Cellular Cardiomyoplasty Using Autologous Satellite Cells: from Experimental to Clinical Study Race L

Total Page:16

File Type:pdf, Size:1020Kb

Cellular Cardiomyoplasty Using Autologous Satellite Cells: from Experimental to Clinical Study Race L Cellular Cardiomyoplasty Using Autologous Satellite Cells: from Experimental to Clinical Study Race L. Kao, Fumin Zhang(1), Zhi-Jian Yiang(1), Xiang Gao(2) and Chuanfu Li Department of Surgery, East Tennessee State University, Johnson City, TN, USA, (1) The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China and (2) Model Animal Research Center, Nanjing University, Nanjing, P.R. China Abstract Adult mammalian ventricular myocytes lack regenerative capability, consequently an in- jured heart is normally repaired by scar formation, hypertrophy of surviving myocytes, and hyperplasia of non-muscle cells. The possible existence of stem cells or progenitor cells for myocardium has been suggested recently, however it is clear that functionally significant myocardial regeneration has not been documented in diseased or injured heart. Contribution of other cells to the formation of ventricular myocytes appears to be negligible as evidenced by the consistent formation of scar after myocardial infarction. Satellite cells are adult stem cells responsible for growth, repair, and maintain homeostasis of skeletal muscle. We have been using autologous satellite cells for myocardial regeneration in dogs since 1989 and have applied this procedure to patients in 2001. Satellite cells have been successfully iso- lated, labeled, and implanted into injured heart with neomyocardial formation and func- tional improvement. Viable muscle cells with clear labeling are found in the infarct area af- ter cell implantation. The labeled muscle cells have intercalated disks at cellular junctions. Significant improvements in contractile function are only observed in the animals that have successful engraftment after cell transplantation. Marked improvement in ejection fraction, myocardial perfusion, and local contractility are also found for patients after cellular car- diomyoplasty using autologous satellite cells. Most importantly, a heart failure patient after cellular cardiomyoplasty without conjunctional surgical procedure has recovered from con- gestive heart failure with significant improvement in myocardial perfusion, contractility, and metabolic activity at sits of cell implantation. Transplantation of satellite cells into in- jured heart can be a new treatment for myocardial infarction and heart failure. Key words: cellular cardiomyoplasty, dog, heart attack, heart failure, man, satellite cells. Basic Appl Myol 13 (1): 23-28, 2003 Cardiovascular diseases remain the single largest also includes our clinical studies using patients’ own cause of morbidity and mortality in the Western world satellite cells implanted into the injured heart with or and the United States [1, 2]. It is estimated that 12.6 without simultaneous coronary artery bypass grafts. million Americans alive today have coronary artery disease and more than one million people will suffer a Materials and Methods heart attack every year. With longer life expectancy Experimental animal for the Western world, a further increase is anticipated Mongrel dogs weighing 20 to 30 kg were purchased for cardiovascular disease. Restoring blood flow, im- from a licensed vendor. The animals were housed in air- proving perfusion, reducing clinical symptoms, and conditioned rooms with free access to food and water at augmenting ventricular function are the common all times. Humane care and proper analgesic, anesthetic, treatments after myocardial infarction. Other than re- and tranquilizing drugs were provided when needed to placing the whole heart (cardiac transplantation) no all experimental animals. The “Principles of Laboratory standard clinical procedure is available to restore or Animal Care” formulated by the National Society for regenerate the damaged myocardium following a heart Medical Research and the “Guide for the Care and Use attack. This report summarizes the experimental stud- of Laboratory Animals” prepared by the National Re- ies of cellular cardiomyoplasty using autologous satel- search Council in 1996 were followed. The proposed lite cells in dogs with our new observations. This paper - 23- Satellite cells for myocardial regeneration study was approved by the University Committee on medium in a 25 cm2 culture flask. The isolated cells have Animal Care of East Tennessee State University. a doubling time of 20 to 22 hours and can easily go After fasting and preoperative antibiotic treatment, through 20 cell cycles and still retain their proliferation each dog was anesthetized with sodium pentobarbital and differentiation capabilities. The cells were sub- (15 mg/kg) and intubated with a cuffed endotracheal cultured every 3 to 4 days to maintain at low density for tube. After shaving the surgical sites and cleaning them continual proliferation without differentiation. When with alcohol, the electrocardiogram was recorded using forming multinucleated myotubes were desired, the satel- the PageWriter cardiograph and blood pressures were lite cells were cultured with medium 199 containing 2% measured with Millar micro-tip pressure transducers horse serum and 1% antibiotic antimycotic solution until (Millar Instruments, Inc., Houston, TX, USA). Anesthe- myotube formation to document myogenic capability. sia was maintained by 1% halothane and the surgical Labeling of cultured satellite cells area was prepared with Betadine. The number of ani- mals used for each study was detailed in the Results. To identify and follow the transplanted satellite cells at the site of injured heart, it is necessary to have long- Patient selection term stable labeling of the cells with high intensity and After obtaining approval from Department of Health specificity. Satellite cells enriched and proliferated by (equal to FDA of USA) and Hospital Review Board culture can be labeled with fluorescent microspheres (same as IRB of USA), patient selection and signed con- (Polyscience Inc., Warrington, PA), 3H-thymidine sent forms were established. Male patients (55 to 74 years (Amersham Life Science Inc., Arlington Heights, IL), of age) with recurrent exertion angina, abnormal ECG 5-bromo-2’-deoxyuridine (BrdU), 4’6-diamidino-2- indicating history of myocardial infarction, and coronary phenylindole (DAPI), dialkycarbocyanine (DiI) or angiography showing significant stenosis or blockage other membrane markers (Molecular Probes, Inc., were recruited for the study. 2D-echocardiography, Eugene, OR) as reported by us and other investigators 99mTc-MIBI, and /or 18F-deoxyglucose were used to de- [3-13]. The disadvantage of all these labeling proce- termine the changes in ventricular function, myocardial dures is the loss of labeling intensity as the cell divides perfusion, and metabolic activities before and after cellu- (assuming equal division into daughter cells, 50% lar cardiomyoplasty. lower intensity for each cell cycle). Therefore, better Isolation and culture of satellite cells labeling methods need be developed. The lacZ gene which encodes β-galactosidase in E. coli Under full anesthesia and sterile surgical conditions, a and green fluorescent protein (GFP) have been used to biopsy sample (15 ~ 20 g) from canine tibialis anterior label the cultured satellite cells. The mammalian reporter muscle or a small sample (2 ~ 4 g) from right vastus lat- vectors lacZ and GFP (pCMVβ) from Clontch Labora- eralis muscle of the patients was obtained for cell isola- tory Inc. (Palo Alto, CA) and Lipofectamine from Gibco tion. The muscle sample was rinsed in 70% ethanol fol- BRL (Gaithersburg, MD) have been purchased for the ++ lowed by Hank’s basal salt solution without Ca and procedure. Very good labeling efficiency can be achieved ++ Mg but contained 1% penicillin-streptomycin and 1% using Lipofectanime, however AdenoLacZ and Ade- 3 amphotericin B. The tissue was minced (~ 1 mm ) be- noGFP from Quantum Biotechnologies (Montreal, Que- fore incubation in 10 volumes of enzyme solution in bec, Canada) have outstanding labeling efficiency and the sterile 50 ml plastic tubes. The enzyme solution was label can be maintained in cultured cells for more than made of buffered medium 199 containing 1% colla- eight weeks. Unfortunately, the AdenoGFP cannot be genase and 0.2% hyaluronidase filtered through a 0.2 µ used for long-term in vivo study due to the strong in- filter and equilibrated with 95% O2 : 5% CO2. After 15 flammatory reactions and expression of viral proteins. o minutes of incubation at 37 C in a shaking water bath, The humanized Renilla green fluorescent protein the released satellite cells were harvested by pouring the (hrGFP) using helper-free adeno-associate virus (AAV- solution through layers of sterile gauze. The remaining hrGFP) purchased from Stratagene (La Jolla, CA) is o tissue was incubated in the enzyme solution at 37 C for used to label the cultured satellite cells. Since AAV can another 15 minutes to complete the enzymatic liberation insert the DNA of interest into the host genome, long- of satellite cells from muscle. term stable expression has been achieved using this The isolated satellite cells were pelleted by centrifuga- method [14]. Use AAV to label the cells has the advan- tion (650 x G for 10 min.) and washed with culture me- tages of long-term expression, non-pathogeneicity, in- dium consisting of medium 199 with 10% fetal bovine ducing no immune response, physical stability, and the serum and 1% antibiotic antimycotic solution (Sigma ability to transduce dividing and non-dividing cells [14- Chemical Co., St. Louis, MO). The viability of isolated 16]. The humanized GFP is selected
Recommended publications
  • Overexpression of Cx43 in Cells of the Myocardial Scar
    www.nature.com/scientificreports OPEN Overexpression of Cx43 in cells of the myocardial scar: Correction of post-infarct arrhythmias through Received: 27 September 2017 Accepted: 6 April 2018 heterotypic cell-cell coupling Published: xx xx xxxx Wilhelm Roell1, Alexandra M. Klein1,2, Martin Breitbach2, Torsten S. Becker2, Ashish Parikh4, Jane Lee3, Katrin Zimmermann5, Shaun Reining3, Beth Gabris4, Annika Ottersbach1,2, Robert Doran3, Britta Engelbrecht1,2, Miriam Schifer1,2, Kenichi Kimura1,2, Patricia Freitag2, Esther Carls1,2, Caroline Geisen2, Georg D. Duerr1, Philipp Sasse2, Armin Welz1, Alexander Pfeifer5, Guy Salama4, Michael Kotlikof3 & Bernd K. Fleischmann2 Ventricular tachycardia (VT) is the most common and potentially lethal complication following myocardial infarction (MI). Biological correction of the conduction inhomogeneity that underlies re- entry could be a major advance in infarction therapy. As minimal increases in conduction of infarcted tissue markedly infuence VT susceptibility, we reasoned that enhanced propagation of the electrical signal between non-excitable cells within a resolving infarct might comprise a simple means to decrease post-infarction arrhythmia risk. We therefore tested lentivirus-mediated delivery of the gap-junction protein Connexin 43 (Cx43) into acute myocardial lesions. Cx43 was expressed in (myo)fbroblasts and CD45+ cells within the scar and provided prominent and long lasting arrhythmia protection in vivo. Optical mapping of Cx43 injected hearts revealed enhanced conduction velocity within the scar, indicating Cx43-mediated electrical coupling between myocytes and (myo)fbroblasts. Thus, Cx43 gene therapy, by direct in vivo transduction of non-cardiomyocytes, comprises a simple and clinically applicable biological therapy that markedly reduces post-infarction VT. Ventricular tachycardia (VT) is the most common and potentially lethal complication following myocardial infarction (MI)1.
    [Show full text]
  • Evaluation of the Optimal Image Reconstruction Interval for Noninvasive Coronary 64-Slice Computed Tomography Venography
    Open Journal of Radiology, 2013, 3, 66-72 http://dx.doi.org/10.4236/ojrad.2013.32010 Published Online June 2013 (http://www.scirp.org/journal/ojrad) Evaluation of the Optimal Image Reconstruction Interval for Noninvasive Coronary 64-Slice Computed Tomography Venography Yasutoshi Ohta1, Shinya Fujii1, Suguru Kakite1, Einosuke Mizuta2, Masayuki Hashimoto3, Toshio Kaminou1, Toshihide Ogawa1 1Division of Radiology, Department of Pathophysiological Therapeutic Science, Faculty of Medicine, Tottori University, Yonago City, Japan 2Division of Cardiology, Sanin Rosai Hospital, Yonago City, Japan 3Division of Radiology, Tottori Prefecture Kousei Hospital, Kurayoshi City, Japan Email: [email protected] Received March 22, 2013; revised April 22, 2013; accepted April 30, 2013 Copyright © 2013 Yasutoshi Ohta et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT Objective: We investigated the appropriate reconstruction interval required to generate optimal quality images of the coronary veins and to evaluate the size of each vein at the systolic and diastolic phases using coronary computed tomo- graphy (CT) venography. Methods: Coronary CT venograms obtained from 30 patients using 64-slice CT were recon- structed at 0% to 90% of the cardiac cycle in 10% increments. Two radiologists assessed the image quality of the ante- rior interventricular vein (AIV), the great cardiac vein (GCV), the posterior vein of the left ventricle (PVLV), the poste- rior interventricular vein (PIV), the coronary sinus (CS) and the small cardiac vein (SCV). We determined the sizes of measurable CS (n = 16) and GCV (n = 12) at the end systolic and mid diastolic phases.
    [Show full text]
  • Brief Communications
    View metadata, citation and similar papers at core.ac.uk brought to you byCORE provided by Elsevier - Publisher Connector BRIEF COMMUNICATIONS CARDIOMYOPLASTY COMBINED WITH IMPLANTATION OF A CARDIOVERTER DEFIBRILLATOR Valeri S. Chekanov, MD, PhD, Sanjay Deshpande, MD, and Donald H. Schmidt, MD, Milwaukee, Wis. In the United States alone, approximately 2 to 3 million 58/25 mm Hg and mean 36 mm Hg), elevated pulmonary patients generally are affected by heart failure, and this capillary wedge pressure (an atrial wave of 28 mm Hg, number is likely to increase. 1 Survival of patients with ventricular wave of 42 mm Hg, and mean of 32 mm Hg), advanced ventricular dysfunction is limited not only by and reduced cardiac index (2.12 L/min/m2). Coronary progressive pump dysfunction but also by the risk of angiography showed severe three-vessel coronary artery sudden cardiac death. The 1-year mortality risk exceeds disease. The left ventricle was severely hypocontractile, 50% for patients with class IV symptoms. 2 Dynamic with an ejection fraction of 10%. cardiomyoplasty is emerging as a promising form of Latissimus dorsi cardiomyoplasty was chosen instead of surgical therapy for patients with advanced ventricular heart transplantation because the patient did not have dysfunction, but sudden cardiac death remains a major end-stage heart failure. Cardiomyoplasty was performed factor in decreased long-term survival among patients who through a medial sternotomy and a posterior wrap was have undergone cardiomyoplasty.3 Among the various performed. A Medtronic cardiostimulator (Medtronic, available therapeutic strategies for patients at high risk for Inc., Minneapolis, Minn.) was implanted with the myocar- sudden cardiac death, the implantable cardioverter defi- dial and skeletal electrodes placed in the conventional brillator (ICD) has been shown to be effective.
    [Show full text]
  • Pressure-Volume Measurements By
    PRESSURE-VOLUME MEASUREMENTS BY CONDUCTANCE CATHETER METHOD IN THORACIC SURGERY AND INTENSIVE CARE STUDIES CD Leycom Argonstraat 116 2718 SP Zoetermeer The Netherlands Tel: (31) 79 360 1780 Fax: (31) 79 362 1743 Email: [email protected] Website: www.cdleycom.com Version 0035.0 Ref.: CC-SURG.REV.V0035 1. CARDIOMYOPLASTY and AORTOMYOPLASTY In cardiomyoplasty dilated cardiomyopathy is treated by surgically wrapping the right latissimus muscle around the heart.The purpose of this is to stimulate the muscle, after having been conditioned for several months, in order to assist the ventricle in ejection during selected heart beats. The clinical success of this method is still debated. One of the important issues is how to evaluate the effects of the procedure in terms of improved pump function of the left ventricle. One of the most useful (or even the only) ways of assessing changed hemodynamics and contractile performance is the registration of left ventricular pressure- volume loops. Such loops may be constructed on a continuous basis during preload reduction (by transient vena cava occlusion) using the conductance catheter as has been done in several animal studies (1, 2, 3, 4). The general conclusion of these studies was that the proper stimulation protocol of the wrapped muscle effectuated an increase in contractility expressed by a leftward displacement and/or steeper slope of the end-systolic pressure-volume relation (ESPVR). A similar analysis, applied in human patients after undergoing cardiomyoplasty, has been published recently (5). Although no load reduction was performed in this multi- clinical study, it was shown convincingly that a stimulated heart beat when compared to unstimulated beats, resulted in an increased stroke volume mainly effectuated through a decrease in end-systolic volume, provided an optimal stimulation setting was utilized.
    [Show full text]
  • Biointerventional Cardiovascular Therapy
    European Heart Journal (2002) 23, 1753–1756 doi:10.1053/euhj.2002.3321, available online at http://www.idealibrary.com on Review Article Biointerventional cardiovascular therapy I. D. Cox, C. A. Thompson and S. N. Oesterle Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts, U.S.A. Introduction However, viral vectors (such as adeno- and retroviruses) are generally considered to provide superior gene trans- Recent advances in gene and cell based therapies have fer efficiency in terms of both magnitude and duration of created exciting possibilities for therapeutic modification gene expression[4]. Non-selective delivery of adenoviral of local vascular and myocardial biology. The parallel vectors, either by intracoronary injection[5] or pressure- evolution of increasingly sophisticated catheter-based regulated retroinfusion via the coronary veins[6], can systems is currently expanding the frontiers of percu- result in diffuse distribution throughout the myocar- taneous intervention in cardiovascular disease[1,2] and dium. More selective gene transfer can be achieved by offers the possibility of delivering gene and cell based direct injection of genetic material into myocardium[7]. therapies by minimally invasive means. This conver- The latter approach achieves higher local tissue con- gence of biotechnology and advanced catheter based centration of therapeutic substrate and thereby seems systems can sensibly be referred to as bio-interventional likely to prove more efficient and less liable to produce cardiovascular therapy and rapid progress is currently undesirable effects in other vascular beds. In most cases, being made in a number of areas within this field. selective local injection of genetic substrate has been achieved through open surgical access to the myocar- dium.
    [Show full text]
  • Basic Appl Myol 8 (1), 1998 - Myologynews Abstracts of the International Workshop on Dynamic Cardiomyoplasty, Padova - January 17-18, 1998 (IWDC98)
    Basic Appl Myol 8 (1), 1998 - MyologyNews Abstracts of the International Workshop on Dynamic Cardiomyoplasty, Padova - January 17-18, 1998 (IWDC98) Institute of Cardiovascular Surgery & Future perspectives for Cardiomyoplasty include the use C.N.R. Unit for Muscle Biology and Physiopathology of minimally invasive video-assisted techniques, the University of Padova evaluation of a vascular delay between latissimus dorsi muscle dissection and cardiac wrapping, the International Workshop on modification of the post-operative electrostimulation protocol (using an intermittent LDM pacing: "demand Dynamic Cardiomyoplasty Cardiomyoplasty"), and the use of anabolic steroids and growth factors to improve muscle function. There is a new tendency to associate Cardiomyoplasty with (IWDC98) electrophysiological therapy. These therapies include the implantation of ventricular defibrillators, cardiac January 17- 18, 1998 multiple pacing, and the induction of a permanent AV block and subsequent cardiac pacing in Cardiomyoplasty Hotel Plaza - Padova, Italy patients suffering from atrial fibrillation. The clinical use of aortomyoplasty is under Scientific Board investigation; muscle-powered artificial ventricle is Ugo Carraro, President; Alain Carpentier, Dino progressing and a new promising technique, cellular and Casarotto, Juan C. Chachques, Valeri S. Chekanov, Ray C- molecular Cardiomyoplasty, is emerging. J Chiu, Claudio Muneretto, Stanley Salmons IMPROVING CARDIOMYOPLASTY RESULTS: Topics INTRODUCTION OF AN INTEGRATED FIVE-STEP APPROACH FOR OVERCOMING WEAK POINTS Minimally invasive videoassisted Cardiomyoplasty - Vascular delay - Monitoring of cardiac function - Valeri S. Chekanov, Victor V. Nikolaychik, Michelle Conditioning and regime stimulation protocols - LD flap A. Rieder, Donald H. Schmidt monitoring - Demand Dynamic Cardiomyoplasty Milwaukee Heart Project, Wisconsin, USA. In a previous clinical study (Russia 1988-1993), 35 Local Organizers patients underwent dynamic Cardiomyoplasty (CMP) U.
    [Show full text]
  • Stem Cell Cardiomyoplasty—W Shim & P Wong 451 Review Article
    Stem Cell Cardiomyoplasty—W Shim & P Wong 451 Review Article Stem Cell Cardiomyoplasty: State-of-the-Art 1 1 W Shim, PhD, P Wong, MBBS, FAMS Abstract Congestive heart failure (CHF) remains the most common diagnosis made in cardiology wards today. No long-term therapeutic option for end-stage CHF is available except for orthotopic heart transplant. Cellular-based therapy has emerged as a potential new therapy for patients with advanced heart failure. Different cell types are being explored in preclinical and clinical studies with encouraging results. Critical issues, such as types of cells, ideal number of cells, route of delivery, timing and targets of delivery, remain to be optimised to maximise the benefits of cell therapy. In this review, we seek to summarise the latest data and postulate future directions in this potentially exciting field. Ann Acad Med Singapore 2004;33:451-60 Key words: Cardiomyoplasty, Heart failure, Myocardial repair, Stem cells Introduction Early cell transplantation results are encouraging, Congestive heart failure (CHF) remains the most common with reports of significant improvement of cardiac diagnosis made in cardiology wards today. At present, no performance and claims of myocardial regeneration. To long-term therapeutic option for end-stage CHF is available date, more than 100 patients with MI have been reported to except for orthotopic heart transplant. There remains a show improved cardiac performance after receiving cell 24-26,32-35,37-41 severe shortage of donor hearts for transplant. Since 1990 therapy. However, some basic questions remain when the heart transplant programme in Singapore began, to be answered before cellular transplant can be adopted on only 24 heart transplants have been performed.
    [Show full text]
  • NOMESCO Classification of Surgical Procedures
    NOMESCO Classification of Surgical Procedures NOMESCO Classification of Surgical Procedures 87:2009 Nordic Medico-Statistical Committee (NOMESCO) NOMESCO Classification of Surgical Procedures (NCSP), version 1.14 Organization in charge of NCSP maintenance and updating: Nordic Centre for Classifications in Health Care WHO Collaborating Centre for the Family of International Classifications in the Nordic Countries Norwegian Directorate of Health PO Box 700 St. Olavs plass 0130 Oslo, Norway Phone: +47 24 16 31 50 Fax: +47 24 16 30 16 E-mail: [email protected] Website: www.nordclass.org Centre staff responsible for NCSP maintenance and updating: Arnt Ole Ree, Centre Head Glen Thorsen, Trine Fresvig, Expert Advisers on NCSP Nordic Reference Group for Classification Matters: Denmark: Søren Bang, Ole B. Larsen, Solvejg Bang, Danish National Board of Health Finland: Jorma Komulainen, Matti Mäkelä, National Institute for Health and Welfare Iceland: Lilja Sigrun Jonsdottir, Directorate of Health, Statistics Iceland Norway: Øystein Hebnes, Trine Fresvig, Glen Thorsen, KITH, Norwegian Centre for Informatics in Health and Social Care Sweden: Lars Berg, Gunnar Henriksson, Olafr Steinum, Annika Näslund, National Board of Health and Welfare Nordic Centre: Arnt Ole Ree, Lars Age Johansson, Olafr Steinum, Glen Thorsen, Trine Fresvig © Nordic Medico-Statistical Committee (NOMESCO) 2009 Islands Brygge 67, DK-2300 Copenhagen Ø Phone: +45 72 22 76 25 Fax: +45 32 95 54 70 E-mail: [email protected] Cover by: Sistersbrandts Designstue, Copenhagen Printed by: AN:sats - Tryk & Design a-s, Copenhagen 2008 ISBN 978-87-89702-69-8 PREFACE Preface to NOMESCO Classification of Surgical Procedures Version 1.14 The Nordic Medico-Statistical Committee (NOMESCO) published the first printed edition of the NOMESCO Classification of Surgical Procedures (NCSP) in 1996.
    [Show full text]
  • Surgical Treatment of Heart Failure
    MEDICAL POLICY POLICY TITLE SURGICAL TREATMENT OF HEART FAILURE POLICY NUMBER MP-1.082 Original Issue Date (Created): 8/23/2002 Most Recent Review Date (Revised): 4/22/2021 Effective Date: 9/1/2021 POLICY PRODUCT VARIATIONS DESCRIPTION/BACKGROUND RATIONALE DEFINITIONS BENEFIT VARIATIONS DISCLAIMER CODING INFORMATION REFERENCES POLICY HISTORY I. POLICY Partial Left Ventriculectomy Partial left ventriculectomy is considered not medically necessary. Surgical Ventricular Restoration Surgical ventricular restoration is considered investigational for the treatment of ischemic dilated cardiomyopathy or post-infarction left ventricular aneurysm, as there is insufficient evidence to support a conclusion concerning the health outcomes or benefits associated with this procedure. Cross-reference: MP-1.026 Total Artificial Hearts and Implantable Ventricular Assist Devices II. PRODUCT VARIATIONS Top This policy is only applicable to certain programs and products administered by Capital BlueCross please see additional information below, and subject to benefit variations as discussed in Section VI below. FEP PPO: Refer to FEP Benefit Brochure for information on Surgical treatment of heart failure: https://www.fepblue.org/benefit-plans/benefit-plans-brochures-and-forms Note* - The Federal Employee Program (FEP) Service Benefit Plan does not have a medical policy related to these services. Page 1 MEDICAL POLICY POLICY TITLE SURGICAL TREATMENT OF HEART FAILURE POLICY NUMBER MP-1.082 III. DESCRIPTION/BACKGROUND Top Partial Left Ventriculectomy Partial left ventriculectomy (PLV) is a surgical procedure aimed at improving the hemodynamic status of patients with end-stage congestive heart failure (CHF) by directly reducing left ventricular size, and thereby improving the pump function of the left ventricle (LV). This surgical approach to the treatment of congestive heart failure (CHF) (also known as the Batista procedure, cardio-reduction, or left ventricular remodeling surgery) is primarily directed at patients with an underlying non-ischemic dilated cardiomyopathy.
    [Show full text]
  • Percutaneous Transvenous Cellular Cardiomyoplasty a Novel Nonsurgical Approach for Myocardial Cell Transplantation Craig A
    CORE Metadata, citation and similar papers at core.ac.uk Provided by ElsevierJournal - ofPublisher the American Connector College of Cardiology Vol. 41, No. 11, 2003 © 2003 by the American College of Cardiology Foundation ISSN 0735-1097/03/$30.00 Published by Elsevier Inc. doi:10.1016/S0735-1097(03)00397-8 Percutaneous Transvenous Cellular Cardiomyoplasty A Novel Nonsurgical Approach for Myocardial Cell Transplantation Craig A. Thompson, MD,*‡࿣ Boris A. Nasseri, MD,†‡ Joshua Makower, MD,¶ Stuart Houser, MD,§ Michael McGarry, MSC,§ Theodore Lamson, PHD,§ Irina Pomerantseva, MD, PHD,*‡ John Y. Chang, MS ME,¶ Herman K. Gold, MD, FACC,* Joseph P. Vacanti, MD,†‡ Stephen N. Oesterle, MD, FACC*‡ Boston and Cambridge, Massachusetts; and Menlo Park, California OBJECTIVES The study evaluated a nonsurgical means of intramyocardial cell introduction using the coronary venous system for direct myocardial access and cell delivery. BACKGROUND Direct myocardial cell repopulation has been proposed as a potential method to treat heart failure. METHODS We harvested bone marrow from Yorkshire swine (n ϭ 6; 50 to 60 kg), selected culture-flask adherent cells, labeled them with the gene for green fluorescence protein, expanded them in culture, and resuspended them in a collagen hydrogel. Working through the coronary sinus, a specialized catheter system was easily delivered to the anterior interventricular coronary vein. The composite catheter system (TransAccess) incorporates a phased-array ultrasound tip for guidance and a sheathed, extendable nitinol needle for transvascular myocardial access. A microinfusion (IntraLume) catheter was advanced through the needle, deep into remote myocardium, and the autologous cell–hydrogel suspension was injected into normal heart. Animals were sacrificed at days 0 (n ϭ 2), 14 (n ϭ 1, ϩ 1 control/collagen biogel only), and 28 (n ϭ 2), and the hearts were excised and examined.
    [Show full text]
  • The Coronary Venous Anatomy a Segmental Approach to Aid Cardiac Resynchronization Therapy Jagmeet P
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of the American College of Cardiology Vol. 46, No. 1, 2005 © 2005 by the American College of Cardiology Foundation ISSN 0735-1097/05/$30.00 Published by Elsevier Inc. doi:10.1016/j.jacc.2005.04.017 Viewpoint The Coronary Venous Anatomy A Segmental Approach to Aid Cardiac Resynchronization Therapy Jagmeet P. Singh, MD, PHD,* Stuart Houser, MD,† E. Kevin Heist, MD, PHD,* Jeremy N. Ruskin, MD* Boston, Massachusetts The coronary sinus is the gateway for left ventricular (LV) epicardial lead placement for cardiac resynchronization therapy. The implanting electrophysiologist is usually challenged by a high degree of variability in the coronary venous anatomy, making it important to have a more consistent and uniform segmental approach to describe the coronary venous tree and its branches. Classifying the coronary sinus branches and tributaries by the segment of their location rather than by conventional anatomic names (i.e., middle cardiac vein, great cardiac vein, and so on), would provide more relevant anatomic and functional information at the time of LV lead placement. This would enable the implanting physician to proactively correlate the venous anatomy with the segmental wall motion abnormalities or dyssynchrony, as defined by echocardiography and other imaging modalities. The current viewpoint calls for a more systematic segmental approach for describing the coronary venous anatomy. (J Am Coll Cardiol 2005;46:68–74) © 2005 by the American College of Cardiology Foundation The cardiac venous system, which has always been simplistic and has been mostly directed at placement of overshadowed by the proximate presence of the coronary the lead along the lateral wall of the LV (10).
    [Show full text]
  • Medical/Surgical Investigative List Effective
    Medical/Surgical and Behavioral Health Care Services Investigative List Effective: September 14, 2021 This information is updated regularly. It is not an all-inclusive list of health care services considered investigative and therefore, not eligible for reimbursement. Always consult with enrollee’s Certificate of Coverage (COC) or Summary Plan Description (SPD) as all eligible care is subject to limits and copayments specified by the Plan. To the extent, there is any inconsistency between this List and the terms of an enrollee’s benefit plan, the terms of the enrollee’s benefit plan documents will control. In many instances, the CPT and HCPCS are listed for reference, only. The description of the health care service is the most definitive. DATE LAST CPT/ ADDED REVIEW DESCRIPTION COMMENTS/DEFINITION HCPCS TO LIST DATE 12/2020 0600T Ablation, irreversible electroporation; 1 or more tumors per organ, 0601T including imaging guidance, when performed, percutaneous or open 06/2020 0492T Ablative laser treatment, non-contact, full field and fractional ablation, 0491T open wound 12/2020 +78434 Absolute quantification of myocardial blood flow (AQMBF), PET, rest and pharmacologic stress 12/2020 Acellular and cellular dermal replacement products from human Can allow AmnioBand® Allograft Placental Matrix, Epifix®, placental membrane and umbilical tissue for wound care, with the Grafix® , or GrafixPL Prime for treatment of diabetic foot exception of AmnioBand® Allograft Placental Matrix, Epifix®, Grafix® , and chronic venous ulcers or GrafixPL Prime for treatment of diabetic foot and chronic venous ulcers Can allow amniotic membrane allograft for corneal grafting 02/2021 Acne treatments; blue light therapy, pulsed dye laser treatment, Blue light also known as ClearLight Acne PhotoClearing smooth beam laser System.
    [Show full text]