Geography Progression Planning
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fly High Dive Deep
FLY HIGH DIVE DEEP COMMERCIAL DIVING REMOTE OPERATED VEHICLES SPACE EXPLORATION HUMAN LIFE SCIENCE WWW.BLUEABYSS.UK THE PROMISE Blue Abyss is among the most ground-breaking projects of its time. Designed to support the commercial diving, remote operated vehicle, human spaceflight and human life science sectors, Blue Abyss promises to be Europe’s premier extreme environment research, development and training facility. This unique aquatic centre will house the world’s largest and deepest indoor pool, alongside: hyper and hypobaric chambers; the Kuehnegger Human Performance Centre; a micro-gravity simulation suspension suite for replicating the effects of weightlessness and hypo-gravity; amphitheatre and classrooms; cafeteria and 120-bed hotel. ASTRONAUTS AND “OTHER SPACE PROFESSIONALS WILL WANT TO COME FROM AROUND THE WORLD TO USE THE MASSIVE, YET CONTROLLED, ENVIRONMENT TO REDUCE RISK IN SPACE. I CAN SEE PLENTY OF INTERNATIONAL COLLABORATIONS AND BUSINESS VENTURES STARTING LIFE WITHIN BLUE ABYSS. DR HELEN SHARMAN” FIRST BRITISH CITIZEN IN SPACE 1 Full onsite mission control, hypo and hyperbaric chambers Crane and lifting platform (30 tonnes) Training/experience mock-ups Pool 50m x 40m on surface Multi-level functionality including ‘Astrolab’ at 12m 50m at deepest point / THE MULTI-LEVEL POOL WILL CONTAIN 38,000M3 OF WATER, EXCEEDING ALL OTHER FACILITIES IN EXISTENCE BOTH IN TERMS OF VOLUME AND DEPTH. Image courtesy of Cityscape Digital 2 3 THE POSSIBILITIES Blue Abyss is a truly pioneering project that will extend the Blue Abyss is designed to cater for Space environment simulation possibilities for education, commercial and scientific research, on one hand, and freediving on the other, with a huge variety of development and training beyond anything that exists today. -
Safe Transportation Systems for Sustainable Commercial Human Spaceflight / Small Launchers: Concepts and Operations (Part II) (9-D6.2)
69th International Astronautical Congress 2018 Paper ID: 47238 IAF SPACE TRANSPORTATION SOLUTIONS AND INNOVATIONS SYMPOSIUM (D2) Safe Transportation Systems for Sustainable Commercial Human Spaceflight / Small Launchers: Concepts and Operations (Part II) (9-D6.2) Author: Mr. Charles Lauer Blue Abyss, United States, [email protected] Mr. Simon Evetts Blue Abyss, United Kingdom, [email protected] Mr. John Vickers Blue Abyss, United Kingdom, [email protected] A NEW COMMERCIAL SPACEFLIGHT TRAINING PROGRAM FOR SUBORBITAL AND ORBITAL SPACEFLIGHT Abstract After many years of engineering and development, suborbital and orbital commercial spaceflight vehi- cles are finally expected to enter service in the next year or two. Blue Origin is already flying FAA/AST licensed unmanned commercial suborbital research flights from their private spaceport in west Texas and expect to begin testing their New Shepard vehicle with onboard crews this year. Virgin Galactic should begin powered flight tests on the second SpaceShipTwo in 2018 with commercial suborbital tourism flights potentially beginning in 2019. For orbital commercial spaceflight, SpaceX and Boeing should both be- gin flight testing and enter initial commercial flight service to the ISS before the close of 2019. These suborbital and orbital vehicle programs now provide a solid business foundation for the development of dedicated commercial spaceflight training programs to enable safe and enjoyable spaceflight experiences for commercial customers. Blue Abyss Ltd. is developing a dedicated spaceflight training facility and associated training curricula in Central Bedfordshire about an hour north of central London. The facility will be located at the former RAF Henlow base as part of a regional development plan for the Oxford { Cambridge Technology Corridor. -
Curriculum Overview
Curriculum Overview Curriculum Intent By the end of Year 6, we aim for children to leave Priors Hall being: 1. Respectful and caring learners who can take responsibility for themselves and their part in local area and wider world. 2. Confident communicators who are articulate and able to engage in conversations with others. 3. Critical thinkers who find solutions and problem solve using their own initiative and prior knowledge. 4. Curious and questioning learners who are able to challenge, investigate and research effectively. 5. Understanding learners who are aware of how life has changed for people both within and outside of living memory. 6. Expressive and creative learners who are able to choose from varied mediums to express themselves. 7. Collaborative learners who work and interact well with others. 8. Ready for the challenges of secondary school and able to embrace opportunities that become available to them. Year 1 Autumn 1 Autumn 2 Spring 1 Spring 2 Summer 1 Summer 2 Dinosaur Planet Bright Lights, Big Moon Zoom Superheroes Paws, Claws and Enchanted City Whiskers Woodlands History & Science Geography History & Science Science Art & Science Science National History: Name, locate and History: Science: Science: Identify and name a Curriculum Learn about events identify Know and understand Identify, name, draw identify and name a variety of common beyond living characteristics of the the history of these and label the basic variety of common wild and garden statement memory that are four countries and islands as a coherent, parts of the human animals including plants, including significant nationally capital cities of the chronological body and say which fish, amphibians, deciduous or globally UK and its narrative, from the part of the body is reptiles, birds and and evergreen surrounding seas. -
CLV Chinese Language Lessons Sen Lin Hu Chinese Language Camp Lessons for the Classroom
CLV Chinese Language Lessons Sen Lin Hu Chinese Language Camp Lessons For the Classroom Date: Class: Chinese Language Level: Novice High Grade High School Day in 1 Minutes 70 Unit Geography of China: How is my experience in China influenced by where I am? Unit Theme and Question: STAGE 1: What will learners be able to do with what they know by the end of this lesson? DO KNOW What are the learning targets for this lesson? What vocabulary, grammatical structures, language chunks, cultural knowledge, and content information do learners need to accomplish the lesson can-do? Learners will be able to: • Vocabulary: 沙漠, 高原, 高山, 小山, 河流, 森林, • Compare the shape of China to a rooster. 草原, 大海, 耕地(农田),公鸡 • Recognize and name 9 main geographical features of China: • Culture: Geographical location of landforms in China desert, mountains, hills, ocean, grassland, farmland, plateau, • Radicals: 木,艹, 水 forest, river. • Sentence structures: 在 中国(direction)有 ——。 • Locate these geographical features on a map of China • Identify 3 radicals in characters related to geography 在中国西北有沙漠和高原。 • Form sentences describing the locations of landforms (In China’s northwest there is desert, and high plateau.) STAGE 2: How will learners demonstrate what they can do with what they know by the end of the lesson? What will learners do (learning tasks/activities/formative assessments) to demonstrate they can meet the lesson can-do? Learners will: • select from multiple possibilities which animal is represented in the shape of China • name 9 landforms found in China, match -
'The Last of the Earth's Frontiers': Sealab, the Aquanaut, and the US
‘The Last of the earth’s frontiers’: Sealab, the Aquanaut, and the US Navy’s battle against the sub-marine Rachael Squire Department of Geography Royal Holloway, University of London Submitted in accordance with the requirements for the degree of PhD, University of London, 2017 Declaration of Authorship I, Rachael Squire, hereby declare that this thesis and the work presented in it is entirely my own. Where I have consulted the work of others, this is always clearly stated. Signed: ___Rachael Squire_______ Date: __________9.5.17________ 2 Contents Declaration…………………………………………………………………………………………………………. 2 Abstract……………………………………………………………………………………………………………… 5 Acknowledgements …………………………………………………………………………………………… 6 List of figures……………………………………………………………………………………………………… 8 List of abbreviations…………………………………………………………………………………………… 12 Preface: Charting a course: From the Bay of Gibraltar to La Jolla Submarine Canyon……………………………………………………………………………………………………………… 13 The Sealab Prayer………………………………………………………………………………………………. 18 Chapter 1: Introducing Sealab …………………………………………………………………………… 19 1.0 Introduction………………………………………………………………………………….... 20 1.1 Empirical and conceptual opportunities ……………………....................... 24 1.2 Thesis overview………………………………………………………………………………. 30 1.3 People and projects: a glossary of the key actors in Sealab……………… 33 Chapter 2: Geography in and on the sea: towards an elemental geopolitics of the sub-marine …………………………………………………………………………………………………. 39 2.0 Introduction……………………………………………………………………………………. 40 2.1 The sea in geography………………………………………………………………………. -
Dives of the Bathyscaph Trieste, 1958-1963: Transcriptions of Sixty-One Dictabelt Recordings in the Robert Sinclair Dietz Papers, 1905-1994
Dives of the Bathyscaph Trieste, 1958-1963: Transcriptions of sixty-one dictabelt recordings in the Robert Sinclair Dietz Papers, 1905-1994 from Manuscript Collection MC28 Archives of the Scripps Institution of Oceanography University of California, San Diego La Jolla, California 92093-0219: September 2000 This transcription was made possible with support from the U.S. Naval Undersea Museum 2 TABLE OF CONTENTS INTRODUCTION ...........................................................................................................................4 CASSETTE TAPE 1 (Dietz Dictabelts #1-5) .................................................................................6 #1-5: The Big Dive to 37,800. Piccard dictating, n.d. CASSETTE TAPE 2 (Dietz Dictabelts #6-10) ..............................................................................21 #6: Comments on the Big Dive by Dr. R. Dietz to complete Piccard's description, n.d. #7: On Big Dive, J.P. #2, 4 Mar., n.d. #8: Dive to 37,000 ft., #1, 14 Jan 60 #9-10: Tape just before Big Dive from NGD first part has pieces from Rex and Drew, Jan. 1960 CASSETTE TAPE 3 (Dietz Dictabelts #11-14) ............................................................................30 #11-14: Dietz, n.d. CASSETTE TAPE 4 (Dietz Dictabelts #15-18) ............................................................................39 #15-16: Dive #61 J. Piccard and Dr. A. Rechnitzer, depth of 18,000 ft., Piccard dictating, n.d. #17-18: Dive #64, 24,000 ft., Piccard, n.d. CASSETTE TAPE 5 (Dietz Dictabelts #19-22) ............................................................................48 #19-20: Dive Log, n.d. #21: Dr. Dietz on the bathysonde, n.d. #22: from J. Piccard, 14 July 1960 CASSETTE TAPE 6 (Dietz Dictabelts #23-25) ............................................................................57 #23-25: Italian Dive, Dietz, Mar 8, n.d. CASSETTE TAPE 7 (Dietz Dictabelts #26-29) ............................................................................64 #26-28: Italian Dive, Dietz, n.d. -
49 Chapter 5 Topographical Maps
Topographical Maps Chapter 5 Topographical Maps You know that the map is an important geographic tool. You also know that maps are classified on the basis of scale and functions. The topographical maps, which have been referred to in Chapter 1 are of utmost importance to geographers. They serve the purpose of base maps and are used to draw all the other maps. Topographical maps, also known as general purpose maps, are drawn at relatively large scales. These maps show important natural and cultural features such as relief, vegetation, water bodies, cultivated land, settlements, and transportation networks, etc. These maps are prepared and published by the National Mapping Organisation of each country. For example, the Survey of India prepares the topographical maps in India for the entire country. The topographical maps are drawn in the form of series of maps at different scales. Hence, in the given series, all maps employ the same reference point, scale, projection, conventional signs, symbols and colours. The topographical maps in India are prepared in two series, i.e. India and Adjacent Countries Series and The International Map Series of the World. India and Adjacent Countries Series: Topographical maps under India and Adjacent Countries Series were prepared by the Survey of India till the coming into existence of Delhi Survey Conference in 1937. Henceforth, the preparation of maps for the adjoining 49 countries was abandoned and the Survey of India confined itself to prepare and publish the topographical maps for India as per the specifications laid down for the International Map Series of the World. -
The Space Between: How We Understood, Valued, and Governed the Ocean Through the Process of Marine Science and Emerging Technologies
AN ABSTRACT OF THE THESIS OF Samantha Newton for the degree of Master of Arts in Environmental Arts and Humanities presented on December 11, 2018. Title: The Space Between: How We Understood, Valued, and Governed the Ocean Through the Process of Marine Science and Emerging Technologies Abstract approved: ______________________________________________________ Jacob Darwin Hamblin Ian Angell, in the New Barbarian Manifesto, wrote “A ‘brave new world’ is being forced upon unsuspecting societies by advances in information technology.” It would seem then, that technological advances happen automatically and have a life of their own. There is a logic to technological advancements that is outside human control, so people tend to react to and accommodate technological change, rather than try to reverse or redirect it. Angell’s idea draws a line between two academic theories—either technology shapes people (technological determinism) or people shape technology (social constructionism). Although other scholars, like Tommy Tranvik and Bruno Latour, propose a hybrid approach to understanding the role of science and technology in contemporary culture. Tranvik argues that merging determinism and constructionism can show a more accurate depiction of reality, and in Aramis, or The Love of Technology Latour illustrates that technology and society co-develop. The combination of these two claims is a good starting point to further understand the powerful process of knowledge production, as it shapes and is shaped by the sciences, emerging technology, resource management, and environmental value. This thesis argues that a reflexive relationship unfolded between the use of pteropods in the sciences, and their role in popular representation. Marine researchers assigned value to pteropods according to their research goals and the technologies available, which constrained the questions researchers asked about pteropods. -
Strangest of All
Strangest of All 1 Strangest of All TRANGEST OF LL AnthologyS of astrobiological science A fiction ed. Julie Nov!"o ! Euro#ean Astrobiology $nstitute Features G. %avid Nordley& Geoffrey Landis& Gregory 'enford& Tobias S. 'uc"ell& (eter Watts and %. A. *iaolin S#ires. + Strangest of All , Strangest of All Edited originally for the #ur#oses of 'EACON +.+.& a/conference of the Euro#ean Astrobiology $nstitute 0EA$1. -o#yright 0-- 'Y-N--N% 4..1 +.+. Julie No !"o ! 2ou are free to share this 5or" as a 5hole as long as you gi e the ap#ro#riate credit to its creators. 6o5ever& you are #rohibited fro7 using it for co77ercial #ur#oses or sharing any 7odified or deri ed ersions of it. 8ore about this #articular license at creati eco77ons.org9licenses9by3nc3nd94.0/legalcode. While this 5or" as a 5hole is under the -reati eCo77ons Attribution3 NonCo77ercial3No%eri ati es 4.0 $nternational license, note that all authors retain usual co#yright for the indi idual wor"s. :$ntroduction; < +.+. by Julie No !"o ! :)ar& $ce& Egg& =ni erse; < +..+ by G. %a id Nordley :$nto The 'lue Abyss; < 1>>> by Geoffrey A. Landis :'ac"scatter; < +.1, by Gregory 'enford :A Jar of Good5ill; < +.1. by Tobias S. 'uc"ell :The $sland; < +..> by (eter )atts :SET$ for (rofit; < +..? by Gregory 'enford :'ut& Still& $ S7ile; < +.1> by %. A. Xiaolin S#ires :After5ord; < +.+. by Julie No !"o ! :8artian Fe er; < +.1> by Julie No !"o ! 4 Strangest of All :@this strangest of all things that ever ca7e to earth fro7 outer space 7ust ha e fallen 5hile $ 5as sitting there, isible to 7e had $ only loo"ed u# as it #assed.; A H. -
The Relevance of Spatial Relation Terms and Geographical Feature Types
The Relevance of Spatial Relation Terms and Geographical Feature Types Chunju Zhang Xueying Zhang Key Laboratory of Virtual Geography Environment (Nanjing Normal University), MOE, Nanjing, China [email protected] Abstract: Spatial relation terms can generally indicate spatial relations de- scribed in natural language context. Their semantic representation is closely re- lated to geographical entities and their characteristics e.g. geometry, scale and geographical feature types. This paper proposes a quantitative approach to ex- plore the semantic relevance of spatial relation terms and geographical feature types of geographical entities in text. Firstly, a classification of spatial relation terms is performed. Secondly, the “Overlap” similarity measure is introduced to define the relevance of spatial relation terms and geographical feature types based on a large scale annotation corpus. Finally, a knowledge base based on protégé is developed to formally represent and visualize geographical feature types, spatial relation classifications, and the relevance of spatial relation terms and geographical feature types. This study indicates that spatial relation terms are strongly relevant to geographical feature types. The semantic representation of topological relation terms is diverse and their relevance with geograph- ical feature types is much stronger than directional relation and distance rela- tion terms, but the annotation quality and the classification granularity of geo- graphical entities in the corpus have a great effect on the performance. Keywords: spatial relation; geographical feature type; spatial relation term; relevance 1 Introduction Natural language describes the nature of people’s internal representation of space and is the primary means for representation and exchange of geographical infor- mation, such as geographical entities, spatial relations, etc. -
Geography of Coachella Valley Curriculum Guide
Exploring the Geography of Coachella Valley A Curriculum Guide for Grade 3, Standard 1 Table of Contents Acknowledgements i Table of Contents 1 Unit Overview 2 Common Core State Standards: Reading Standards for Information Text 2 Academic History-Social Science Content Standards for Grade 3 2 Kindergarten to Grade 5 Historical and Social Sciences Analysis Skills 3 Focus Questions and Assessment 3 Geography of the Coachella Valley – Background Information for the Teacher 4 Supplies Needed 6 Lesson 1: Location Match-Up 8 Lesson 2: Looking at Earth 11 Lesson 3: Where I Live 14 Lesson 4: Geographic Terms and Definitions 16 Lesson 5: Right Here in the Coachella Valley 20 Lesson 6: Geographical Features of Coachella Valley 24 Lesson 7: Human-Made Features of Coachella Valley 29 Lesson 8: Communityville 31 Extended Activities 39 Unit 3.1 Exploring the Geography of Coachella Valley Page 1 Unit Overview: Exploring the Geography of Coachella Valley __________________________________________________________________________________ Description of the Unit The unit begins with Matching Vocabulary Cards that help students learn the name of their city, county, state, nation, continent, hemisphere, and planet. In Lesson 2, students use a variety of maps to find these geographic locations while in Lesson 3 they construct a “Flip-Book” titled “Where I Live.” In Lessons 4 and 5, students study geographic terms and definitions and use local maps to identify key geographical features in the Coachella Valley. In Lessons 5 and 6, students construct a map of the Coachella Valley and identify key geographical features and human-made features. The focus in Lesson 8 is on how the natural environment of “Communityville” has been changed over time. -
An Evaluation Model of Level of Detail Consistency of Geographical Features on Digital Maps
International Journal of Geo-Information Article An Evaluation Model of Level of Detail Consistency of Geographical Features on Digital Maps Pengcheng Liu 1,2 and Jia Xiao 1,2,* 1 Hubei Province Key Laboratory for Geographical Process Analysis & Simulation, Central China Normal University, Wuhan 430079, China; [email protected] 2 College of Urban and Environmental Science, Central China Normal University, Wuhan 430079, China * Correspondence: [email protected]; Tel.: +86-157-0299-4209 Received: 29 May 2020; Accepted: 24 June 2020; Published: 26 June 2020 Abstract: This paper proposes a method to evaluate the level of detail (LoD) of geographic features on digital maps and assess their LoD consistency. First, the contour of the geometry of the geographic feature is sketched and the hierarchy of its graphical units is constructed. Using the quartile measurement method of statistical analysis, outliers of graphical units are eliminated and the average value of the graphical units below the bottom quartile is used as the statistical LoD parameter for a given data sample. By comparing the LoDs of homogeneous and heterogeneous features, we analyze the differences between the nominal scale and actual scale to evaluate the LoD consistency of features on a digital map. The validation of this method is demonstrated by experiments conducted on contour lines at a 1:5K scale and artificial building polygon data at scales of 1:2K and 1:5K. The results show that our proposed method can extract the scale of features on maps and evaluate their LoD consistency. Keywords: level of detail; graphical unit; geographical feature; digital map 1.