Oxidation & Reduction

Total Page:16

File Type:pdf, Size:1020Kb

Oxidation & Reduction Oxidation & Reduction Compounds Containing Carbonyl Groups Chapter 20 Two broad classes of compounds contain the carbonyl group: • Compounds that have only carbon and hydrogen atoms bonded to the carbonyl. • Compounds that contain an electronegative atom bonded to the carbonyl. Carbonyl Groups Carbonyl Group Structure & Polarity General Reactions of Carbonyl Compounds Nucleophilic Addition Nucleophilic Substitution • Aldehydes and ketones react with nucleophiles to form addition products by a • Carbonyl compounds with two-step process: nucleophilic attack followed by protonation. leaving groups react with nucleophiles to form substitution products by a two-step process: nucleophilic attack, followed by loss of the leaving group. Comparison of Carbonyl Reaction Types Overview of Oxidation and Reduction • Nucleophilic addition and nucleophilic acyl substitution involve the same first step - nucleophilic attack on the electrophilic carbonyl carbon to form a tetrahedral intermediate. • The difference between the two reactions is what then happens to the intermediate. • Aldehydes and ketones cannot undergo substitution because they do not have a good leaving group bonded to the newly formed sp3 hybridized carbon. • Carbonyl compounds can be either reactants or products in oxidation–reduction reactions. Reduction of Aldehydes and Ketones Catalytic Hydrogenation of Carbonyls • The most useful reagents for reducing aldehydes and ketones are the metal hydride reagents. • Catalytic hydrogenation also reduces aldehydes and ketones to 1° and 2° alcohols, respectively, using H2 and a catalyst. • Treating an aldehyde or ketone with NaBH4 or LiAlH4, followed by H2O or some other proton source affords an alcohol. The net reaction is the addition of “H2”. • When a compound contains both a carbonyl group and a carbon–carbon double bond, selective reduction of one functional group can be achieved by proper choice of the reagent. • A C=C is reduced faster than a C=O with H2 (Pd–C). • A C=O is readily reduced with NaBH4 and LiAlH4, but a C=C is inert. Comparison of Carbonyl Reductions Sodium Borohydride Reductions in Synthesis • Thus, 2-cyclohexenone, which contains both a C=C and a C=O, can be reduced to three different compounds depending upon the reagent used. Stereochemistry of Carbonyl Reduction Enantioselective Carbonyl Reductions • Selective formation of one enantiomer over another can occur if a chiral reducing agent is used. • A reduction that forms one enantiomer predominantly or exclusively is an enantioselective or asymmetric reduction. • An example of chiral reducing agents are the enantiomeric CBS reagents, for Corey, Bakshi, and Shibata. Biological Reductions Mechanism of NADH Reductions • Biological reductions that occur in cells always proceed with complete • The active site of the enzyme binds both the carbonyl substrate and NADH, selectivity, forming a single enantiomer. keeping them in close proximity. • In cells, the reducing agent is NADH. • NADH then donates H:− in much the same way as a hydride reducing agent. • NADH is a coenzyme—an organic molecule that can function only in the presence of the enzyme. Enantioselectivity of NADH Reduction NAD+ —Biological Oxidizing Agent • The reaction is completely enantioselective. • NAD+, the oxidized form of NADH, is a biological oxidizing agent • For example, reduction of pyruvic acid with NADH catalyzed by lactate dehydrogenase affords a single enantiomer with the S configuration. capable of oxidizing alcohols to carbonyl compounds (it forms • NADH reduces a variety of different carbonyl compounds in biological systems. NADH in the process). • The configuration of the product (R or S) depends on the enzyme used to • NAD+ is synthesized from the vitamin niacin. catalyze the process. LiAlH4 Reductions LiAlH4 Reductions • Carboxylic acids are reduced to 1° alcohols with LiAlH4. • Like carboxylic acids, esters and acid chlorides are reduced to 1° alcohols with LiAlH4 followed by aqueous workup. • LiAlH4 is too strong of a reducing agent to stop the reaction at the aldehyde stage, but milder reagents (e.g. NaBH4) are not strong enough to initiate the reaction in the first place. • The mechanism will be presented in lecture. 20 Other Metal Hydride Reducing Agents Reduction of Esters & Acid Chlorides • Diisobutylaluminum hydride [(CH3)2CHCH2]2AlH, abbreviated DIBAL-H, has two bulky isobutyl groups which makes this reagent less reactive than LiAlH4. • Lithium tri-tert-butoxyaluminum hydride, LiAlH[OC(CH3)3]3, has three electronegative O atoms bonded to aluminum, which makes this reagent less nucleophilic than LiAlH4. • The mechanisms for DIBAL-H and LiAlH(tert-BuO)3 reductions will be presented in lecture. LiAlH Reduction of Amides 4 LiAlH4 Reduction of Amides • Unlike the LiAlH4 reduction of all other carboxylic acid derivatives, which affords 1° alcohols, the LiAlH4 reduction of amides forms amines. − • Since NH2 is a very poor leaving group, it is never lost during the reduction, and therefore an amine is formed. Organometallic Reagents • Li, Mg, and Cu are the most common organometallic metals. • Other metals found in organometallic reagents are Sn, Si, Tl, Al, Ti, and Hg. • General structures of common organometallic reagents are shown: Reactivity of Common Organometallic Compounds Preparation of Organo-Li/MgX Compounds • Organolithium and Grignard reagents are typically prepared by reaction of an • Organomagnesium reagents are called Grignard reagents. alkyl halide with the corresponding metal. • Since both Li and Mg are very electropositive metals, organolithium (RLi) and • With lithium, the halogen and metal exchange to form the organolithium organomagnesium (RMgX) reagents contain very polar carbon-metal bonds and reagent. are therefore very reactive reagents. • With Mg, the metal inserts in the carbon–halogen bond, forming the Grignard • Organolithium and Grignard reagents have very similar reactivities with organic reagent. compounds. • Organocopper reagents (R2CuLi), also called organocuprates, have a less polar carbon–metal bond and are therefore less reactive. • Although they contain two R groups bonded to Cu, only one R group is utilized in the reaction. • In organometallic reagents, carbon bears a δ− charge. Solvent Stabilization of Grignard Reagents Preparation of Organocuprate Compounds Preparation of Lithium Acetylides • An acid–base reaction can also be used to prepare sp hybridized • Organocuprates are prepared from organolithium reagents by reaction organolithium compounds. with a Cu+ salt, often CuI. • Treatment of a terminal alkyne with CH3Li affords a lithium acetylide. • The equilibrium favors the products because the sp hybridized C–H bond of the terminal alkyne is more acidic than the sp3 hybridized conjugate acid, CH4, that is formed. 29 Acid–Base Reactions of Organometallics & Solvent Limitations Organometallics & Functional Group Transformations • Organometallic reagents are strong bases that readily abstract a proton from • Reaction of R–M with aldehydes and ketones to afford alcohols water to form hydrocarbons. Synthesis: • Reaction of R–M with carboxylic acid derivatives Acid-Base: • Reaction of R–M with other electrophilic functional groups • Similar reactions occur with the N–H protons of amines. Nucleophilic Addition of Grignard Reagents Mechanism of Organometallic Addition • This reaction follows the general mechanism for nucleophilic addition—that is, nucleophilic attack by a carbanion followed by protonation. • Mechanism 20.6 is shown using R-MgX, but the same steps occur with R-Li reagents and acetylide anions. 33 Synthesis of C Juvenile Hormone More Examples of Alcohols Formed by Organometallic Addition 18 • C18 juvenile hormone helps to regulate the complex life cycle of insects. • Juvenile hormones maintain the juvenile stage of an insect until it is ready for adulthood. • Juvenile hormone mimics have been used to effectively control insect populations. • Application of these synthetic hormones to egg or larva prevents maturation. • Methoprene is used in cattle salt blocks to control hornflies and on dogs and cats to control fleas. Retrosynthetic Analysis of Grignard Products Retrosynthetic Analysis of 3-pentanol • To determine what carbonyl and Grignard components are needed to prepare a given compound, follow these two steps: • Note that there is often more than one way to synthesize a 2° alcohol by Grignard addition. Organometallic Reactions with Esters and Acid Chlorides Organometallic Reactions with Esters and Acid Chlorides • Both esters and acid chlorides form 3° alcohols when treated with two equivalents of either Grignard or organolithium reagents. Organometallic Reactions with Epoxides Grignard Reaction with CO2 • Grignards react with CO2 to give carboxylic acids after protonation with aqueous acid. • Like other strong nucleophiles, organometallic reagents - RLi, RMgX, and R2CuLi - open epoxide rings to form alcohols. • This reaction is called carboxylation. • In unsymmetrical epoxides, nucleophilic attack occurs at the less-substituted carbon atom. • The carboxylic acid formed has one more carbon atom than the Grignard reagent from which it was prepared. Mechanism: Limitations of Organometallic Reagents Use of Protecting Groups • Addition of organometallic reagents cannot be used with molecules that contain Solving this problem requires a three-step strategy: both a carbonyl group and N–H or O–H bonds. [1] Convert the OH group into another functional group that does not interfere with the desired reaction. This new blocking group
Recommended publications
  • Modern-Reduction-Methods.Pdf
    Modern Reduction Methods Edited by Pher G. Andersson and Ian J. Munslow Related Titles Yamamoto, H., Ishihara, K. (eds.) Torii, S. Acid Catalysis in Modern Electroorganic Reduction Organic Synthesis Synthesis 2008 2006 ISBN: 978-3-527-31724-0 ISBN: 978-3-527-31539-0 Roberts, S. M. de Meijere, A., Diederich, F. (eds.) Catalysts for Fine Chemical Metal-Catalyzed Cross- Synthesis V 5 – Regio and Coupling Reactions Stereo-Controlled Oxidations 2004 and Reductions ISBN: 978-3-527-30518-6 2007 Online Book Wiley Interscience Bäckvall, J.-E. (ed.) ISBN: 978-0-470-09024-4 Modern Oxidation Methods 2004 de Vries, J. G., Elsevier, C. J. (eds.) ISBN: 978-3-527-30642-8 The Handbook of Homogeneous Hydrogenation 2007 ISBN: 978-3-527-31161-3 Modern Reduction Methods Edited by Pher G. Andersson and Ian J. Munslow The Editors All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and Prof. Dr. Pher G. Andersson publisher do not warrant the information Uppsala University contained in these books, including this book, to Department of Organic Chemistry be free of errors. Readers are advised to keep in Husargatan 3 mind that statements, data, illustrations, 751 23 Uppsala procedural details or other items may Sweden inadvertently be inaccurate. Dr. Ian J. Munslow Library of Congress Card No.: Uppsala University applied for Department of Biochemistry and Organic Chemistry Husargatan 3 British Library Cataloguing-in-Publication Data 751 23 Uppsala A catalogue record for this book is available from Sweden the British Library. Bibliographic information published by the Deutsche Nationalbibliothek Die Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografi e; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.
    [Show full text]
  • Direct Β‑Functionalization of Cyclic Ketones with Aryl Ketones Via the Merger of Photoredox and Organocatalysis Filip R
    Communication pubs.acs.org/JACS Direct β‑Functionalization of Cyclic Ketones with Aryl Ketones via the Merger of Photoredox and Organocatalysis Filip R. Petronijevic,́† Manuel Nappi,† and David W. C. MacMillan* Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States *S Supporting Information ABSTRACT: The direct β-coupling of cyclic ketones with aryl ketones has been achieved via the synergistic combination of photoredox catalysis and organocatalysis. Diaryl oxymethyl or aryl−alkyl oxymethyl radicals, transiently generated via single-electron reduction of ketone precursors, readily merge with β-enaminyl radical species, generated by photon-induced enamine oxidation, to produce γ-hydroxyketone adducts. Experimental evidence indicates that two discrete reaction pathways can be operable in this process depending upon the nature of the ketyl radical precursor and the photocatalyst. he direct β-functionalization of saturated ketones and T aldehydes is an important yet elusive goal in organic chemistry.1 While carbonyl groups are readily amenable to ipso- and α-carbon substitution with a range of nucleophiles and electrophiles respectively,2,3 activation at the β-methylene position poses a significant synthetic challenge. With a few notable exceptions,1,4 carbonyl β-functionalization has tradition- ally been restricted to the conjugate addition of soft nucleophiles are accessed via carbene catalysis,9,10 nucleophilic addition of into α,β-unsaturated carbonyl systems. As such, the development acetal-protected Grignard reagents,11 or stoichiometric metal- 5 − of a general catalytic platform for the direct β-functionalization activated homoenolate equivalents.12 16 of saturated ketones or aldehydes would represent a conceptual Drawing from the mechanistic insights gained in the course of and practical advance for the field.
    [Show full text]
  • Lanthanide Replacement in Organic Synthesis: Calcium-Mediated Luche-Type Reduction of Α,Β-Functionalised Ketones
    Lanthanide Replacement in Organic Synthesis: Calcium-mediated Luche-type Reduction of α,β-functionalised Ketones A thesis submitted by Nina Viktoria Forkel In partial fulfilment of the requirement for a degree of Doctor of Philosophy Imperial College London Department of Chemistry South Kensington Campus SW7 2AZ London United Kingdom September 2013 Lanthanide Replacement in Organic Synthesis: Calcium-mediated Luche-type Reduction of α,β-functionalised Ketones “Man kann sich die Weite und Möglichkeiten des Lebens gar nicht unerschöpflich genug denken.” (Rainer Maria Rilke) This thesis is dedicated to all my loved ones. Declaration of originality and statement of copyright Declaration of originality I, Nina V. Forkel, certify that the research described within this thesis was carried out in the Department of Chemistry at Imperial College London between October 2009 and September 2012. It was accomplished under the primary supervision of Dr Matthew J. Fuchter, Imperial College London, along with supervision from Dr David A. Henderson, Pfizer Ltd. The entire body of work is that of the author, unless otherwise stated to the contrary, and has not been submitted previously for a degree at this or any other university. Statement of copyright The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes, and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work.
    [Show full text]
  • Aldehydes and Ketones
    12 Aldehydes and Ketones Ethanol from alcoholic beverages is first metabolized to acetaldehyde before being broken down further in the body. The reactivity of the carbonyl group of acetaldehyde allows it to bind to proteins in the body, the products of which lead to tissue damage and organ disease. Inset: A model of acetaldehyde. (Novastock/ Stock Connection/Glow Images) KEY QUESTIONS 12.1 What Are Aldehydes and Ketones? 12.8 What Is Keto–Enol Tautomerism? 12.2 How Are Aldehydes and Ketones Named? 12.9 How Are Aldehydes and Ketones Oxidized? 12.3 What Are the Physical Properties of Aldehydes 12.10 How Are Aldehydes and Ketones Reduced? and Ketones? 12.4 What Is the Most Common Reaction Theme of HOW TO Aldehydes and Ketones? 12.1 How to Predict the Product of a Grignard Reaction 12.5 What Are Grignard Reagents, and How Do They 12.2 How to Determine the Reactants Used to React with Aldehydes and Ketones? Synthesize a Hemiacetal or Acetal 12.6 What Are Hemiacetals and Acetals? 12.7 How Do Aldehydes and Ketones React with CHEMICAL CONNECTIONS Ammonia and Amines? 12A A Green Synthesis of Adipic Acid IN THIS AND several of the following chapters, we study the physical and chemical properties of compounds containing the carbonyl group, C O. Because this group is the functional group of aldehydes, ketones, and carboxylic acids and their derivatives, it is one of the most important functional groups in organic chemistry and in the chemistry of biological systems. The chemical properties of the carbonyl group are straightforward, and an understanding of its characteristic reaction themes leads very quickly to an understanding of a wide variety of organic reactions.
    [Show full text]
  • Aldehydes and Ketones Are Simple Organic Compounds Containing a Carbonyl Group
    Aldehydes and Ketones are simple organic compounds containing a carbonyl group. Carbonyl group contains carbon- oxygen double bond. These organic compounds are simple because the carbon atom presents in the carbonyl group lack reactive groups such as OH or Cl. By Dr. Sayed Hasan Mehdi Assistant Professor Department of Chemistry Shia P.G. College, Lucknow Dr. S.Hasan Mehdi 6/13/2020 This is to bring to kind notice that the matter of this e- content is for the B.Sc. IV semester students. It has been taken from the following sources. The students are advised to follow these books as well. •A TEXTBOOK OF ORGANIC CHEMISTRY by Arun Bahl & B.S. Bahl, S. Chand & Company Ltd. Publication. •Graduate Organic Chemistry by M. K. Jain and S.C. Sharma, Vishal Publishing Co. •Pradeep’s Organic Chemistry Vol II by R. N. Dhawan, Pradeep Publication, Jalandhar. Dr. S.Hasan Mehdi 6/13/2020 An aldehyde is one of the classes of carbonyl group- containing alkyl group on one end and hydrogen on the other end. The R and Ar denote alkyl or aryl member respectively. In the condensed form, the aldehyde is written as –CHO. Dr. S.Hasan Mehdi 6/13/2020 Dr. S.Hasan Mehdi 6/13/2020 1. From Alcohols: a. By oxidation of Alcohols: Aldehydes and ketones can be prepared by the controlled oxidation of primary and secondary alcohols using an acidified solution of potassium dichromate or permanganate. Primary alcohol produces aldehydesRef. Last slide. O K Cr O RCH2OH + [O] 2 2 7 + R C H H 10 Alcohol Aldehyde O CH3CH2OH+ [O] K2Cr2O7 + CH3 C H H Ethyl Alcohol Acetaldehyde The aldehydes formed in the above reaction are very easily oxidised to carboxylc acids if allowed to remain in the reaction mixture.
    [Show full text]
  • Aldehydes and Ketone
    ALDEHYDES AND KETONE www.gneet.com ALDEHYDES AND KETONES In aldehydes, the carbonyl group is linked to either two hydrogen atom or one hydrogen atom and one carbon containing group such as alkyl, aryl or aralkyl group Examples * In ketones, the carbonyl group is linked to two carbon containing groups which may be same or different alkyl, aryl group. If two R and R’ groups are same, the ketone is called simple or symmetrical ketone and if R and R’ are different, then ketone is known as mixed or an unsymmetrical ketone. STRUCTURE Carbonyl carbon of both aldehyde and ketones is sp2 – hybridised, One of the three sp2 hybridised orbital get involved in σ- bond formation with half –filled p-orbital of oxygen atom whereas rest of the two are consumed in σ-bond formation with hydrogen and carbon depending on the structure of aldehyde or ketone. Unhybridised p-orbital of carbonyl carbon form π-bond with another half-filled p-orbital of oxygen atom by sideways overlapping. ISOMERISM IN ALDEHYDES AND KETONES (a) Chain isomerism: Aldehydes ( with 4 or more carbon atoms) and ketone ( with 5 or more carbon atoms) show chain isomerism. Example i) C4H8O CH3-CH2-CH2-CHO ( butanal) 1 ALDEHYDES AND KETONE www.gneet.com ii) C5H10O (b) Position isomerism: aliphatic aldehydes do not show position isomerism, because –CHO group is always present at the end of carbon chain. Aromatic aldehyde show position isomerism. Example (c) Metamerism: Higher ketones show metamerism due to presence of different alkyl groups attached to the same functional group C5H10O (d) Functional isomerism : Aldehydes and ketones show functional isomerism in them.
    [Show full text]
  • Nucleophilic Aromatic Substitution
    NUCLEOPHILIC AROMATIC SUBSTITUTION Ms. Prerana Sanas M.Pharm (Pharmceutical Chemistry) Asst.Professor, NCRD’s Sterling Institute of Pharmacy Nerul Navi Mumbai Nucleophilic aromatic substitution results in the substitution of a halogen X on a benzene ring by a nucleophile (:Nu– ). Aryl halides undergo a limited number of substitution reactions with strong nucleophiles. NAS occurs by two mechanisms i) Bimoleccular displacement (Addition –Elimination) ii) Benzyne Formation( Elimination –Addition) 7/5/2019 Ms.Prerana Sanas 2 Bimolecular displacement (Addition – Elimination) Aryl halides with strong electron-withdrawing groups (such as NO2) on the ortho or para positions react with nucleophiles to afford substitution products. For example, treatment of p-chloronitrobenzene with hydroxide (– OH) affords p-nitrophenol by replacement of Cl by OH. Nucleophilic aromatic substitution occurs with a variety of strong nucleophiles, including – OH, – OR, – NH2, – SR, and in some cases, neutral nucleophiles such as NH3 and RNH2 . 7/5/2019 Ms.Prerana Sanas 3 Mechanism…… The mechanism of these reactions has two steps: Step i) Addition of the nucleophile (:Nu– ) forms a resonance-stabilized carbanion with a new C – Nu bond—three resonance structures can be drawn. • Step [1] is rate-determining since the aromaticity of the benzene ring is lost. In Step ii) loss of the leaving group re-forms the aromatic ring. This step is fast because the aromaticity of the benzene ring is restored. 7/5/2019 Ms.Prerana Sanas 4 Factors affecting Bimolecular displacement Increasing the number of electron-withdrawing groups increases the reactivity of the aryl halide. Electron-withdrawing groups stabilize the intermediate carbanion, and by the Hammond postulate, lower the energy of the transition state that forms it.
    [Show full text]
  • Chapter 14 – Aldehydes and Ketones
    Chapter 14 – Aldehydes and Ketones 14.1 Structures and Physical Properties of Aldehydes and Ketones Ketones and aldehydes are related in that they each possess a C=O (carbonyl) group. They differ in that the carbonyl carbon in ketones is bound to two carbon atoms (RCOR’), while that in aldehydes is bound to at least one hydrogen (H2CO and RCHO). Thus aldehydes always place the carbonyl group on a terminal (end) carbon, while the carbonyl group in ketones is always internal. Some common examples include (common name in parentheses): O O H HH methanal (formaldehyde) trans-3-phenyl-2-propenal (cinnamaldehyde) preservative oil of cinnamon O O propanone (acetone) 3-methylcyclopentadecanone (muscone) nail polish remover a component of one type of musk oil Simple aldehydes (e.g. formaldehyde) typically have an unpleasant, irritating odor. Aldehydes adjacent to a string of double bonds (e.g. 3-phenyl-2-propenal) frequently have pleasant odors. Other examples include the primary flavoring agents in oil of bitter almond (Ph- CHO) and vanilla (C6H3(OH)(OCH3)(CHO)). As your book says, simple ketones have distinctive odors (similar to acetone) that are typically not unpleasant in low doses. Like aldehydes, placing a collection of double bonds adjacent to a ketone carbonyl generally makes the substance more fragrant. The primary flavoring agent in oil of caraway is just a such a ketone. 2 O oil of carraway Because the C=O group is polar, small aldehydes and ketones enjoy significant water solubility. They are also quite soluble in typical organic solvents. 14.2 Naming Aldehydes and Ketones Aldehydes The IUPAC names for aldehydes are obtained by using rules similar to those we’ve seen for other functional groups (e.g.
    [Show full text]
  • Lecture 5 Diastereoselective Addition Into Carbonyl Compounds
    Lecture 5 Diastereoselective Addition into Carbonyl Compounds Containing α-Stereogenic Centres Learning outcomes: by the end of this lecture, and after answering the associated problems, you will be able to: 1. use the Felkin-Anh T.S. to predict the stereochemical outcome of reactions carried out on carbonyl compounds that possess an α-stereogenic centre; 2. rationalise the preferential adoption of a Felkin-Anh T.S. in nucleophilic addition reactions on steric and stereoelectronic grounds; 3. understand how the presence of an α-electron-withdrawing substituent affects the Felkin-Anh T.S.; 4. use the Felkin-Anh T.S. to prepare 1,2-syn diols from α-alkoxy ketones; 5. use the Cram chelation model to prepare 1,2-anti diols from α-alkoxy ketones. Stereoselective Addition of Nucleophiles into Ketones and Aldehydes containing α- Stereogenic Centres The addition of a nucleophile into a chiral ketone or aldehyde provides diastereoisomers. When the stereogenic centres in the substrate are close to the reacting carbonyl group (e.g. 1,2-disposed), then it is often possible to exploit this stereochemical information to control the stereoselectivity of the addition reaction. This method for controlling the stereochemical outcome of a reaction is known as substrate control. A number of models have been developed for predicting the stereochemical outcome of this type of reaction. Felkin-Anh Model Consider a carbonyl compound containing an α-stereogenic centre in which the three substituents at the α-site are well differentiated in size: O HO Nu Nu OH RL Nu RL RL R R R S M S M S RM R R R R R RS = small substituent RM = medium-sized substituent RL = large substituent Of the two diastereoisomeric alcohol addition products, one will be formed to a greater extent than the other.
    [Show full text]
  • Metabolic Carbonyl Reduction of Anthracyclines — Role in Cardiotoxicity and Cancer Resistance
    Invest New Drugs DOI 10.1007/s10637-017-0443-2 REVIEW Metabolic carbonyl reduction of anthracyclines — role in cardiotoxicity and cancer resistance. Reducing enzymes as putative targets for novel cardioprotective and chemosensitizing agents Kamil Piska1 & Paulina Koczurkiewicz1 & Adam Bucki 2 & Katarzyna Wójcik-Pszczoła1 & Marcin Kołaczkowski2 & Elżbieta Pękala1 Received: 23 November 2016 /Accepted: 17 February 2017 # The Author(s) 2017. This article is published with open access at Springerlink.com Summary Anthracycline antibiotics (ANT), such as doxoru- monoHER, curcumin, (−)-epigallocatechin gallate, resvera- bicin or daunorubicin, are a class of anticancer drugs that are trol, berberine or pixantrone, and their modulating effect on widely used in oncology. Although highly effective in cancer the activity of ANT is characterized and discussed as potential therapy, their usefulness is greatly limited by their mechanism of action for novel therapeutics in cancer cardiotoxicity. Possible mechanisms of ANT cardiotoxicity treatment. include their conversion to secondary alcohol metabolites (i.e. doxorubicinol, daunorubicinol) catalyzed by carbonyl re- Keywords Anthracyclines . Cardiotoxicity . Resistance . ductases (CBR) and aldo-keto reductases (AKR). These me- Pharmacokinetics . Drug metabolism . Anticancer agents tabolites are suspected to be more cardiotoxic than their parent compounds. Moreover, overexpression of ANT-reducing en- zymes (CBR and AKR) are found in many ANT-resistant Introduction cancers. The secondary metabolites show decreased cytotoxic properties and are more susceptible to ABC-mediated efflux Anthracyclines (ANT) are a class of cell-cycle non-specific than their parent compounds; thus, metabolite formation is anticancer antibiotics that were first isolated from the considered one of the mechanisms of cancer resistance. Streptomyces genus in the early 1960s.
    [Show full text]
  • Aldehydes Can React with Alcohols to Form Hemiacetals
    340 14 . Nucleophilic substitution at C=O with loss of carbonyl oxygen You have, in fact, already met some reactions in which the carbonyl oxygen atom can be lost, but you probably didn’t notice at the time. The equilibrium between an aldehyde or ketone and its hydrate (p. 000) is one such reaction. O HO OH H2O + R1 R2 R1 R2 When the hydrate reverts to starting materials, either of its two oxygen atoms must leave: one OPh came from the water and one from the carbonyl group, so 50% of the time the oxygen atom that belonged to the carbonyl group will be lost. Usually, this is of no consequence, but it can be useful. O For example, in 1968 some chemists studying the reactions that take place inside mass spectrometers needed to label the carbonyl oxygen atom of this ketone with the isotope 18 O. 16 18 By stirring the ‘normal’ O compound with a large excess of isotopically labelled water, H 2 O, for a few hours in the presence of a drop of acid they were able to make the required labelled com- í In Chapter 13 we saw this way of pound. Without the acid catalyst, the exchange is very slow. Acid catalysis speeds the reaction up by making a reaction go faster by raising making the carbonyl group more electrophilic so that equilibrium is reached more quickly. The the energy of the starting material. We 18 also saw that the position of an equilibrium is controlled by mass action— O is in large excess.
    [Show full text]
  • Ketenes 25/01/2014 Part 1
    Baran Group Meeting Hai Dao Ketenes 25/01/2014 Part 1. Introduction Ph Ph n H Pr3N C A brief history Cl C Ph + nPr NHCl Ph O 3 1828: Synthesis of urea = the starting point of modern organic chemistry. O 1901: Wedekind's proposal for the formation of ketene equivalent (confirmed by Staudinger 1911) Wedekind's proposal (1901) 1902: Wolff rearrangement, Wolff, L. Liebigs Ann. Chem. 1902, 325, 129. 2 Wolff adopt a ketene structure in 1912. R 2 hν R R2 1905: First synthesis and characterization of a ketene: in an efford to synthesize radical 2, 1 ROH R C Staudinger has synthesized diphenylketene 3, Staudinger, H. et al., Chem. Ber. 1905, 1735. N2 1 RO CH or Δ C R C R1 1907-8: synthesis and dicussion about structure of the parent ketene, Wilsmore, O O J. Am. Chem. Soc. 1907, 1938; Wilsmore and Stewart Chem. Ber. 1908, 1025; Staudinger and Wolff rearrangement (1902) O Klever Chem. Ber. 1908, 1516. Ph Ph Cl Zn Ph O hot Pt wire Zn Br Cl Cl CH CH2 Ph C C vs. C Br C Ph Ph HO O O O O O O O 1 3 (isolated) 2 Wilsmore's synthesis and proposal (1907-8) Staudinger's synthesis and proposal (1908) wanted to make Staudinger's discovery (1905) Latest books: ketene (Tidwell, 1995), ketene II (Tidwell, 2006), Science of Synthesis, Vol. 23 (2006); Latest review: new direactions in ketene chemistry: the land of opportunity (Tidwell et al., Eur. J. Org. Chem. 2012, 1081). Search for ketenes, Google gave 406,000 (vs.
    [Show full text]