<<

Overhead Slides for Chapter 12, Part 2

of Fundamentals of Atmospheric Modeling

by Mark Z. Jacobson Department of Civil & Environmental Engineering Stanford University Stanford, CA 94305-4020 January 30, 2002 Reaction With

Ethene

H H O 37% C O + C O H H H H O C C + O Formaldehyde Criegee biradical 3 O O H H H H O* H2C CH2 63% C O + C O Ethene Ethene molozonide H H Formaldehyde Excited Criegee biradical (12.89) Criegee biradical reaction

+ NO H O H C O C O H H NO2 Criegee biradical Formaldehyde (12.90)

Excited criegee biradical decomposition

60% CO + H2O

H O* H C O C O 21% CO2 + H2 H H O * + O2 Excited Criegee Excited formic 19% CO + OH + HO2 biradical acid (12.91) Alkene Reaction With Ozone

Propene

H H3C O 7.5% C O + C O H H Formaldehyde Methyl criegee biradical

H H3C O* C O + C O 42.5% H H O H O O Formaldehyde Excited methyl criegee C CH + O biradical 2 3 H3C CH CH2 H3C H O H3C C O + C O 18.5% H H Propene Propene molozonide Acetaldehyde Criegee biradical H3C H O* 33.5% C O + C O H H Acetaldehyde Excited criegee biradical

(12.92) Alkene Reaction With Ozone

Methylcriegee biradical reaction

+ NO H3C O H3C C O C O H H NO2 Methyl criegee Acetaldehyde biradical (12.93)

Excited methylcriegee biradical decomposition

16% CH4 + CO2 H3C O* H3C C O C O 64% CH3 + CO + OH H H O * 20% CH3O + HO2 + CO Excited methyl criegee Excited acetic biradical acid (12.94) Alkene Reaction With Nitrate

Ethene --> nitrated organic radicals

O O O + NO O H H + NO3 O N + O2 O O N O O N C C H H H O O O H H C CH2 C CH2 C CH2 H H NO2 H Ethene Ethyl nitrate radical Ethylperoxy nitrate Ethoxy nitrate radical radical (12.95)

Propene --> nitrated organic radicals

O O O O + NO H H O O N O O N + NO3 H O N + O2 H H C C O C CH O C CH O C CH2 2 2 H3C H H C H3C H3C 3 NO2 Propene Propyl nitrate radical Propylperoxy nitrate Propoxy nitrate radical radical (12.96) Aromatic Reaction With Hydroxyl Radical

Toluene oxidation

CH2 H2C O O + OH + O2 Benzylperoxy 8% radical

H2O Benzyl O CH3 radical O CH3 H OH

CH3 + O Toluene-hydroxyl- + OH H 2 radical adduct Toluene 92% OH CH3 OH o-Hydroxytoluene + HO2

o-Cresol

(12.97) Aromatic Reaction With Hydroxyl Radical

Benzylperoxy radical reaction with NO

H2C O O CH

+ NO + O2

H C O O NO2 HO2 2 Benzoxy Benzaldehyde radical O H C O N + NO 2 O Benzylperoxy radical

Benzyl nitrate

(12.98)

Toluene-hydroxyl radical adduct reaction

O CH3 CH3 O O + NO H H OH OH NO2 Toluene-hydroxyl radical adduct (12.99) Fate of Cresol

Cresol --> methylphenylperoxy radical and nitrocresol

CH3 + OH, 2O 2 O O

CH 3 2HO2 OH Methylphenylperoxy radical CH3 CH3 + OH OH o-Cresol O + NO2 O N H2O O Methylphenoxy m-Nitrocresol radical (12.100) Terpene Reaction With OH

HO HO CH3 CH3 H CH C C C (1) O (4) O O C H2C C O 16.4% CH2 23.6% H2 H2 O O O H CH3 + OH, O O CH 2 (2) CH3 (5) H 3 C C 21.2% C C 12.3% CH C OH H C CH HO 2 2 C H2C C CH2 H2 H2 Isoprene

CH3 CH (3) H (6) H 3 HO C C 14.1% O C C 12.3% O O O OH C C C C H2 H H2 2 H2

Isoprene peroxy radicals (12.101)

All six products convert NO to NO2 Terpene Reaction With OH

Methacrolein production via second product (12.102)

O O + NO + O2 CH CH3 H 3 H C C + C O HO CH C C CH O CH2 H H 2 2 NO2 HO2 Isoprene peroxy radical Methacrolein Formaldehyde

Methylvinylketone production via fifth product (12.103)

O + NO + O O 2 CH3 H H CH3 H C C C C + C O OH H C H H2C C 2 O H2 NO2 HO2 Isoprene peroxy radical Methylvinylketone Formaldehyde Terpene Reaction With Ozone

H CH3 H C C O + C O H2C O H Methylvinylketone Criegee biradical CH H 3 H O C C + C O O CH H CH 2 H 3 + O3 C C Methacrolein Criegee biradical H C CH 2 CH2 H 3 H C C C O Isoprene + H2C O O H Ozonide product Formaldehyde CH H 3 H C C C O O O + CH2 H Ozonide product Formaldehyde

(12.104) Alcohol Reactions

Hydroxyl radical scavenges methanol (36-hour lifetime)

H + O2 O 85% H C O H C + OH H H H HO H 2 Formaldehyde H C O H

H H2O 15% H C O Methanol H Methoxy radical

(12.105)

Hydroxyl radical scavenges ethanol (10-hour lifetime)

H H 5% H C C O H H

H + O H O H H + OH H 2 H 90% H C C O H C C H C C O H H H H H H H O HO2 2 H H Acetaldehyde Ethanol 5% H C C O H H Ethoxy radical

(12.106) Bond Lumping

Organic gases lumped into surrogate groups.

PAR (paraffins) -- Single carbon atoms with a single-bond between them

OLE (olefins) -- Terminal carbon atom pair with a double-bond between the two atoms

ALD2 -- Non-terminal carbon atom pairs with a double bond attached to one of the and terminal two-carbon carbonyl groups [C-C(=O)H]

KET -- Single carbon groups (C=O)

TOL (toluene) -- 7-carbon aromatics

XYL (m-xylene) -- 8-carbon aromatics

ISOP (isoprene) -- Terpenes

UNR -- Unreactive Carbon Bond Lumping (Table 12.7)

Chemical Name Chemical Name Chemical Name Chemical Name Carbon Bond Group Carbon Bond Group Carbon Bond Group Carbon Bond Group Chemical Structure Chemical Structure Chemical Structure Chemical Structure Ethane n-Butane 2,2,4-Trimethylpentane Cyclopentane 0.4 PAR +1.6 4 PAR 8 PAR 5 PAR UNR H2 H H H H CH3 CH3 H C C H H 2 H C C C C H H C C C C CH CH2 3 3 H C H C C H H H2 2 C H H H H CH3 H2 H H Ethene Trans 2-butene Propene Ethyne 1 ETH 2 ALD2 1 PAR + 1 OLE 1 PAR + 1 UNR H H H H H H C C C CH H C C C C H 2 H C C H H H H3C H H H Formaldehyde Acetaldehyde Propionaldehyde Benzaldehyde 1 FORM 1 ALD2 1 PAR + 1 ALD2 1 ALD2 + 5 UNR O CH O H O H C CH2 H C H C C O CH3 H H H

Toluene Ethylbenzene m-Xylene 1,2,3- 1 TOL 1 PAR + 1 TOL 1 XYL Trimethylbenzene 1 PAR + 1 XYL H3C CH CH CH 3 2 3 CH3

CH3

CH 3 CH3 Stratospheric Chemistry

Ozone mixing ratios stratosphere » 10 ppmv free troposphere » 40 ppbv urban air » 0.1 - 0.3 ppmv

Ozone production in the stratosphere

Oxygen photolysis

1 O2 + hn O( D) + O l < 175 nm (12.107)

O2 + hn O + O 175 < l < 245 nm (12.108)

Ozone formation

M 1 O( D) O (12.109)

O + O2 + M O3 + M (12.110)

Ozone photodissociation

O + hn 1 l < 310 nm 3 O2 + O( D) (12.111)

O3 + hn O2 + O l > 310 nm (12.112) Ozone Destruction by NOx

Nitrous reaction: 10% of N2O destruction

64% 2NO 1 N2O + O( D) 36% N2 + O2 (12.113)

Nitrous oxide photolysis: 90% of N2O destruction (12.114)

1 N2O + hn N2 + O( D) l < 240 nm

NO catalytically destroys ozone in the upper stratosphere

NO + O3 NO2 + O2 (12.115)

NO2 + O NO + O2 (12.116) ------

O + O3 2O2 (12.117) Ozone Destruction by HOx

Hydroxyl radical formation in stratosphere

H2O 2OH

1 O( D) + CH4 CH3 + OH

H2 H + OH (12.118)

OH catalytically destroys ozone in the lower stratosphere

OH + O3 HO2 + O2 (12.119)

HO2 + O3 OH + 2O2 (12.120) ------2O3 3O2 (12.121) Removal of HOx and NOx

Removal reactions

HO2 + OH H2O + O2 (12.122)

M NO2 + OH HNO3 (12.123)

M HO2 + NO2 HO2NO2 (12.124)

Nitric acid and peroxynitric acid photodissociation is slow

Source of Water Vapor

CH4 + OH CH3 + H2O (12.125)

Methane and reactions in the stratosphere are similar to those in the free troposphere Emissions to Stratosphere

Table 12.8. WMO (1994)

Chemical Trade Name Chemical Name Percent Formula Contribution to Stratospheric Emissions Anthropogenic Sources

CF2Cl2 CFC-12 Dichlorodifluoromethane 28

CFCl3 CFC-11 Trichlorofluoromethane 23

CCl4 Carbon tetrachloride 12

CH3CCl3 Methyl chloroform 10

CFCl2CF2Cl CFC-113 1-Fluorodichloro,2- 6 difluorochloroethane

CF2ClH HCFC-22 Chlorodifluoromethane 3

Natural Sources

CH3Cl --- Methyl chloride 15

HCl --- Hydrochloric acid 3

Total 100% Ozone Destruction by Chlorine

Photolysis of chlorinated compounds above 20 km

Cl Cl F C Cl + hn F C + Cl l < 250 nm Cl Cl (12.126)

Cl Cl F C Cl + hn F C + Cl l < 230 nm F F (12.127)

Cl Cl Cl C Cl + hn Cl C + Cl l < 250 nm Cl Cl (12.129)

H H H C Cl + hn H C + Cl l < 220 nm H H (12.130)

Methyl chloride scavenging by hydroxyl radical

H + OH H C Cl H C Cl H H H2O (12.128) Ozone Destruction by Chlorine

Catalytic ozone destruction by chlorine

Cl + O3 ClO + O2 (12.131)

ClO + O Cl + O2 (12.132) ------

O + O3 2O2 (12.133)

Only 1% of chlorine is typically active as Cl or ClO. Removal of Active Chlorine

Removal of Cl and ClO

CH4 HCl + CH3

HO2 HCl + O2 Cl + H2 HCl + H

H2O2 HCl + HO2 (12.134)

O M N Cl O + NO2 Cl O O Chlorine Chlorine monoxide nitrate (12.135)

+ HO2 H Cl O Cl O

Chlorine O2 Hypochlorous monoxide acid (12.136) Removal of Active Chlorine

HCl reservoir leaks

hn H + Cl l < 220 nm

HCl + OH Cl + H2O O Cl + OH (12.137)

ClONO2 reservoir leaks

O O N + hn Cl + O N l < 400 nm Cl O O O Chlorine Nitrate radical nitrate (12.138) HOCl reservoir leaks

H + hn Cl + OH l < 375 nm Cl O (12.139) Ozone Destruction by Bromine

CH3Br = methyl bromide (produced biogenically in the oceans and anthropogenically as soil fumigant)

Photolysis of methyl above 20 km

H H H C Br + hn H C + Br l < 260 nm H H (12.140)

Catalytic ozone destruction by bromine

Br + O3 BrO + O2 (12.141)

BrO + O Br + O2 (12.142) ------

O + O3 2O2 (12.143) Removal of Active Bromine

Removal of Br and BrO

HO2 HBr + O2 Br + H2O2 HBr + HO2 (12.144)

O M N Br O + NO2 Br O O Bromine Bromine monoxide nitrate (12.145)

HBr and BrONO2 reservoir leaks

HBr + OH Br + H2O (12.146)

O O N + hn Br + O N l < 390 nm Br O O O

Bromine Nitrate radical nitrate (12.147) Ozone Regeneration

Figs. 12.4 a, b. Time-evolution of modeled profile of ozone (a) mixing ratio and (b) number concentration at 34oN latitude, starting with zero ozone.

Hour 1 Hour 6 Hour 24 Day 5 40 40 Day 50 Day 464 30 30

20 20 Altitude (km) Altitude (km) 10 10

0 0 0 2 4 6 8 10 0 10 20 30 40 50 60 Ozone volume mixing ratio (ppmv) Ozone (1011 molecules cm-3) Regeneration Rate of the Global Ozone Layer

Fig. 12.2. Change in ozone column abundance, averaged over the globe, during two global model simulations in which chlorine was present and absent, respectively. In both cases, ozone was initially removed from the model atmosphere.

350 300 No chlorine

250 With chlorine 200 150 100 (Dobson units) 50 0

Avgerage global ozone column 0 100 200 300 400 10/1 1/7 4/17 7/26 11/4 Day and date of simulation Ozone Hole Growth

Table 12.9. Minimum measured values of ozone column abundances and areal extent of the ozone hole over Antarctic region from 1979 - 1994. Data from NASA Goddard Space Flight Center. The area of the Antarctic is about 13 million km2 and the area of North America is about 24 million km2. Ozone Minima Size (DU) (million km2) 1979 210 0 1980 195 0.5 1981 206 0 1982 182 3 1983 170 7 1984 154 9 1985 143 13 1986 159 9.5 1987 121 19 1988 179 8 1989 124 18.5 1990 126 17.5 1991 110 18 1992 121 21 1993 86 22 1994 90 23 Polar Stratospheric Cloud Reactions

Type I Polar Stratospheric Clouds (PSCs) nitric acid and water temperature of formation < 195 K diameter » 0.01 - 3 mm number concentration » 1 partic. cm-3

Type II Polar Stratospheric Clouds Water ice temperature of formation < 187 K diameter » 1 - 100 mm number concentration » 0.1 partic. cm-3

Reactions on Polar Stratospheric Cloud Surfaces

ClONO2(g) + H2O(a) HOCl(g) + HNO3(a) (12.148)

ClONO2(g) + HCl(a) Cl2(g) + HNO3(a) (12.149)

N2O5(g) + H2O(a) 2HNO3(a) (12.150)

N2O5(g) + HCl(a) ClNO2(g) + HNO3(a) (12.151)

HOCl(g) + HCl(a) Cl2(g) + H2O(a) (12.152) Surface Reaction Rates

First-order rate coefficient (s-1)

1 k = v g a (12.153) s,q 4 q q

Thermal velocity of impinging gas (cm s-1)

æ ö1 2 8kBT v q = ç ÷ (12.154) è pMq ø

Table 12.10. Estimated reaction probabilities for the gases in reactions (12.147) - (12.151) on Type I and II PSC surfaces. Data from DeMore et al. (1997) and references therein.

Reaction Type I PSCs Type II PSCs ClONO2(g) + H2O(a) 0.001 0.3

ClONO2(g) + HCl(a) 0.1 0.3

N2O5(g) + H2O(a) 0.0003 0.01

N2O5(g) + HCl(a) 0.003 0.03

HOCl(g) + HCl(a) 0.1 0.3 Polar Ozone Destruction

Cl2 and HOCl photolysis in early spring

Cl2 + hn 2Cl l < 450 nm (12.164)

HOCl + hn Cl + OH l < 375 nm (12.165)

Chlorine nitrite photolysis in early spring

ClNO2 + hn Cl + NO2 l < 370 nm (12.166)

Catalytic ozone destruction by dimer mechanism

2 x ( ClO + O ) Cl + O3 2 (12.167)

M ClO + ClO Cl2O2 (12.168)

Cl2O2 + hn ClOO + Cl l < 360 nm

M ClOO Cl + O2 (12.170) ------2O3 3O2 (12.171) Polar Ozone Destruction

A second catalytic cycle that involves bromine

Cl + O3 ClO + O2 (12.172)

Br + O3 BrO + O2 (12.173)

BrO + ClO Br + Cl + O2 (12.174) ------2O3 3O2 (12.175) Conversion of Chlorine Reservoirs to Active Chlorine

Fig. 12.5.

1% Cl, ClO

37% ClONO 2 62% HCl

Before PSC and photolysis reactions ClONO 2

HCl

Cl, ClO

After PSC and photolysis reactions