEL A. EDITOR GUIDE TO AIRCRAFT MUSEUMS CANADA 24TH EDITION 000.2 Museum and Display Aircraft of the World Muth, Stephen Museums 000.3 AIRCRAFT ENGINES IN MUSEUMS AROUND THE US SMITHSONIAN INSTITUTION LIST OF MUSEUMS THROUGH OUT THE WORLD WORLD AND PLANES IN THEIR COLLECTION OUT OF DATE 000.4 GREAT AIRCRAFT COLLECTIONS OF THE WORLD OGDEN, BOB MUSEUMS 000.5 VETERAN AND VINTAGE AIRCRAFT HUNT, LESLIE LIST OF COLLECTIONS LOCATION AND AIRPLANES IN THE COLLECTIONS SOMEWHAT DATED 000.6 VETERAN AND VINTAGE AIRCRAFT HUNT, LESLIE AVIATION MUSEUMS WORLD WIDE 000.7 NORTH AMERICAN AIRCRAFT MUSEUM GUIDE STONE, RONALD B. LIST AND INFORMATION FOR AVIATION MUSEUMS 000.8 AVIATION AND SPACE MUSEUMS OF AMERICA ALLEN, JON L. LISTS AVATION MUSEUMS IN THE US OUT OF DATE 000.9 MUSEUM AND DISPLAY AIRCRAFT OF THE UNITED ORRISS, BRUCE WM. GUIDE TO US AVIATION MUSEUM SOME STATES GOOD PHOTOS MUSEUMS 001.1L MILESTONES OF AVIATION GREENWOOD, JOHN T. EDITOR SMITHSONIAN AIRCRAFT 001.2.1 NATIONAL AIR AND SPACE MUSEUM, THE BRYAN, C.D.B. NATIONAL AIR AND SPACE MUSEUM COLLECTION 001.2.2 NATIONAL AIR AND SPACE MUSEUM, THE, SECOND BRYAN,C.D.B. MUSEUM AVIATION HISTORY REFERENCE EDITION Page 1 Call# Title Author Subject 001.3 ON MINIATURE WINGS MODEL AIRCRAFT OF THE DIETZ, THOMAS J.
    [Show full text]
  • Book Tribute to George Low –“The Ultimate Engineer”
    Book Tribute to George Low –“The Ultimate Engineer” The Ultimate Engineer: The Remarkable Life of NASA's Visionary Leader George M. Low by Richard Jurek Foreword by Gerald D. Griffin From the late 1950s to 1976 the U.S. manned spaceflight program advanced as it did largely due to the extraordinary efforts of Austrian immigrant George M. Low. Described as the "ultimate engineer" during his career at NASA, Low was a visionary architect and leader from the agency's inception in 1958 to his retirement in 1976. As chief of manned spaceflight at NASA, Low was instrumental in the Mercury, Gemini, and Apollo programs. Low's pioneering work paved the way for President Kennedy's decision to make a lunar landing NASA's primary goal in the 1960s. After the tragic 1967 Apollo I fire that took the lives of three astronauts and almost crippled the program, Low took charge of the redesign of the Apollo spacecraft, and helped lead the program from disaster and toward the moon. In 1968, Low made the bold decision to go for lunar orbit on Apollo 8 before the lunar module was ready for flight and after only one Earth orbit test flight of the Command and Service modules. Under Low there were five manned missions, including Apollo 11, the first manned lunar landing. Low's clandestine negotiations with the Soviet Union resulted in a historic joint mission in 1975 that was the precursor to the Shuttle-MIR and International Space Station programs. At the end of his NASA career, Low was one of the leading figures in the development of the Space Shuttle in the early1970s, and was instrumental in NASA's transition into a post-Apollo world.
    [Show full text]
  • Chapter 6.Qxd
    CHAPTER 6: The NASA Family The melding of all of the NASA centers, contractors, universities, and often strong personalities associated with each of them into the productive and efficient organization necessary to complete NASA’s space missions became both more critical and more difficult as NASA turned its attention from Gemini to Apollo. The approach and style and, indeed, the personality of each NASA center differed sharply. The Manned Spacecraft Center was distinctive among all the rest. Fortune magazine suggested in 1967 that the scale of NASA’s operation required a whole new approach and style of management: “To master such massively complex and expensive problems, the agency has mobilized some 20,000 individual firms, more than 400,000 workers, and 200 colleges and universities in a combine of the most advanced resources of American civilization.” The author referred to some of the eight NASA centers and assorted field installations as “pockets of sovereignty” which exercised an enormous degree of independence and autonomy.1 An enduring part of the management problem throughout the Mercury and Gemini programs that became compounded under Apollo, because of its greater technical challenges, was the diversity and distinctiveness of each of the NASA centers. The diverse cultures and capabilities represented by each of the centers were at once the space program’s greatest resource and its Achilles’ heel. NASA was a hybrid organization. At its heart was Langley Memorial Aeronautical Laboratory established by Congress in 1917 near Hampton, Virginia, and formally dedicated in 1920. It became the Langley Research Center. Langley created the Ames Aeronautical Laboratory at Moffett Field, California, in 1939.
    [Show full text]
  • The New Engineering Research Centers: Purposes, Goals, and Expectations
    DOCUMENT RESUME ED 315 272 SE 051 142 TITLE The New Engineering Research Centers: Purposes, Goals, and Expectations. Symposium (District of Colombia, April 29-30, 1985). INSTITUTION National Academy of Sciences - National Research Council, Washington, DC. Commission on Engineering and Technical Systems. SPONS AGENCY National Science Foundation, Washington, D. REPORT NO ISBN-0-309-03598-8 PUB DATE 86 GRANT NSF-MEG-8505051 NOTE 213p.; Prepared by the Cross-Disciplinary Engineering Research Committee. AVAILABLE FROM National Academy Press, 1201 Constitution Ave. N.W., Washington, DC 20418 ($25.95). PUB TYPE Collected Works - Conference Proceedings (021) -- Viewpoints (120) EDRS PRICE MF01 Plus Postage. PC Not Available from EDRS. DESCRIPTORS *Engineering; *Engineering Education; *Engineering Technology; *Research Administration; Research and Development; *Research and Development Centers; Research Directors; Research Proposals; Scientific Research IDENTIFIERS *Engineering Research Centers ABSTRACT The aympoisum was held to describe the roots and future plans of the Engineering Research Center's (ERC's) concept and program. The first section of this symposium compilation describes the national goals that the ERCs represent. The second section presents the point of view of the National Science Foundation on the ERCs--the concept behind them, their goals, selection criteria, and mechanisms for support. The next section provides the plans and programs of the six existing centers:(1) Systems Research Center; (2) Center for Intelligent Manufacturin3 Systems;(3) Center for Robotic Systems in Microelectronics; (4) Center for Composites Manufacturing Science and Engineering; (5) Engineering Center for Telecommunications; and (6) Biotechnology Process Engineering Center. Two of the presentations were on exchange methods among the centers and the relationship between engineering.education and research.
    [Show full text]
  • Seventeenth European Rotorcraft Forum
    ERF91-25 SEVENTEENTH EUROPEAN ROTORCRAFT FORUM Paper No. 91-25 V-22 PROPULSION SYSTEM DESIGN W. G. Sonneborn, E. 0. Kaiser, C. E. Covington, and K. Wilson Bell Helicopter Textron, Inc. Fort Worth, Texas U .S.A. SEPTEMBER 24-27, 1991 Berlin, Germany Deutsche ·oesellschaft fiir Luft- und Raumfahrt e. V. (DGLR) Godesberger Allee 70, 5300 Bonn 2, Germany OPGENOMENIN GEAUTOMATISEERDE ERF91-25 V-22 PROPULSION SYSTEM DESIGN W. G. Sonneborn E. 0. Kaiser C. E. Covington K. Wilson Bell Helicopter Textron, Inc. Fort Worth, Texas U.S.A. Abstract The next generation tiltrotor, the XV-15, truly dem­ onstrated the feasibility of the technology, especial­ The propulsion system of the V-22 Osprey, compris­ ly the tilting-engine concept. The free power tur­ ing the drive system, the power plant installation, bine allowed the rotor system to operate over a wide and the proprotor, is a unique design driven by the range of speeds without drive train shift mecha­ operational requirements of this tiltrotor aircraft. nisms. Pylon stability was satisfactory with a three­ bladed gimballed rotor attached to a stiff pylon. The drive system, which includes five gearboxes, shafting, and special nonlubricated flexible cou­ The V-22 propulsion design is the first design to plings, is described. The rationale for arrangement meet operational requirements as outlined in rigid and lessons learned is followed by a discussion of the NAVAIR specifications. Fly-by-wire control tech­ effect of special requirements such as shipboard nology simplifies the mechanical design, and use of compatibility and cooling. Lubrication system op­ composite materials achieves significant weight eration from horizontal to vertical modes, operation savings and other operational advantages.
    [Show full text]
  • Project Apollo: Americans to the Moon John M
    Chapter Two Project Apollo: Americans to the Moon John M. Logsdon Project Apollo, the remarkable U.S. space effort that sent 12 astronauts to the surface of Earth’s Moon between July 1969 and December 1972, has been extensively chronicled and analyzed.1 This essay will not attempt to add to this extensive body of literature. Its ambition is much more modest: to provide a coherent narrative within which to place the various documents included in this compendium. In this narrative, key decisions along the path to the Moon will be given particular attention. 1. Roger Launius, in his essay “Interpreting the Moon Landings: Project Apollo and the Historians,” History and Technology, Vol. 22, No. 3 (September 2006): 225–55, has provided a com­ prehensive and thoughtful overview of many of the books written about Apollo. The bibliography accompanying this essay includes almost every book-length study of Apollo and also lists a number of articles and essays interpreting the feat. Among the books Launius singles out for particular attention are: John M. Logsdon, The Decision to Go to the Moon: Project Apollo and the National Interest (Cambridge: MIT Press, 1970); Walter A. McDougall, . the Heavens and the Earth: A Political History of the Space Age (New York: Basic Books, 1985); Vernon Van Dyke, Pride and Power: the Rationale of the Space Program (Urbana, IL: University of Illinois Press, 1964); W. Henry Lambright, Powering Apollo: James E. Webb of NASA (Baltimore: Johns Hopkins University Press, 1995); Roger E. Bilstein, Stages to Saturn: A Technological History of the Apollo/Saturn Launch Vehicles, NASA SP-4206 (Washington, DC: Government Printing Office, 1980); Edgar M.
    [Show full text]
  • The Contagion of Capital
    The Jus Semper Global Alliance In Pursuit of the People and Planet Paradigm Sustainable Human Development March 2021 ESSAYS ON TRUE DEMOCRACY AND CAPITALISM The Contagion of Capital Financialised Capitalism, COVID-19, and the Great Divide John Bellamy Foster, R. Jamil Jonna and Brett Clark he U.S. economy and society at the start of T 2021 is more polarised than it has been at any point since the Civil War. The wealthy are awash in a flood of riches, marked by a booming stock market, while the underlying population exists in a state of relative, and in some cases even absolute, misery and decline. The result is two national economies as perceived, respectively, by the top and the bottom of society: one of prosperity, the other of precariousness. At the level of production, economic stagnation is diminishing the life expectations of the vast majority. At the same time, financialisation is accelerating the consolidation of wealth by a very few. Although the current crisis of production associated with the COVID-19 pandemic has sharpened these disparities, the overall problem is much longer and more deep-seated, a manifestation of the inner contradictions of monopoly-finance capital. Comprehending the basic parameters of today’s financialised capitalist system is the key to understanding the contemporary contagion of capital, a corrupting and corrosive cash nexus that is spreading to all corners of the U.S. economy, the globe, and every aspect of human existence. TJSGA/Essay/SD (E052) March 2021/Bellamy Foster, Jonna and Clark 1 Free Cash and the Financialisation of Capital “Capitalism,” as left economist Robert Heilbroner wrote in The Nature and Logic of Capitalism in 1985, is “a social formation in which the accumulation of capital becomes the organising basis for socioeconomic life.”1 Economic crises in capitalism, whether short term or long term, are primarily crises of accumulation, that is, of the savings-and- investment (or surplus-and-investment) dynamics.
    [Show full text]
  • America's Greatest Projects and Their Engineers - VII
    America's Greatest Projects and Their Engineers - VII Course No: B05-005 Credit: 5 PDH Dominic Perrotta, P.E. Continuing Education and Development, Inc. 22 Stonewall Court Woodcliff Lake, NJ 076 77 P: (877) 322-5800 [email protected] America’s Greatest Projects & Their Engineers-Vol. VII The Apollo Project-Part 1 Preparing for Space Travel to the Moon Table of Contents I. Tragedy and Death Before the First Apollo Flight A. The Three Lives that Were Lost B. Investigation, Findings & Recommendations II. Beginning of the Man on the Moon Concept A. Plans to Land on the Moon B. Design Considerations and Decisions 1. Rockets – Launch Vehicles 2. Command/Service Module 3. Lunar Module III. NASA’s Objectives A. Unmanned Missions B. Manned Missions IV. Early Missions V. Apollo 7 Ready – First Manned Apollo Mission VI. Apollo 8 - Orbiting the Moon 1 I. Tragedy and Death Before the First Apollo Flight Everything seemed to be going well for the Apollo Project, the third in a series of space projects by the United States intended to place an American astronaut on the Moon before the end of the 1960’s decade. Apollo 1, known at that time as AS (Apollo Saturn)-204 would be the first manned spaceflight of the Apollo program, and would launch a few months after the flight of Gemini 12, which had occurred on 11 November 1966. Although Gemini 12 was a short duration flight, Pilot Buzz Aldrin had performed three extensive EVA’s (Extra Vehicular Activities), proving that Astronauts could work for long periods of time outside the spacecraft.
    [Show full text]
  • Capabilities and Prospects for Improvement in Aircraft Icing Office of Aviation Research Washington, D.C
    DOT/FAA/AR-01/28 Capabilities and Prospects for Improvement in Aircraft Icing Office of Aviation Research Washington, D.C. 20591 Simulation Methods: Contributions to the 11C Working Group May 2001 Final Report This document is available to the U.S. public through the National Technical Information Service (NTIS), Springfield, Virginia 22161. U.S. Department of Transportation Federal Aviation Administration NOTICE This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof. The United States Government does not endorse products or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the objective of this report. This document does not constitute FAA certification policy. Consult your local FAA aircraft certification office as to its use. This report is available at the Federal Aviation Administration William J. Hughes Technical Center's Full-Text Technical Reports page: actlibrary.tc.faa.gov in Adobe Acrobat portable document format (PDF). Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. DOT/FAA/AR-01/28 4. Title and Subtitle 5. Report Date CAPABILITIES AND PROSPECTS FOR IMPROVEMENT IN AIRCRAFT ICING May 2001 SIMULATION METHODS: CONTRIBUTIONS TO THE 11C WORKING 6. Performing Organization Code GROUP 7. Author(s) 8. Performing Organization Report No. 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Federal Aviation Administration William J. Hughes Technical Center Aircraft Safety Research and Development Branch 11. Contract or Grant No.
    [Show full text]
  • Evaluation of V-22 Tiltrotor Handling Qualities in the Instrument Meteorological Environment
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 5-2006 Evaluation of V-22 Tiltrotor Handling Qualities in the Instrument Meteorological Environment Scott Bennett Trail University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Aerospace Engineering Commons Recommended Citation Trail, Scott Bennett, "Evaluation of V-22 Tiltrotor Handling Qualities in the Instrument Meteorological Environment. " Master's Thesis, University of Tennessee, 2006. https://trace.tennessee.edu/utk_gradthes/1816 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Scott Bennett Trail entitled "Evaluation of V-22 Tiltrotor Handling Qualities in the Instrument Meteorological Environment." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Aviation Systems. Robert B. Richards, Major Professor We have read this thesis and recommend its acceptance: Rodney Allison, Frank Collins Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a thesis written by Scott Bennett Trail entitled “Evaluation of V-22 Tiltrotor Handling Qualities in the Instrument Meteorological Environment”.
    [Show full text]
  • Project Apollo: Americans to the Moon 440 Document II-1 Document Title
    440 Project Apollo: Americans to the Moon Document II-1 Document Title: NASA, “ Minutes of Meeting of Research Steering Committee on Manned Space Flight,” 25–26 May 1959. Source: Folder 18675, NASA Historical Reference Collection, History Division, NASA Headquarters, Washington, DC. Within less than a year after its creation, NASA began looking at follow-on programs to Project Mercury, the initial human spacefl ight effort. A Research Steering Committee on Manned Space Flight was created in spring 1959; it consisted of top-level representatives of all of the NASA fi eld centers and NASA Headquarters. Harry J. Goett from Ames, but soon to be head of the newly created Goddard Space Flight Center, was named chair of the committee. The fi rst meeting of the committee took place on 25 and 26 May 1959, in Washington. Those in attendance provided an overview of research and thinking related to human spacefl ight at various NASA centers, the Jet Propulsion Laboratory (JPL), and the High Speed Flight Station (HSFS) at Edwards Air Force Base. George Low, then in charge of human spacefl ight at NASA Headquarters, argued for making a lunar landing NASA’s long-term goal. He was backed up by engineer and designer Maxime Faget of the Space Task Group of the Langley Research Center and Bruce Lundin of the Lewis Research Center. After further discussion at its June meeting, the Committee agreed on the lunar landing objective, and by the end of the year a lunar landing was incorporated into NASA’s 10-year plan as the long-range objective of the agency’s human spacefl ight program.
    [Show full text]
  • Aircraft of Today. Aerospace Education I
    DOCUMENT RESUME ED 068 287 SE 014 551 AUTHOR Sayler, D. S. TITLE Aircraft of Today. Aerospace EducationI. INSTITUTION Air Univ.,, Maxwell AFB, Ala. JuniorReserve Office Training Corps. SPONS AGENCY Department of Defense, Washington, D.C. PUB DATE 71 NOTE 179p. EDRS PRICE MF-$0.65 HC-$6.58 DESCRIPTORS *Aerospace Education; *Aerospace Technology; Instruction; National Defense; *PhysicalSciences; *Resource Materials; Supplementary Textbooks; *Textbooks ABSTRACT This textbook gives a brief idea aboutthe modern aircraft used in defense and forcommercial purposes. Aerospace technology in its present form has developedalong certain basic principles of aerodynamic forces. Differentparts in an airplane have different functions to balance theaircraft in air, provide a thrust, and control the general mechanisms.Profusely illustrated descriptions provide a picture of whatkinds of aircraft are used for cargo, passenger travel, bombing, and supersonicflights. Propulsion principles and descriptions of differentkinds of engines are quite helpful. At the end of each chapter,new terminology is listed. The book is not available on the market andis to be used only in the Air Force ROTC program. (PS) SC AEROSPACE EDUCATION I U S DEPARTMENT OF HEALTH. EDUCATION & WELFARE OFFICE OF EDUCATION THIS DOCUMENT HAS BEEN REPRO OUCH) EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIG INATING IT POINTS OF VIEW OR OPIN 'IONS STATED 00 NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EOU CATION POSITION OR POLICY AIR FORCE JUNIOR ROTC MR,UNIVERS17/14AXWELL MR FORCEBASE, ALABAMA Aerospace Education I Aircraft of Today D. S. Sayler Academic Publications Division 3825th Support Group (Academic) AIR FORCE JUNIOR ROTC AIR UNIVERSITY MAXWELL AIR FORCE BASE, ALABAMA 2 1971 Thispublication has been reviewed and approvedby competent personnel of the preparing command in accordance with current directiveson doctrine, policy, essentiality, propriety, and quality.
    [Show full text]