The Use of the Primitive Equations of Motion in Numerical Prediction

Total Page:16

File Type:pdf, Size:1020Kb

The Use of the Primitive Equations of Motion in Numerical Prediction The Use of the Primitive Equations of Motion in Numerical Prediction By J. CHARNEY,The Institute for Advanced Stady, Princeton1 (Manuscript received September I 5, 1954) Abstract An obstacle to the use of the primitive hydrodynamical equations for numerical pre- diction is that the initial wind and pressure fields determined by conventional means give rise to spurious large-amplitude inertio-gravitational oscillations which obscure the nieteoro- logically Eignificant large-scale motions. It is shown how this difficulty may be overcome by the use of a relationship between wind and pressure which enables one to determine thesc fields in such a manner that the noise motions do not arise. The method is illustrated by a numerically computed example. The wind-pressure relationship is in a sense a generalization of the geostrophic approxi- mation and may be used where the latter approximation is inapplicable, either to determine initial conditions or to derive a set of filtering equations for numerical prediction analogous to the quasi-geostrophic equations. I. Introduction these equations have already yielded forecasts The recent widespread revival of interest comparable in accuracy to those produced by in numerical weather prediction has been conventional methods, and probably superior brought about partly by the development of in accuracy in the case of new developments. high-speed electronic computing apparatus In purely theoretical investigations the use of but also, to a large extent, by the very en- the geostrophic approximation, by automa- couraging early results obtained through tically filtering out high-frequency “noise” systematic use of the geostrophic approxima- disturbances, has aided greatly in the under- tion in what has come to be known as the standing of the physical properties of large- quasi-geostrophic equations of motion. In scale flow systems where the high-frequency these equations it is assumed that the wind is inertial effects are unimportant. and remains nearly geostrophic, at least Yet those who have participated actively enough so that the horizontal acceleration in this work are aware that this is barely the terms in the equations of motion may be beginning of a new era, an era in which approximated by the accelerations of the numerical methods will find increasing applica- geostrophic wind. Numerical integrations of tion in practical and theoretical meteorology, and that the quasi-geostrophic equations are This articlc is based on work done under contract but a first approximation to the equations N6-ori Task Order I with the Office of Naval Re- search, U. S. Navy, and The Geophysics Research Di- which will eventually be used to describe the rectorate, Air Force Cambridge Research Center. atmospheric motion. Experience has already Tellus VII (1955). 1 PRIMITIVE EQUATIONS OF MOTION IN NUMERICAL FORECASTING 23 revealed systematic errors attributable to the V!fS. The motion is said to be quasi-geo- geostrophic a proximation. The approxima- strophic if this number is small compared to tion tends to Bisplace depressions too tar north- unity. There are, however, cases where either ward over the United States, and does not, because I/ is large or S is small the Rossby apparently, permit the development of frontal number is not small. Nevertheless the large- discontinuities. It is of course possible to scale meteorologically significant motions are arrive at higher approximations by successive distinguishable from the inertio-gravitational iteration of the geostrophic approximation, oscillations, the other class of possible quasi- but this process, besides leading to severe hydrostatic motions. We shall arrive at the mathematical complications, is valid only required method for determining the horizontal when the geostrophic deviations are small in wind field by asking for their distinguishing the first place. Moreover, the time order of characteristics. the equations is increased by one with each There are essentially two types of small iteration, and since the time order cannot amplitude wave perturbation of an atmosphere exceed three, it is evident that the sequence moving with constant angular velocity. They of approximations would not be convergent. are distinguished by their frequencies and speeds In any case it is likely that in the process the of propagation. The meteorologically impor- simplicity and elegance of the geostrophic tant type is characterized by small frequencies approximation would be destroyed, and and by velocities of propagation of the same thereby also the reason for its introduction. order of magnitude as the speed of the im- One is therefore led to reexamine the possibility bedding current. The second type has frequen- of using the primitive Eulerian equations, as cies in excess off; periods less than a half pendu- Richardson1 first proposed. lum day, and velocities of propagation of the The difficulty here, as I have pointed out in order of (gHV In H/3z)x,where His the verti- previous papers, is that the initial values of cal scale height of the disturbance and H is the wind and pressure cannot as a rule be prescribed potential temperature. For the large scale dis- independently with sufficient accuracy. One turbances of the atmosphere H - 104 m and is apparently forced again to introduce for 2 In H/2z - IO-~m-l. Hence (gH23In 0/2z)% - the wind values either the geostrophic approxi- mation or something very little better. As will - ($gH)’- IOO m/sec-1, which is much be shown later this not only introduces an gre‘ater than the speed of the wind in the initial inaccuracy but gives rise to spurious troposphere and very much greater than the inertio-gravitational oscillations which obscure speed of propagation of the observed large- the meteorologically significant motions. The scale systems. Even when the motions are of purpose of the present note is to show that large amplitude and therefore not linearly accurate initial winds can be determined from superposable solutions of perturbation equa- the pressure field alone, and that if this is done tions, a distinction can be drawn between the inertio-gravitational oscillations will not arise. two types, at least in orders of magnitude of frequency and velocity of propagation. II. Characterization of large-scale atmospheric From what can be inferred from available motions observations the bulk of the energy in the We shall deal with statically stable motions troposphere is confined to the first class of in which the horizontal scale far exceeds motion. This partition of energy may be the vertical scale. It is therefore permissible attributed to the circumstances that the to assume that the motions are in quasi- principle energy sources in the atmosphere hydrostatic equilibrium. If f is the coriolis have characteristic periods lar e compared to parameter 2 SZ sin (latitude), V a characteristic the pendulum day and there sore excite little horizontal velocity, and S a characteristic of the second type of motion and that the horizontal scale distance, the ratio of the inertial first type is stable with respect to whatever force to the coriolis force is in order of mag- perturbations of the second type are excited, nitude the non-dimensional Rossby number either direct1 by the external sources of Weather Prediction by Numerical Process, Cam- energy or inirectly by nonlinear interaction bridge, 1922. with the first type. Tellus VII (1955). 1 24 J. CHARNEY 111. The balance equations by integration. In this sense the balance equa- Let us now examine the order of magnitude tion is a generalization of the geostrophic of the horizontal divergence in the meteoro- approximation. Both determine the velocity logically important systems-systems that are from the geopotential. characterized by particle velocities and speeds Now it is characteristic of the inertio- of propagation small compared to the gravity- gravitational motion that the horizontal diver- inertia speed (gH2alncY/az)%. If a flow is gence is not relatively small. Hence if the u quasi-geostrophic it can be shown by the use and v, whch must be prescribed independently in the primitive quasi-static equations of of dimensional arguments'v that the ratio of au av motion, are determined from the balance the horizontal divergence -+- to one of ax av equations, the inertio-gravitational motions are its component terms, say au/2xx, is just the automatically excluded initially, and since Rossby number and therefore this is small. In they are not generated to any appreciable the case where the Rossby number is not small extent during the motion, they will never the ratio is found to be V2/gH2a1nH/az appear. and is therefore again small. Thus the sig- The balance equation has been derived by nificant motions of the free atmosphere are Fjplrtoft (unpublished work) in an independent characterized by small horizontal divergences, investigation as a necessary condition for the stability of the non-divergent flow with re- and we may therefore express 14 and v in terms ot a stream function- spect to perturbations with horizontal diver- gence. The neglect of the divergence terms (% in the divergence equation has been justified It= -- , v =-av oy ax, empirically by S. PETTERSSON~who finds them to be one to two orders of magnitude smaller It may furthcr be shown that the convective than the remaining terms. acceleration terms involving w in the horizontal equations of motion are smaller in order of Iv. Illustrations of the use of the balance magnitude than the remaining convective equation acceleration terms. If we omit these small terms, substitute the stream function ex- I had thought at one time that the use of pressions for u and v, and take the horizontal geostrophic 11's and v's as part of the initial divergence of the equations of motion, we specification of the flow would lead at most obtain, when pressure is used as the vertical to small amplitude high-frequency inertio- coordinate, gravitational fluctuations superposed on an essentially correct low-frequency trend motion.
Recommended publications
  • Arxiv:1902.03186V3 [Math.AP]
    PRIMITIVE EQUATIONS WITH HORIZONTAL VISCOSITY: THE INITIAL VALUE AND THE TIME-PERIODIC PROBLEM FOR PHYSICAL BOUNDARY CONDITIONS AMRU HUSSEIN, MARTIN SAAL, AND MARC WRONA Abstract. The 3D-primitive equations with only horizontal viscosity are con- sidered on a cylindrical domain Ω = (−h,h) × G, G ⊂ R2 smooth, with the physical Dirichlet boundary conditions on the sides. Instead of considering a vanishing vertical viscosity limit, we apply a direct approach which in particu- lar avoids unnecessary boundary conditions on top and bottom. For the initial value problem, we obtain existence and uniqueness of local z-weak solutions for initial data in H1((−h,h),L2(G)) and local strong solutions for initial data 1 1 2 q in H (Ω). If v0 ∈ H ((−h,h),L (G)), ∂zv0 ∈ L (Ω) for q > 2, then the z- weak solution regularizes instantaneously and thus extends to a global strong solution. This goes beyond the global well-posedness result by Cao, Li and Titi (J. Func. Anal. 272(11): 4606-4641, 2017) for initial data near H1 in the periodic setting. For the time-periodic problem, existence and uniqueness of z-weak and strong time periodic solutions is proven for small forces. Since this is a model with hyperbolic and parabolic features for which classical results are not directly applicable, such results for the time-periodic problem even for small forces are not self-evident. 1. Introduction and main results The 3D-primitive equations are one of the fundamental models for geophysical flows, and they are used for describing oceanic and atmospheric dynamics. They are derived from the Navier-Stokes equations assuming a hydrostatic balance.
    [Show full text]
  • Lecture 18 Ocean General Circulation Modeling
    Lecture 18 Ocean General Circulation Modeling 9.1 The equations of motion: Navier-Stokes The governing equations for a real fluid are the Navier-Stokes equations (con­ servation of linear momentum and mass mass) along with conservation of salt, conservation of heat (the first law of thermodynamics) and an equation of state. However, these equations support fast acoustic modes and involve nonlinearities in many terms that makes solving them both difficult and ex­ pensive and particularly ill suited for long time scale calculations. Instead we make a series of approximations to simplify the Navier-Stokes equations to yield the “primitive equations” which are the basis of most general circu­ lations models. In a rotating frame of reference and in the absence of sources and sinks of mass or salt the Navier-Stokes equations are @ �~v + �~v~v + 2�~ �~v + g�kˆ + p = ~ρ (9.1) t r · ^ r r · @ � + �~v = 0 (9.2) t r · @ �S + �S~v = 0 (9.3) t r · 1 @t �ζ + �ζ~v = ω (9.4) r · cpS r · F � = �(ζ; S; p) (9.5) Where � is the fluid density, ~v is the velocity, p is the pressure, S is the salinity and ζ is the potential temperature which add up to seven dependent variables. 115 12.950 Atmospheric and Oceanic Modeling, Spring '04 116 The constants are �~ the rotation vector of the sphere, g the gravitational acceleration and cp the specific heat capacity at constant pressure. ~ρ is the stress tensor and ω are non-advective heat fluxes (such as heat exchange across the sea-surface).F 9.2 Acoustic modes Notice that there is no prognostic equation for pressure, p, but there are two equations for density, �; one prognostic and one diagnostic.
    [Show full text]
  • Uniqueness of Solution for the 2D Primitive Equations with Friction Condition on the Bottom∗ 1 Introduction and Motivation
    Monograf´ıas del Semin. Matem. Garc´ıa de Galdeano. 27: 135{143, (2003). Uniqueness of solution for the 2D Primitive Equations with friction condition on the bottom∗ D. Breschy, F. Guill´en-Gonz´alezz, N. Masmoudix, M. A. Rodr´ıguez-Bellido{ Abstract Uniqueness of solution for the Primitive Equations with Dirichlet conditions on the bottom is an open problem even in 2D domains. In this work we prove a result of additional regularity for a weak solution v for the Primitive Equations when we replace Dirichlet boundary conditions by friction conditions. This allows to obtain uniqueness of weak solution global in time, for such a system [3]. Indeed, we show weak regularity for the vertical derivative of the solution, @zv for all time. This is because this derivative verifies a linear pde of convection-diffusion type with convection velocity v, and the pressure belongs to a L2-space in time with values in a weighted space. Keywords: Boundary conditions of type Navier, 2D Primitive Equations, uniqueness AMS Classification: 35Q30, 35B40, 76D05 1 Introduction and motivation. Primitive Equations are one of the models used to forecast the fluid velocity and pressure in the ocean. Such equations are obtained from the dimensionless Navier-Stokes equations, letting the aspect ratio (quotient between vertical dimension and horizontal dimensions) go to zero. The first results about existence of solution (weak, in the sense of the Navier- Stokes equations) are proved for boundary conditions of Dirichlet type on the bottom of the domain and with wind traction on the surface, in the works by Lions-Temam-Wang, ∗The second and fourth authors have been financed by the C.I.C.Y.T project MAR98-0486.
    [Show full text]
  • Shallow-Water Equations and Related Topics
    CHAPTER 1 Shallow-Water Equations and Related Topics Didier Bresch UMR 5127 CNRS, LAMA, Universite´ de Savoie, 73376 Le Bourget-du-Lac, France Contents 1. Preface .................................................... 3 2. Introduction ................................................. 4 3. A friction shallow-water system ...................................... 5 3.1. Conservation of potential vorticity .................................. 5 3.2. The inviscid shallow-water equations ................................. 7 3.3. LERAY solutions ........................................... 11 3.3.1. A new mathematical entropy: The BD entropy ........................ 12 3.3.2. Weak solutions with drag terms ................................ 16 3.3.3. Forgetting drag terms – Stability ............................... 19 3.3.4. Bounded domains ....................................... 21 3.4. Strong solutions ............................................ 23 3.5. Other viscous terms in the literature ................................. 23 3.6. Low Froude number limits ...................................... 25 3.6.1. The quasi-geostrophic model ................................. 25 3.6.2. The lake equations ...................................... 34 3.7. An interesting open problem: Open sea boundary conditions .................... 41 3.8. Multi-level and multi-layers models ................................. 43 3.9. Friction shallow-water equations derivation ............................. 44 3.9.1. Formal derivation ....................................... 44 3.10.
    [Show full text]
  • Global Well-Posedness of the Three-Dimensional Viscous Primitive Equations of Large Scale Ocean and Atmosphere Dynamics
    Annals of Mathematics, 166 (2007), 245–267 Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics By Chongsheng Cao and Edriss S. Titi Abstract In this paper we prove the global existence and uniqueness (regularity) of strong solutions to the three-dimensional viscous primitive equations, which model large scale ocean and atmosphere dynamics. 1. Introduction Large scale dynamics of oceans and atmosphere is governed by the primi- tive equations which are derived from the Navier-Stokes equations, with rota- tion, coupled to thermodynamics and salinity diffusion-transport equations, which account for the buoyancy forces and stratification effects under the Boussinesq approximation. Moreover, and due to the shallowness of the oceans and the atmosphere, i.e., the depth of the fluid layer is very small in compar- ison to the radius of the earth, the vertical large scale motion in the oceans and the atmosphere is much smaller than the horizontal one, which in turn leads to modeling the vertical motion by the hydrostatic balance. As a result one obtains the system (1)–(4), which is known as the primitive equations for ocean and atmosphere dynamics (see, e.g., [20], [21], [22], [23], [24], [33] and references therein). We observe that in the case of ocean dynamics one has to add the diffusion-transport equation of the salinity to the system (1)–(4). We omitted it here in order to simplify our mathematical presentation. However, we emphasize that our results are equally valid when the salinity effects are taking into account. Note that the horizontal motion can be further approximated by the geostrophic balance when the Rossby number (the ratio of the horizontal ac- celeration to the Coriolis force) is very small.
    [Show full text]
  • Nonlinear Balance and Potential Vorticity Thinking at Large Rossby Number
    Nonlinear Balance and Potential Vorticity Thinking at Large Rossby Number D. J. Raymond Physics Department and Geophysical Research Center, New Mexico Institute of Mining and Technology, Socorro, NM 87801 SUMMARY Two rational approximations are made to the divergence, potential vorticity, and potential temperature equations resulting in two different nonlinear balance models. Semibalance is similar (but not identical to) the nonlinear balance model of Lorenz. Quasibalance is a simpler model that is equivalent to quasigeostrophy at low Rossby number and the barotropic model at high Rossby number. Practical solution methods that work for all Rossby number are outlined for both models. A variety of simple initial value problems are then solved with the aim of fortifying our insight into the behaviour of large Rossby number flows. The flows associated with a potential vorticity anomaly at very large Rossby number differ in significant ways from the corresponding low Rossby number results. In particular, an isolated anomaly has zero vertical radius of influence at infinite Rossby number, while the induced tangential velocity in a horizontal plane containing the anomaly decreases as the inverse of radius rather than the inverse square. The effects of heating and frictional forces are approached from a point of view that is somewhat different from that recently expressed by Haynes and McIntyre, though the physical content is the same. 1 Introduction In a highly influential paper, Hoskins, McIntyre, and Robertson (1985) (hereafter HMR – see also Hoskins, McIntyre, and Robertson, 1987) presented a conceptual framework for thinking about large scale flow patterns that are nearly balanced. In this framework potential vorticity plays a central role.
    [Show full text]
  • Different Forms of the Governing Equations for Atmospheric Motions
    Different Forms of the Governing Equations for Atmospheric Motions Dale Durran Dept. of Atmospheric Sciences University of Washington Outline • Conservation relations and approximate equations for motion on the sphere • Nonhydrostatic “deep” equations • Hydrostatic Primitive equations • Filtering acoustic waves in nonhydrostatic models • Boussinesq approximation • Anelastic and Pseudo-incompressible systems • Application to global models Approximating the Equations on the Sphere Spherical Coordinate System Nonhydrostatic Deep Momentum Equations Material derivative is: • r is the distance to the center of the earth • All Coriolis terms retained • All metric terms retained Conservation Relations for NDE Axial angular momentum Ertel potential vorticity Total energy per unit mass Hydrostatic Primitive Equations Material derivative is: • hydrostatic approximation • z replaces r as the vertical coordinate • a replaces r as the distance to the center of the earth • cosφ Coriolis terms neglected • only two of six metric terms retained Conservation Relations for HPE Axial angular momentum Potential vorticity Total energy per unit mass Neglect of cosφ Coriolis terms • Required to obtain consistent conservation relations in the primitive equations. • “Subject of quiet controversy in meteorology and oceanography for many years.” (White, et al., 2005) • Not important according to linearized adiabatic analyses. • Various scaling analyses suggest they may nevertheless be non-negligible, particularly in the tropics. Simple Argument for Including the cosφ
    [Show full text]
  • Ocean Modeling - EAS 8803 Equation of Motion
    Ocean Modeling - EAS 8803 Equation of Motion Conservation equations (mass, momentum, tracers) Boussinesq Approximation Statistically average !ow, Reynolds averaging Scaling the equations Primitive Equations for a geophysical !ow Chapter 3-4 Chapter 3 Equations of Fluid Motion (July 26, 2007) SUMMARY: The object of this chapter is to establish the equations govern- ing the movement of a stratified fluid in a rotating environment. These equations are then simplified somewhat by taking advantage of the so-called Boussinesq approximation. The cha3p.t7e.r BcoOnUcSluSdINesESbQy AinPtrPoRdOuXciInMgAfiTnIOitNe-volume discretizations and showing their r7e7lation to the budget calculations used to establish the mathematical equations of motion. In most geophysical systems, the fluid density varies, but not greatly, around a mean value. For example, the average temperature and salinity in the ocean are T = 4◦C and S = 34.7, to which corresponds a density ρ = 1028 kg/m3 at surface pressure. Variations in density within one ocean basin rarely exceed 3 kg/m3. Even in estuaries where fresh river 3.1waterMs (Sa=s0s) ubltuimdateglyetturn into salty seawaters (S = 34.7), the relative density difference is less than 3%. A neceBsysacroyntsratastt,etmheeanitr oinf thfleuaidtmmosepchhearenbicescoims etshgartamduaasllsy bmeorceornarseefirevdedw.ithTahltaituidse,, andy imbal- ancietsbdeetnwsietyenvacroiensvferorgmenacmeaaxnimdudmivaetrggreonucnedilnevtehletothnreeaerlyspzaetrioalatdgirreacttihoenigshmts,utshtucsrceoavt-e a local ering a 100% rangMasse of Budgetvariati o-n Continuitys. Most o fEquationthe density changes, however, can be attributed to comhpydrerossstiaotnicoprreesxsupraenesfifoecntso,fletahveinflguoindl.yMa matohdeemraatetivcarlilayb,itlhitey csatautseemd beyntothaekrefsacthtoersf.oFrmur-: thermore, weather patterns are confined to the lowest layer, the troposphere (approximately ∂ρ ∂ ∂ ∂ 10 km thick), within whic+h the de(nρsuit)y v+ariation(sρrve)sp+onsible (foρrwth)e =win0d,s are usually no (3.1) more than 5%.
    [Show full text]
  • Conservation of Energy External Forces
    Conservation of Energy • For a system in thermodynamic equilibrium, the first law of thermodynamics states that the change in internal energy of the system is equal to the difference between the heat added to the system and the work done by the system. • The first law of thermodynamics applies to a moving fluid parcel. • The rate of change of total thermodynamic energy is equal to the rate of diabatic heating plus the rate at which work is done on the parcel by external forces. External Forces • Work can be done on the fluid parcel by both surface forces and body forces. • Surface force: pressure gradient. • Body forces: gravity and Coriolis. • The Coriolis force does no work because it is always perpendicular to motion of the fluid parcel. Force must be along the direction of motion for work to be done. Thermodynamic Energy Equation The derivation in section 2.6 of Holton yields a basic form of the thermodynamic energy equation: dT dα cv is the specific cv + p = Q heat at constant dt dt volume. Rate of change Conversion between Diabatic of internal thermal and heating energy mechanical energy rate Taking the total derivative of the equation of state: dα dp dT p +α = R dt dt dt dT dp cp = cv + R is the then substituting, c p −α = Q specific heat at dt dt constant pressure. dT dp c −α = Q p dt dt Expanding the total derivative of p and applying the hydrostatic approximation: dT ∂p r c = Q +α +α(V ⋅∇p)− gw p dt ∂t Scaling can be used to simplify this equation by noting that ∂p r α andα()V ⋅∇p are very small: ∂t dT Q g = − w dt c p c p Expanding the total derivative of T and substituting lapse rate definitions: ∂T Q r Γ = g c , Γ = − ∂T ∂z = − ()Γd − Γ w −V ⋅∇T d p ∂t cp Temperature Tendency Equation ∂T Q r = − ()Γd − Γ w −V ⋅∇T ∂t c p A B C A: Diabatic Heating 1) Sensible heating 2) Latent heating (change of phase, i.e., evaporation, condensation) 3) Radiative heating B: Adiabatic Effects Γd – Γ is a measure of stability Upward motion in a stable atmosphere is a cooling process.
    [Show full text]
  • A General Circulation Model for Lakes
    NOAA Technical Memorandum ERL GLERL-16 A GENERAL CIRCULATION MODEL FOR LAKES J. C. K. Huang Great Lakes Environmental Research Laboratory Ann Arbor, Michigan August 1977 UNITED STATES NATlONAL OCEANIC AND Enwonmenlal Rrsra,cn 9 je DEPARTMENT OF COMMERCE ATMOSPHERIC ADMINISTRATION labratoiles Juanita M. Kreps. Secretary Richard A~ Flank, Adminlstialol W~lmal N Hess, Di~ectoi CONTENTS Page Abstract 1 1. INTRODUCTION 1 2. FORMULATION 3 2.1 The Physical Model 3 2.2 Boundary Conditions 7 2.3 Atmosphere Forcing Functions 7 2.4 Integral Constraints 10 3. METHOD OF SOLUTION 11 4. NUMERICAL SCHEME 13 4.1 Finite Difference Equations 17 4.2 Finite Difference Boundary Conditions 22 4.3 Special Treatment for Irregular Boundaries 23 4.4 Hydrostatic Stability 26 4.5 Energy Conservation 27 5. PRELIMINARY RESULTS 31 6. SUMMARY AND CONCLUSIONS . 39 7. ACKNOWLEDGMENTS 40 8. REFERENCES 40 9. Appendix A. SYMBOLS AND NOMENCLATURES 43 iii FIGURES Page 1. Configurations of the Lake Ontario model at four different layer depths: k = 1 at 10 m, k = 2 at 30 m, k = 3 at 70 m, and k = 4 at 150 m. 14 2. Vertical cross section of tbe velocity and temperature points. 15 3. Summary of indexes and relative locations of prognostic variables. 24 4. Vertically integrated transport function under the south- westerly wind. 32 5. Time evolution of the kinetic energy in the Lake Ontario model; (a) Total kinetic energy, (b) Kinetic energy of the barorropic current, (c) Kineti c energy of the baroclinic current. 33 6. Layered current vector plots under the southwesterly wind; (a) at 10 m depth, (b) at 30 m depth.
    [Show full text]
  • A General Circulation Model of the Atmosphere Using the Full-Galerkin Method
    Mathematics and Computers in Simulation 52 (2000) 427–443 A general circulation model of the atmosphere using the full-Galerkin method Jin-Yi Yu Department of Atmospheric Sciences, University of California Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA Received 1 April 2000; accepted 1 April 2000 Abstract A general circulation model using a full-Galerkin method is developed for the simulation of atmospheric climate and variability. Two variants of the Galerkin method, the spectral-transform method and the finite-element method, are used in this model for the horizontal and vertical representation, respectively. The baroclinic dynamics of this model are examined by performing linear normal mode and nonlinear lifecycle calculations of baroclinic waves. The results suggest that the finite-element method resolves the vertical structure of the baroclinic normal mode better than the finite-difference method. The generation, propagation, and decay of baroclinic waves are well simulated in this model. A long-term integration was carried out with a zonally symmetric forcing applied to the GCM. The simulated climate with a flat topography and that produced in the model hemisphere with an idealized mountain are compared. The results suggest that the presence of mountain does not alter the meridional structure of the zonal mean circulation. Comparisons of these time-mean statistics to observed winter time statistics in the real atmosphere indicate that this GCM produces a reasonable general circulation of the atmosphere. © 2000 Published by Elsevier Science B.V. on behalf of IMACS. Keywords: Galerkin method; Atmosphere; General circulation model 1. Introduction In the past few decades, concerns about global climate change and anthropological influences on the environment have encouraged the development of numerical models to simulate and to predict future changes in Earth’s climate system.
    [Show full text]
  • Modeling the General Circulation of the Atmosphere. Topic 1: a Hierarchy of Models
    Modeling the General Circulation of the Atmosphere. Topic 1: A Hierarchy of Models DARGAN M. W. FRIERSON UNIVERSITY OF WASHINGTON, DEPARTMENT OF ATMOSPHERIC SCIENCES TOPIC 1: 1-7-16 Modeling the General Circulation In this class… We’ll study: ¡ The “general circulation” of the atmosphere ¡ Large scale features of the climate Questions like… What determines the precipitation distribution on Earth? GPCP Climatology (1979-2006) Questions like… What determines the precipitation distribution on Earth? GPCP (1979-2006) Questions like… What determines the north-south temperature distribution on Earth? Questions like… What determines the vertical temperature structure on Earth? 350 200 340 ] 330 mb 400 [ 320 310 290 600 290 Pressure 270 280 800 260 280 270 300 300 1000 90˚S 60˚S 30˚S 0˚ 30˚N 60˚N 90˚N Latitude Dry static energy from NCEP reanalysis Questions like… What determines the vertical temperature structure on Earth? 310 320 300 310 400 290 ] 330 280 300 mb 320 [ 600 270 Pressure 290 800 260 280 330 270 1000 90˚S 60˚S 30˚S 0˚ 30˚N 60˚N 90˚N Latitude Moist static energy from NCEP reanalysis Questions like… What determines the location/intensity of the jet streams? -10 -5 0 0 200 ] 25 20 5 mb 400 0 [ 20 15 5 600 10 Pressure 15 5 10 800 1000 90˚S 60˚S 30˚S 0˚ 30˚N 60˚N 90˚N Latitude Zonally averaged zonal winds from NCEP reanalysis Questions like… What determines the intensity of eddies? Questions like… How will these change with global warming? Rainy regions get rainier, dry regions get drier From Lu et al 2006 First: General Circulation
    [Show full text]