University of California San Diego San Diego State University

Total Page:16

File Type:pdf, Size:1020Kb

University of California San Diego San Diego State University UNIVERSITY OF CALIFORNIA SAN DIEGO SAN DIEGO STATE UNIVERSITY Risk factors and surveillance for arboviruses and their vectors in Guatemala and Puerto Rico A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Public Health (Epidemiology) by Zachary Joseph Madewell Committee in Charge: University of California San Diego Professor Kimberly C. Brouwer, Chair Professor Cinnamon S. Bloss Professor Richard S. Garfein Professor Stephen H. Waterman San Diego State University Professor Stephanie K. Brodine Professor Thomas E. Novotny 2020 Copyright Zachary Joseph Madewell, 2020 All rights reserved The Dissertation of Zachary Joseph Madewell is approved, and it is acceptable in quality and form for publication on microfilm and electronically: __________________________________________________________________________ __________________________________________________________________________ __________________________________________________________________________ __________________________________________________________________________ __________________________________________________________________________ __________________________________________________________________________ Chair University of California San Diego San Diego State University 2020 iii EPIGRAPH Mosquito or Man? Dr. Rubert Boyce iv TABLE OF CONTENTS Signature page ............................................................................................................................................ iii Epigraph ..................................................................................................................................................... iv Table of contents ......................................................................................................................................... v List of acronyms ........................................................................................................................................ vii List of figures ............................................................................................................................................ viii List of tables................................................................................................................................................ ix Acknowledgements .................................................................................................................................... xi Vita ............................................................................................................................................................ xiii Abstract of the dissertation .................................................................................................................... xvii CHAPTER 1: Introduction ........................................................................................................................ 1 CHAPTER 2: Inverse association between dengue, chikungunya, and Zika virus infection and indicators of household air pollution in Santa Rosa, Guatemala: a case-control study ..................... 41 Abstract ................................................................................................................................................... 42 Introduction ............................................................................................................................................. 44 Methods ................................................................................................................................................... 46 Results ..................................................................................................................................................... 51 Discussion ............................................................................................................................................... 52 References ............................................................................................................................................... 57 CHAPTER 3: Comparing vector and human surveillance strategies to detect arbovirus transmission: a simulation study for Zika virus detection in Puerto Rico .......................................... 68 Abstract ................................................................................................................................................... 69 Introduction ............................................................................................................................................. 70 Methods ................................................................................................................................................... 71 Results ..................................................................................................................................................... 76 Discussion ............................................................................................................................................... 78 References ............................................................................................................................................... 82 CHAPTER 4: Associations between household environmental and immature mosquito abundance in Quetzaltenango, Guatemala ................................................................................................................ 91 Abstract ................................................................................................................................................... 92 Introduction ............................................................................................................................................. 94 Methods ................................................................................................................................................... 95 Results ................................................................................................................................................... 100 Discussion ............................................................................................................................................. 101 v References ............................................................................................................................................. 107 CHAPTER 5: Discussion and Conclusions ........................................................................................... 119 Appendix .................................................................................................................................................. 128 vi LIST OF ACRONYMS AFI Acute febrile illnesses AOR Adjusted odds ratio CDC Centers for Disease Control and Prevention CHIKV Chikungunya virus CI Confidence interval DENV Dengue virus ELISA Enzyme-linked immunosorbent assay HAP Household air pollution IQR Interquartile range MSPAS Ministerio de Salud Pública y Asistencia Social OR Odds ratio PCA Principal components analysis PPV Positive predictive value PRDH Puerto Rico Department of Health RT-PCR Reverse transcription polymerase chain reaction SAGO Sentinel autocidal gravid ovitraps SD Standard deviation SE Standard error SES Socioeconomic status UI Uncertainty interval UVG Universidad del Valle de Guatemala VICo Vigilancia Integrada Colaborativa WNV West Nile virus ZIKV Zika virus vii LIST OF FIGURES Figure 1.1: Eco-Bio-Social Conceptual Framework ................................................................................... 38 Figure 1.2: Epidemiological Triad .............................................................................................................. 39 Figure 1.3: Transmission cycles of Zika virus ............................................................................................ 40 Figure 2.1: Cuilapa National Hospital and Nueva Santa Rosa Health Center, Santa Rosa Department, Guatemala ................................................................................................................................................... 63 Figure 3.1: The total number of Zika virus infections detected and probability of detecting local transmission of Zika virus by testing Aedes aegypti females collected from CDC sentinel autocidal gravid ovitraps (SAGO) and emergency department patients with two or more Zika virus symptoms ................ 85 Figure 3.2: Expected number of tests for vector and human surveillance strategies .................................. 86 Figure 3.3: Relationship between the number of simulated Zika virus positive mosquito pools and human infections, and estimated incidence rate of human infections ..................................................................... 87 Figure 3.4: Time series relationship between the actual number of positive mosquito pools and human cases in Caguas, Puerto Rico, and estimated incidence rate of human infections ...................................... 88 Figure 4.1: Coatepeque and Génova, Quetzaltenango Department, Guatemala ....................................... 114 Figure 4.2: Cubic splines of associations between environmental capital and total number of larvae and pupae per household, Coatepeque and Génova, Guatemala, 2017 ........................................................... 115 Figure S.1: Positive predictive value of testing mosquito pools for Zika virus and emergency department patients with two or more Zika virus symptoms ......................................................................................
Recommended publications
  • Un Nouvel Eurybiini Du Genre Alesa De Guyane Française (Lepidoptera, Riodinidae)
    Bulletin de la Société entomologique de France, 120 (4), 2015 : 453-456. Un nouvel Eurybiini du genre Alesa de Guyane française (Lepidoptera, Riodinidae) par Christian BRÉVIGNON Villa A7, Rochambeau, F – 97351 Matoury <[email protected]> Résumé. – Une nouvelle espèce du genre Alesa Doubleday, 1847, originaire de Guyane française, Alesa humilis n. sp., est décrite et comparée avec deux espèces proches, A. telephae (Boisduval, 1836) et A. amethystina Gallard & Fernandez, 2015. Abstract. – A new Eurybiini of the genus Alesa from French Guiana (Lepidoptera, Riodinidae). A new species of the genus Alesa Doubleday, 1847, from French Guiana, Alesa humilis n. sp., is described and compared with two closely allied species, A. telephae (Boisduval, 1836) and A. amethystina Gallard & Fernandez, 2015. Keywords. – Riodininae, new species, taxonomy, Guiana shield. _________________ Le genre Alesa Doubleday, 1847, a récemment fourni matière à description de nouveaux taxa (SALAZAR & CONSTANTINO, 2007 ; HALL & AHRENHOLZ, 2010 ; GALLARD & FERNANDEZ, 2015). Un spécimen mâle de la collection L. & C. Brévignon avait été mis de côté depuis de nombreuses années en vue d’un examen plus approfondi. Les motifs alaires et la structure des genitalia permettent de différencier ce spécimen des taxa décrits jusqu’alors, et particulièrement d’Alesa telephae (Boisduval, 1836) et d’A. amethystina Gallard & Fernandez, 2015. L’objet de cet article est la description de cette nouvelle espèce. Alesa humilis n. sp. (fig. 1-2) HOLOTYPE : ♂, Guyane française, Roura, RN 2, PK 35, 14.X.1989, collection L. & C. Brévignon (Matoury, Guyane française). Description du mâle. – Longueur de l’aile antérieure : 19,5 mm. Antennes brun clair, trompe beige, vertex brun, pattes antérieures beiges, abdomen court, légèrement teinté d’orangé face dorsale.
    [Show full text]
  • Revision of the Genera Tiniocellus Péringuey, 1901 and Nitiocellus Gen
    Boletín de la Sociedad Entomológica Aragonesa (S.E.A.), nº 47 (2010) : 71‒126. REVISION OF THE GENERA TINIOCELLUS PÉRINGUEY, 1901 AND NITIOCELLUS GEN. N. (COLEOPTERA, SCARABAEIDAE, ONITICELLINI) Tristão Branco Rua de Camões, 788, 2º Dto, P-4000-142 Porto, Portugal − [email protected] Abstract: The taxonomical history of the genus Tiniocellus Péringuey, 1901 and the 10 species-group names that have been associated with it is reviewed, and the reasons that justify the creation of Nitiocellus gen. n. for Oniticellus panthera Boucomont, 1921 and Oniticellus collarti Janssens, 1939, are explained. The taxonomy of the Oniticellini is briefly reviewed and a key is provided for the separation of Tiniocellus and Nitiocellus gen. n. from all the other genera currently ranged in the tribe. The synonymies of Oniticellus variegatus Fåhraeus, 1857 and Oniticellus humilis Gerstaecker, 1871 with Tiniocellus spinipes (Roth, 1851) are confirmed. The Asian Tiniocellus imbellis (Bates, 1891) and the African Tiniocellus setifer (Kraatz, 1895) are rehabilitated as good species. Oniticellus modestus Arrow, 1908 is synonymised with T. imbellis, and Tiniocellus asmarensis Balthasar, 1968 with T. spinipes. Three Afrotropical species, one of them containing two subspecies, are described: T. praetermissus sp. n. from western Africa, T. dolosus sp. n. from eastern, central and western Africa, T. eurypygus sp. n. from South Africa, the nominotypical subspecies from the uplands west of the Drakensberg mountain range, and T. eurypygus transdrakensbergensis ssp. n. from the lowlands east of the same mountain range. Keys are provided to the species and sub- species of Tiniocellus, and to the species of Nitiocellus gen. n. For this study 4,628 specimens were examined, including the name-bearing types of all the species-group names, except that of T.
    [Show full text]
  • Devries, P.J., B.C. Cabral, C.M. Penz. 2004
    N. 102 May 31, 2004 ~ C/) in Biology and Geology :J ~ C/) Z :J ~ 0 ~ The early stages of Apodemia paucipuncta U (Riodinidae): myrmecophily, ~ •.......• a new caterpillar ant-organ ........l and consequences for classification ~ :J By Pi. De Vries :J ~ Center for Biodiversity Studies Milwaukee Public Museum ~ ~ ~ 800 West Wells Street Milwaukee, WI 53233, USA ~ Berites c. Cabral ~ Departamento de Zoologia ~ Universidade de Brasilia P.O. Box 04525 ~ ~ Brasilia, Distrito Federal 70919-970, Brazil :J Carla M. Pen: -< Department of Invertebrate Zoology Z Milwaukee Public Museum 800 West Wells Street, ~ Milwaukee, WI 53233, USA ........l 0 •.......• Milwaukee Public ~ U MUSEUM Milwaukee Public Museum Contributions in Biology and Geology Paul Mayer, Editor Reviewer for this Publication: Andre Victor Lucci Freitas, Museu de Historia Natural, Instituto de Biologia, Universidade Estadual de Campinas This publication is priced at $6.00 and may be obtained by writing to the Museum Shop, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Orders must include $3.00 for shipping and handling ($4.00 for foreign destinations) and must be accompanied by money order or check drawn on U.S. bank. Money orders or checks should be made payable to the Milwaukee Public Museum, Inc. Wisconsin residents please add 5% sales tax. ISBN 0-89326-215-3 ©2004 Milwaukee Public Museum, Inc. Abstract The early stages of Apodemia paucipuncta are described for the first time. This species forms symbiotic associations with Crematogaster ants in central Brazil, and possesses four sets of ant-organs: tentacle nectary organs, vibratory papillae, balloon setae and for the first time in the Riodinidae, a cervical gland that is used in myrmecophily.
    [Show full text]
  • A New Species of Alesa (Riodinidae: Eurybiini) from Eastern Ecuador
    HALL & AHRENHOLZ: A new species of Alesa TROP. LEPID. RES., 20(1):19-22, 2010 19 A NEW SPECIES OF ALESA (RIODINIDAE: EURYBIINI) FROM EASTERN ECUADOR Jason P. W. Hall1 and David H. Ahrenholz2 1Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560-0127, USA; 2Regions Hospital, 640 Jackson Street, St. Paul, MN 55101, USA Abstract- A new riodinid species in the tribe Eurybiini, Alesa suzana Ahrenholz & Hall n. sp., is described from the lowlands of eastern Ecuador. The new species appears to be sister to the widespread Amazonian species A. telephae (Boisduval, 1836). Based on the study of external morphology and male genitalia, a new species-group classification is proposed forAlesa Doubleday, 1847. The genus is divided into the amesis, telephae, and prema groups. Key words: Alesa, Amazon, Ecuador, Eurybiini, Riodinidae, South America, taxonomy The riodinid tribe Eurybiini is one of the most basal groups followed those outlined in Hall (2005). The following collection in the Neotropical subfamily Riodininae, and its members acronyms are used in the text: DA - Collection of David H. possess five forewing radial veins along with those of the tribe Ahrenholz, St. Paul, MN, USA; JHKW - Collection of Jason P. Mesosemiini (Hall, 2003). Members of the Eurybiini are most W. Hall and Keith R. Willmott, Washington, DC, USA; USNM notable for having a metallic blue-green gloss to the living - National Museum of Natural History, Smithsonian Institution, adult eyes, bristles on the medial surface of certain labial palpal Washington, DC, USA. segments, and myrmecophilous caterpillars (Reuter, 1896; Harvey, 1987; DeVries & Penz, 2000; Hall, 2003).
    [Show full text]
  • Molecular Phylogenetics of the Riodinidae (Lepidoptera)
    MOLECULAR PHYLOGENETICS OF THE RIODINIDAE (LEPIDOPTERA) By JONATHAN WALTER SAUNDERS A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2010 1 © 2010 Jonathan Walter Saunders 2 To my Mom and Dad who fostered my love of the natural world and taught me the importance of education 3 ACKNOWLEDGMENTS I thank the members of my committee for their encouragement and mentoring. And specifically I thank Dr. Tom Emmel for his multifaceted support and positive, uplifting spirit towards me, Dr. Charlie Baer for his generosity and forthrightness, and Dr. Mike Miyamoto for his patience, jokes, and ability to put my mind at ease about graduate school. I thank Mike Perry for all of his help getting me started on this project and Dr. J.D. Turner for sharing with me both his butterflies and his love and knowledge of them. I also thank Dr. Rebecca Kimball for allowing me to use her facilities and answering my questions as well as Dr. Ed Braun, Dr. David Reed, and Julie Allen for being so willing to help me with my many questions. I thank my wife for her loving patience and for her support which allowed me to finish my study. And, I thank God for the ability to study his world full of wonders. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS.................................................................................................. 4 LIST OF TABLES...........................................................................................................
    [Show full text]
  • Early Stages of the Entomophagous Metalmark Butterfly Alesa Amesis (Riodinidae: Eurybiini)
    Journal of the Lepidopterists' Sodetv 56(4), 2002,265-271 EARLY STAGES OF THE ENTOMOPHAGOUS METALMARK BUTTERFLY ALESA AMESIS (RIODINIDAE: EURYBIINI) P J, DEVRIES AND C, M, PENZ i Milwaukee Public Museum, 800 West Wells Street, Milwaukee, Wisconsin 53233, USA ABSTRACT. The immature stages of Alesa amesis are descrihed in detail for the first time, and then compared to those of its sister genus, Eurybia. Additional key words: Euryhia, morphology, myrmecophily, caterpillar calls. The riodinid butterfly Alesa amesis (Cramer, lected (caterpillars were first placed in QUinter's so­ 1777) is a widespread and often locally common lution, see protocol in DeVries 1997), then stored in member of the tribe Eurybiini with a geographic 70% alcohol, and later examined using light mi­ range that includes Brazil, the Guyanas, Venezuela croscopy. Except for the second instar, we examined Colombia, Ecuador, and Peru. Recently we showed all A. amesis early stages. Descriptions of caterpillar that A. amesis has an obligate association with Cam­ morphology follow the terminology of Peterson ponotus femoratus (Fabricius, 1804) ants, and that (1962), Cottrell (1984) and Stehr (1987), Preserved the entomophagous caterpillars possess morphologi­ material of four Eurybia species was compared to cal and behavioral adaptations for feeding on Ho­ first and fifth instar caterpillars, and pupae of A. arne­ moptera prey. These biological aspects are summa­ sis. This material included: fifth instar caterpillars of rized briefly as follows. At one site in Amazonian A. arnesis , Eurybia patrona Weymer, 1874, E. elvina Ecuador we found that female A. ames is oviposited Stichel, 1910, E. nr. nicaeus (Fabricius, 1775) and E.
    [Show full text]
  • Taxonomic Notes on Some Species of Euselasia Hübner
    Zootaxa 3869 (5): 501–522 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3869.5.1 http://zoobank.org/urn:lsid:zoobank.org:pub:C68421FA-CDB3-480B-BE00-D46F81EBD9F7 Taxonomic notes on some species of Euselasia Hübner, [1819] from the "Uriiformes" group, with the description of the immature stages of Euselasia satyroides Lathy, 1926, stat. rev. (Lepidoptera: Riodinidae: Euselasiinae) FABIO LUIS DOS SANTOS1, FERNANDO MAIA SILVA DIAS2, LUIS ANDERSON RIBEIRO LEITE3, DIEGO RODRIGO DOLIBAINA4, MIRNA MARTINS CASAGRANDE5 & OLAF HERMANN HENDRIK MIELKE6 1,2,3,4,5Laboratório de Estudos de Lepidoptera Neotropical, Departamento de Zoologia, Universidade Federal do Paraná, P.O. Box 19.020, 81.531-980, Curitiba, Paraná, Brazil. E-mail adresses: [email protected], [email protected], [email protected], [email protected], [email protected], [email protected] Abstract The specific status of Euselasia satyroides Lathy, 1926, stat. rev., currently recognized as a synonym of Eurygona mod- esta Hewitson, 1856, is reinstated, and its immature stages, reared on Pouteria salicifolia (Sapotaceae), are thoroughly described and illustrated. The identity of some species of the genus Euselasia Hübner, [1819] belonging to the "Urii- formes" species group is clarified: lectotypes are designated to Eurygona eugeon Hewitson, 1856, Eurygona modesta Bates, 1868, Euselasia geon Seitz, 1913, and Euselasia satyroides Lathy, 1926, stat. rev.; Euselasia geon Seitz, 1913, syn. rev. is considered a synonym of Eurygona eugeon Hewitson, 1856. Additionally, a taxonomic dichotomous key for the species belonging to the "Uriiformes" group is provided.
    [Show full text]
  • A List of Orchid Books
    APPENDIX A list of Orchid Books TIM WING YAM, BENJAMIN SINGER, CHOY SIN HEW, TIIU KULL, IRINA TATARENKO, AND JOSEPH ARDITTI 279 280 T.W. Yam et al. Two private libraries, Benjamin Singer’s (which he donated to the American Orchid Society) and Joseph Arditti’s (its future is yet to be decided, it may be donated to an academic or scientific institutions or sold), served as primary sources for this list. However other sources were also used. The use of multiple sources increased the number of books which are listed but may have introduced errors or imperfections for following reasons. One and the same book may have been listed under different names erroneously. Names of authors may have been misspelled. When books have more than one author, the order of authors may have been presented differently in different lists and/or one or more names may have been omitted, added or misspelled. A book may have been published under different names in more than one country. Books are sometimes published by one publisher in one country and another in a different one. Spelling errors in different lists Translations Different editions Lack of information Conventions used in spelling names like “de” and “van.” Erroneous assumptions regarding Chinese surnames. The Chinese traditions is to list surname first, as for example, Yam Tim Wing which may end up incorrectly as Wing, Y. T. in some lists compiled in the West and correctly as T. W. Yam in others. Only the last names of some authors are listed. Some entries listed as books may in fact be no more than reprints.
    [Show full text]
  • University Microfilms
    INFORMATION TO USERS This dissertation was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again — beginning below the first row and continuing on until complete. 4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation.
    [Show full text]
  • Diversity of Butterflies
    川 TTERFLIES PhilipJ. DeVries Center for BiodiversityStudies, Milwaukee PublicMuseum Overview of Butterfly Taxonomic Diversity BUTTERFLIES LIKELY REPRESENT the most familiar I1. Early Stages and Host Relationships and best known group of all insects. Within the II1. Butterfly-Ant Symbioses context of human society, butterflies serve as center ツ IV. Butterfly Mimicry and Diversity pieces in educational media, they are used extensively V. GeographicalPatterns of Butterfly Diversity in the arts, including nature and commercial advertis ツ V1. Butterfly Diversity and Habitat Destruction ing, and they are used as symbols for religious and social groups. Within the field of biology, studies on butterflies have been fundamental to the development GLOSSARY of biogeography, behavior, coevolution, conservation, development, ecological genetics, evolution,global warming, mimicry, ツ aposematic Describing an organism that is rendered population ecology, sexual selec tion, speciation, symbiotic associations, and systemat- less susceptible to predation by advertising its obvi ツ ics. In summary, butterflies have been important to ous unpalatability. Batesian mimicry A form of mimicry in which the how we perceive biodiversity. target organism is rendered less susceptible to preda ツ tion by its resemblancein morphologyor coloration to a different species that is unpalatable. 1.OVERVIEW OF BUTTERFLY cryptic Describing an organism that is concealed or TAXONOMICDIVERSITY obscured by the similarity of its appearance to the surrounding environment. Although butterflies may be the best known group of Mullenan mimicry A form of mimicry in which two insects, our understandingof their taxonomic diversity or more unpalatable species resemble each other, has two fundamentalweaknesses. The first regards the with the effect that predators are more likely to avoid recent declineof professional butterflytaxonomists and any species with this appearance.
    [Show full text]
  • Lepidoptera: Lycaenidae)
    ORIGINAL ARTICLE doi:10.1111/evo.12599 When caterpillars attack: Biogeography and life history evolution of the Miletinae (Lepidoptera: Lycaenidae) Zofia A. Kaliszewska,1,∗ David J. Lohman,1,2,3,4,∗ Kathrin Sommer,1,5 Glenn Adelson,1,6 Douglas B. Rand,1 John Mathew,1,7,8 Gerard Talavera,1,9,10 and Naomi E. Pierce1,11 1Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138 2Biology Department, City College of New York, City University of New York, New York, New York 10031 3Graduate Center, City University of New York, New York, New York 10016 4Entomology Section, National Museum of the Philippines, Manila 1000, Philippines 5Institut fur¨ Pathologie, Bonner Forum Biomedizin, Universitats¨ Klinikum Bonn, 53127 Bonn, Germany 6Environmental Studies Program, Lake Forest College, Lake Forest, Illinois 60045 7Department of Biological Sciences, Old Dominion University, Norfolk, Virginia 23529 8Department of Humanities and Social Science, Indian Institute of Science Education and Research, Pune, Maharashtra 411 008, India 9Institut de Biologia Evolutiva (CSIC-UPF), Passeig Marıtim´ de la Barceloneta, 37-49, 08003 Barcelona, Spain 10Faculty of Biology & Soil Science, St. Petersburg State University, 199034 St. Petersburg, Russia 11E-mail: [email protected] Received May 10, 2011 Accepted December 18, 2014 Of the four most diverse insect orders, Lepidoptera contains remarkably few predatory and parasitic species. Although species with these habits have evolved multiple times in moths and butterflies, they have rarely been associated with diversification. The wholly aphytophagous subfamily Miletinae (Lycaenidae) is an exception, consisting of nearly 190 species distributed primarily throughout the Old World tropics and subtropics.
    [Show full text]
  • Acoustic Communication Within Ant Societies and Its Mimicry by Mutualistic and Socially Parasitic Myrmecophiles
    SPECIAL ISSUE: COMMUNICATIVE COMPLEXITY Animal Behaviour xxx (2016) 1e8 Contents lists available at ScienceDirect Animal Behaviour journal homepage: www.elsevier.com/locate/anbehav Special Issue: Communicative Complexity Acoustic communication within ant societies and its mimicry by mutualistic and socially parasitic myrmecophiles * K. Schonrogge€ a, , F. Barbero b, L. P. Casacci b, J. Settele c, d, J. A. Thomas e a Centre for Ecology & Hydrology, MacLean Building, Wallingford, U.K. b Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy c UFZ, Helmholtz Centre for Environmental Research, Department of Community Ecology, Halle, Germany d iDiv, German Centre for Integrative Biodiversity Research, Halle-Jena-Leipzig, Germany e Department of Zoology, University of Oxford, Oxford, U.K. article info This review focuses on the main acoustic adaptations that have evolved to enhance social communi- Article history: cation in ants. We also describe how other invertebrates mimic these acoustic signals in order to coexist Received 29 January 2016 with ants in the case of mutualistic myrmecophiles, or, in the case of social parasites, corrupt them in Initial acceptance 21 April 2016 order to infiltrate ant societies and exploit their resources. New data suggest that the strength of each Final acceptance 15 September 2016 antemyrmecophile interaction leads to distinctive sound profiles and may be a better predictor of the Available online xxx similarity of sound between different myrmecophilous species than their phylogenetic distance. Finally, MS. number: 16-00080R we discuss the evolutionary significance of vibrations produced by specialized myrmecophiles in the context of ant multimodal communication involving the use of chemical and acoustic signals in com- Keywords: bination and identify future challenges for research including how new technology might allow a better acoustic communication understanding of the study systems.
    [Show full text]