Ocean Primitive Equations and Sea Level Equations Contents 1 the Hydrostatic Primitive Equations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:1902.03186V3 [Math.AP]
PRIMITIVE EQUATIONS WITH HORIZONTAL VISCOSITY: THE INITIAL VALUE AND THE TIME-PERIODIC PROBLEM FOR PHYSICAL BOUNDARY CONDITIONS AMRU HUSSEIN, MARTIN SAAL, AND MARC WRONA Abstract. The 3D-primitive equations with only horizontal viscosity are con- sidered on a cylindrical domain Ω = (−h,h) × G, G ⊂ R2 smooth, with the physical Dirichlet boundary conditions on the sides. Instead of considering a vanishing vertical viscosity limit, we apply a direct approach which in particu- lar avoids unnecessary boundary conditions on top and bottom. For the initial value problem, we obtain existence and uniqueness of local z-weak solutions for initial data in H1((−h,h),L2(G)) and local strong solutions for initial data 1 1 2 q in H (Ω). If v0 ∈ H ((−h,h),L (G)), ∂zv0 ∈ L (Ω) for q > 2, then the z- weak solution regularizes instantaneously and thus extends to a global strong solution. This goes beyond the global well-posedness result by Cao, Li and Titi (J. Func. Anal. 272(11): 4606-4641, 2017) for initial data near H1 in the periodic setting. For the time-periodic problem, existence and uniqueness of z-weak and strong time periodic solutions is proven for small forces. Since this is a model with hyperbolic and parabolic features for which classical results are not directly applicable, such results for the time-periodic problem even for small forces are not self-evident. 1. Introduction and main results The 3D-primitive equations are one of the fundamental models for geophysical flows, and they are used for describing oceanic and atmospheric dynamics. They are derived from the Navier-Stokes equations assuming a hydrostatic balance. -
Lecture 18 Ocean General Circulation Modeling
Lecture 18 Ocean General Circulation Modeling 9.1 The equations of motion: Navier-Stokes The governing equations for a real fluid are the Navier-Stokes equations (con servation of linear momentum and mass mass) along with conservation of salt, conservation of heat (the first law of thermodynamics) and an equation of state. However, these equations support fast acoustic modes and involve nonlinearities in many terms that makes solving them both difficult and ex pensive and particularly ill suited for long time scale calculations. Instead we make a series of approximations to simplify the Navier-Stokes equations to yield the “primitive equations” which are the basis of most general circu lations models. In a rotating frame of reference and in the absence of sources and sinks of mass or salt the Navier-Stokes equations are @ �~v + �~v~v + 2�~ �~v + g�kˆ + p = ~ρ (9.1) t r · ^ r r · @ � + �~v = 0 (9.2) t r · @ �S + �S~v = 0 (9.3) t r · 1 @t �ζ + �ζ~v = ω (9.4) r · cpS r · F � = �(ζ; S; p) (9.5) Where � is the fluid density, ~v is the velocity, p is the pressure, S is the salinity and ζ is the potential temperature which add up to seven dependent variables. 115 12.950 Atmospheric and Oceanic Modeling, Spring '04 116 The constants are �~ the rotation vector of the sphere, g the gravitational acceleration and cp the specific heat capacity at constant pressure. ~ρ is the stress tensor and ω are non-advective heat fluxes (such as heat exchange across the sea-surface).F 9.2 Acoustic modes Notice that there is no prognostic equation for pressure, p, but there are two equations for density, �; one prognostic and one diagnostic. -
Sea-Level Rise in Venice
https://doi.org/10.5194/nhess-2020-351 Preprint. Discussion started: 12 November 2020 c Author(s) 2020. CC BY 4.0 License. Review article: Sea-level rise in Venice: historic and future trends Davide Zanchettin1, Sara Bruni2*, Fabio Raicich3, Piero Lionello4, Fanny Adloff5, Alexey Androsov6,7, Fabrizio Antonioli8, Vincenzo Artale9, Eugenio Carminati10, Christian Ferrarin11, Vera Fofonova6, Robert J. Nicholls12, Sara Rubinetti1, Angelo Rubino1, Gianmaria Sannino8, Giorgio Spada2,Rémi Thiéblemont13, 5 Michael Tsimplis14, Georg Umgiesser11, Stefano Vignudelli15, Guy Wöppelmann16, Susanna Zerbini2 1University Ca’ Foscari of Venice, Dept. of Environmental Sciences, Informatics and Statistics, Via Torino 155, 30172 Mestre, Italy 2University of Bologna, Department of Physics and Astronomy, Viale Berti Pichat 8, 40127, Bologna, Italy 10 3CNR, Institute of Marine Sciences, AREA Science Park Q2 bldg., SS14 km 163.5, Basovizza, 34149 Trieste, Italy 4Unversità del Salento, Dept. of Biological and Environmental Sciences and Technologies, Centro Ecotekne Pal. M - S.P. 6, Lecce Monteroni, Italy 5National Centre for Atmospheric Science, University of Reading, Reading, UK 6Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Postfach 12-01-61, 27515, Bremerhaven, 15 Germany 7Shirshov Institute of Oceanology, Moscow, 117997, Russia 8ENEA Casaccia, Climate and Impact Modeling Lab, SSPT-MET-CLIM, Via Anguillarese 301, 00123 Roma, Italy 9ENEA C.R. Frascati, SSPT-MET, Via Enrico Fermi 45, 00044 Frascati, Italy 10University of Rome La Sapienza, Dept. of Earth Sciences, Piazzale Aldo Moro 5, 00185 Roma, Italy 20 11CNR - National Research Council of Italy, ISMAR - Marine Sciences Institute, Castello 2737/F, 30122 Venezia, Italy 12 Tyndall Centre for Climate Change Research, University of East Anglia. -
Uniqueness of Solution for the 2D Primitive Equations with Friction Condition on the Bottom∗ 1 Introduction and Motivation
Monograf´ıas del Semin. Matem. Garc´ıa de Galdeano. 27: 135{143, (2003). Uniqueness of solution for the 2D Primitive Equations with friction condition on the bottom∗ D. Breschy, F. Guill´en-Gonz´alezz, N. Masmoudix, M. A. Rodr´ıguez-Bellido{ Abstract Uniqueness of solution for the Primitive Equations with Dirichlet conditions on the bottom is an open problem even in 2D domains. In this work we prove a result of additional regularity for a weak solution v for the Primitive Equations when we replace Dirichlet boundary conditions by friction conditions. This allows to obtain uniqueness of weak solution global in time, for such a system [3]. Indeed, we show weak regularity for the vertical derivative of the solution, @zv for all time. This is because this derivative verifies a linear pde of convection-diffusion type with convection velocity v, and the pressure belongs to a L2-space in time with values in a weighted space. Keywords: Boundary conditions of type Navier, 2D Primitive Equations, uniqueness AMS Classification: 35Q30, 35B40, 76D05 1 Introduction and motivation. Primitive Equations are one of the models used to forecast the fluid velocity and pressure in the ocean. Such equations are obtained from the dimensionless Navier-Stokes equations, letting the aspect ratio (quotient between vertical dimension and horizontal dimensions) go to zero. The first results about existence of solution (weak, in the sense of the Navier- Stokes equations) are proved for boundary conditions of Dirichlet type on the bottom of the domain and with wind traction on the surface, in the works by Lions-Temam-Wang, ∗The second and fourth authors have been financed by the C.I.C.Y.T project MAR98-0486. -
Shallow-Water Equations and Related Topics
CHAPTER 1 Shallow-Water Equations and Related Topics Didier Bresch UMR 5127 CNRS, LAMA, Universite´ de Savoie, 73376 Le Bourget-du-Lac, France Contents 1. Preface .................................................... 3 2. Introduction ................................................. 4 3. A friction shallow-water system ...................................... 5 3.1. Conservation of potential vorticity .................................. 5 3.2. The inviscid shallow-water equations ................................. 7 3.3. LERAY solutions ........................................... 11 3.3.1. A new mathematical entropy: The BD entropy ........................ 12 3.3.2. Weak solutions with drag terms ................................ 16 3.3.3. Forgetting drag terms – Stability ............................... 19 3.3.4. Bounded domains ....................................... 21 3.4. Strong solutions ............................................ 23 3.5. Other viscous terms in the literature ................................. 23 3.6. Low Froude number limits ...................................... 25 3.6.1. The quasi-geostrophic model ................................. 25 3.6.2. The lake equations ...................................... 34 3.7. An interesting open problem: Open sea boundary conditions .................... 41 3.8. Multi-level and multi-layers models ................................. 43 3.9. Friction shallow-water equations derivation ............................. 44 3.9.1. Formal derivation ....................................... 44 3.10. -
Physical Processes That Impact the Evolution of Global Mean Sea Level in Ocean Climate Models
2512-4 Fundamentals of Ocean Climate Modelling at Global and Regional Scales (Hyderabad - India) 5 - 14 August 2013 Physical processes that impact the evolution of global mean sea level in ocean climate models GRIFFIES Stephen Princeton University U.S. Department of Commerce N.O.A.A. Geophysical Fluid Dynamics Laboratory, 201 Forrestal Road Forrestal Campus, P.O. Box 308, 08542-6649 Princeton NJ U.S.A. Ocean Modelling 51 (2012) 37–72 Contents lists available at SciVerse ScienceDirect Ocean Modelling journal homepage: www.elsevier.com/locate/ocemod Physical processes that impact the evolution of global mean sea level in ocean climate models ⇑ Stephen M. Griffies a, , Richard J. Greatbatch b a NOAA Geophysical Fluid Dynamics Laboratory, Princeton, USA b GEOMAR – Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, Germany article info abstract Article history: This paper develops an analysis framework to identify how physical processes, as represented in ocean Received 1 July 2011 climate models, impact the evolution of global mean sea level. The formulation utilizes the coarse grained Received in revised form 5 March 2012 equations appropriate for an ocean model, and starts from the vertically integrated mass conservation Accepted 6 April 2012 equation in its Lagrangian form. Global integration of this kinematic equation results in an evolution Available online 25 April 2012 equation for global mean sea level that depends on two physical processes: boundary fluxes of mass and the non-Boussinesq steric effect. The non-Boussinesq steric effect itself contains contributions from Keywords: boundary fluxes of buoyancy; interior buoyancy changes associated with parameterized subgrid scale Global mean sea level processes; and motion across pressure surfaces. -
Global Well-Posedness of the Three-Dimensional Viscous Primitive Equations of Large Scale Ocean and Atmosphere Dynamics
Annals of Mathematics, 166 (2007), 245–267 Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics By Chongsheng Cao and Edriss S. Titi Abstract In this paper we prove the global existence and uniqueness (regularity) of strong solutions to the three-dimensional viscous primitive equations, which model large scale ocean and atmosphere dynamics. 1. Introduction Large scale dynamics of oceans and atmosphere is governed by the primi- tive equations which are derived from the Navier-Stokes equations, with rota- tion, coupled to thermodynamics and salinity diffusion-transport equations, which account for the buoyancy forces and stratification effects under the Boussinesq approximation. Moreover, and due to the shallowness of the oceans and the atmosphere, i.e., the depth of the fluid layer is very small in compar- ison to the radius of the earth, the vertical large scale motion in the oceans and the atmosphere is much smaller than the horizontal one, which in turn leads to modeling the vertical motion by the hydrostatic balance. As a result one obtains the system (1)–(4), which is known as the primitive equations for ocean and atmosphere dynamics (see, e.g., [20], [21], [22], [23], [24], [33] and references therein). We observe that in the case of ocean dynamics one has to add the diffusion-transport equation of the salinity to the system (1)–(4). We omitted it here in order to simplify our mathematical presentation. However, we emphasize that our results are equally valid when the salinity effects are taking into account. Note that the horizontal motion can be further approximated by the geostrophic balance when the Rossby number (the ratio of the horizontal ac- celeration to the Coriolis force) is very small. -
Concepts and Terminology for Sea Level: Mean, Variability and Change, Both Local and Global
Surveys in Geophysics https://doi.org/10.1007/s10712-019-09525-z(0123456789().,-volV)(0123456789().,-volV) Concepts and Terminology for Sea Level: Mean, Variability and Change, Both Local and Global Jonathan M. Gregory1,2 • Stephen M. Griffies3 • Chris W. Hughes4 • Jason A. Lowe2,14 • John A. Church5 • Ichiro Fukimori6 • Natalya Gomez7 • Robert E. Kopp8 • Felix Landerer6 • Gone´ri Le Cozannet9 • Rui M. Ponte10 • Detlef Stammer11 • Mark E. Tamisiea12 • Roderik S. W. van de Wal13 Received: 1 October 2018 / Accepted: 28 February 2019 Ó The Author(s) 2019 Abstract Changes in sea level lead to some of the most severe impacts of anthropogenic climate change. Consequently, they are a subject of great interest in both scientific research and public policy. This paper defines concepts and terminology associated with sea level and sea-level changes in order to facilitate progress in sea-level science, in which communi- cation is sometimes hindered by inconsistent and unclear language. We identify key terms and clarify their physical and mathematical meanings, make links between concepts and across disciplines, draw distinctions where there is ambiguity, and propose new termi- nology where it is lacking or where existing terminology is confusing. We include for- mulae and diagrams to support the definitions. Keywords Sea level Á Concepts Á Terminology 1 Introduction and Motivation Changes in sea level lead to some of the most severe impacts of anthropogenic climate change (IPCC 2014). Consequently, they are a subject of great interest in both scientific research and public policy. Since changes in sea level are the result of diverse physical phenomena, there are many authors from a variety of disciplines working on questions of sea-level science. -
Master's Thesis
Glacial Isostatic Adjustment Contributions to Sea-Level Changes The GIA-efect of historic, recent and future mass-changes of the Greenland ice-sheet and it’s efect on relative sea level Master’s Thesis Master’s Carsten Ankjær Ludwigsen June 2016 Abstract The sea level equation (SLE) by Spada and Stocchi 2006 [26] gives the change rate of the relative sea level (RSL) induced by glacial isostatic adjustment (GIA) of melting ice mass on land, also called sea level ’fingerprints’. The ef- fect of the viscoelastic rebound induced by the last deglaciation, as seen when solving the SLE using the ICE-5G model glaciation chronology (Peltier, 2004 [22]) dating back to the last glacial maximum (LGM), is still today causing large fingerprints in particular in Scandinavia and North America, effect- ing the sea level with rates up to 15 mm/yr. The same calculations are applied to present ice loss observed by GRACE and for four projections of the Greenland ice sheet (GrIS) for the 21st century. For the current ice melt, the GIA-contribution to RSL is 0.1 mm/yr at Greenlands coastline, 4 and 5 10− mm/yr in a far field case (region around Denmark). For the ⇥ GrIS-projections, the same result in 2100 is 1 mm/yr and up to 0.01 mm/yr, respectively. In agreement with the GrIS contribution to RSL from other studies (Bamber and Riva, 2010 [1], Spada et al, 2012 [28]) this study finds that the GIA-contribution of present or near-future (within 21st century) change of the GrIS to RSL is not relevant when discussing adaptation to near-future sea level changes. -
Sea Level Budgets Should Account for Ocean Bottom Deformation
Vishwakarma, B. D., Royston, S., Riva, R. E. M., Westaway, R. M., & Bamber, J. L. (2020). Sea level budgets should account for ocean bottom deformation. Geophysical Research Letters, 47(3), [e2019GL086492]. https://doi.org/10.1029/2019GL086492 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1029/2019GL086492 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Wiley at https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019GL086492. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ RESEARCH LETTER Sea Level Budgets Should Account for Ocean Bottom 10.1029/2019GL086492 Deformation Key Points: 1 1 2 1 1 • The conventional sea level budget B. D. Vishwakarma , S. Royston ,R.E.M.Riva , R. M. Westaway , and J. L. Bamber equation does not include elastic 1 2 ocean bottom deformation, implicitly School of Geographical Sciences, University of Bristol, Bristol, UK, Faculty of Civil Engineering and Geosciences, assuming it is negligible Delft University of Technology, Delft, The Netherlands • Recent increases in ocean mass yield global-mean ocean bottom deformation of similar magnitude to Abstract The conventional sea level budget (SLB) equates changes in sea surface height with the sum the deep steric sea level contribution • We use a mass-volume approach to of ocean mass and steric change, where solid-Earth movements are included as corrections but limited to derive and update the sea level the impact of glacial isostatic adjustment. -
Glacial Isostatic Adjustment and Sea-Level Change – State of the Art Report Technical Report TR-09-11
Glacial isostatic adjustment and sea-level change – State of the art report Glacial isostatic adjustment and sea-level change Technical Report TR-09-11 Glacial isostatic adjustment and sea-level change State of the art report Pippa Whitehouse, Durham University April 2009 Svensk Kärnbränslehantering AB Swedish Nuclear Fuel and Waste Management Co Box 250, SE-101 24 Stockholm Phone +46 8 459 84 00 TR-09-11 ISSN 1404-0344 CM Gruppen AB, Bromma, 2009 Tänd ett lager: P, R eller TR. Glacial isostatic adjustment and sea-level change State of the art report Pippa Whitehouse, Durham University April 2009 This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author and do not necessarily coincide with those of the client. A pdf version of this document can be downloaded from www.skb.se. Preface This document contains information on the process of glacial isostatic adjustment (GIA) and how this affects sea-level and shore-line displacement, and the methods which are employed by researchers to study and understand these processes. The information will be used in e.g. the report “Climate and climate-related issues for the safety assessment SR-Site”. Stockholm, April 2009 Jens-Ove Näslund Person in charge of the SKB climate programme Contents 1 Introduction 7 1.1 Structure and purpose of this report 7 1.2 A brief introduction to GIA 7 1.2.1 Overview/general description 7 1.2.2 Governing factors 8 1.2.3 Observations of glacial isostatic adjustment 9 1.2.4 Time scales 9 2 Glacial -
Ongoing Glacial Isostatic Contributions to Observations of Sea Level Change
Geophysical Journal International Geophys. J. Int. (2011) 186, 1036–1044 doi: 10.1111/j.1365-246X.2011.05116.x Ongoing glacial isostatic contributions to observations of sea level change Mark E. Tamisiea National Oceanography Centre, Joseph Proudman Building, 6 Brownlow Street, Liverpool, L3 5DA, UK. E-mail: [email protected] Accepted 2011 June 15. Received 2011 May 30; in original form 2010 September 8 Downloaded from https://academic.oup.com/gji/article/186/3/1036/589371 by guest on 28 September 2021 SUMMARY Studies determining the contribution of water fluxes to sea level rise typically remove the ongoing effects of glacial isostatic adjustment (GIA). Unfortunately, use of inconsistent ter- minology between various disciplines has caused confusion as to how contributions from GIA should be removed from altimetry and GRACE measurements. In this paper, we review the physics of the GIA corrections applicable to these measurements and discuss the differing nomenclature between the GIA literature and other studies of sea level change. We then ex- amine a range of estimates for the GIA contribution derived by varying the Earth and ice models employed in the prediction. We find, similar to early studies, that GIA produces a small (compared to the observed value) but systematic contribution to the altimetry estimates, with a maximum range of −0.15 to −0.5 mm yr−1. Moreover, we also find that the GIA contri- bution to the mass change measured by GRACE over the ocean is significant. In this regard, we demonstrate that confusion in nomenclature between the terms ‘absolute sea level’ and GJI Gravity, geodesy and tides ‘geoid’ has led to an overestimation of this contribution in some previous studies.