The Role of the Aryl Hydrocarbon Receptor in 2,3,7,8- Tetrachlorodibenzo-Ρ-Dioxin-Induced Mitochondrial Dysfunction in Mouse Hepatoma Cells

Total Page:16

File Type:pdf, Size:1020Kb

The Role of the Aryl Hydrocarbon Receptor in 2,3,7,8- Tetrachlorodibenzo-Ρ-Dioxin-Induced Mitochondrial Dysfunction in Mouse Hepatoma Cells THE ROLE OF THE ARYL HYDROCARBON RECEPTOR IN 2,3,7,8- TETRACHLORODIBENZO-ρ-DIOXIN-INDUCED MITOCHONDRIAL DYSFUNCTION IN MOUSE HEPATOMA CELLS By Hye Jin Hwang A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Biochemistry and Molecular Biology - Doctor of Philosophy 2015 ABSTRACT THE ROLE OF THE ARYL HYDROCARBON RECEPTOR IN 2,3,7,8- TETRACHLORODIBENZO-ρ-DIOXIN-INDUCED MITOCHONDRIAL DYSFUNCTION IN MOUSE HEPATOMA CELLS By Hye Jin Hwang The aryl hydrocarbon receptor (AHR) is a Per-Arnt-Sim (PAS) domain family protein and ligand-activated transcription factor. The AHR directly regulates the expression of a large number of genes, including many that encode Phase I and Phase II drug metabolizing enzymes. Environmental contaminants such as polycyclic aromatic hydrocarbon or halogenated aryl hydrocarbon act as AHR ligands. The most potent AHR ligand, 2,3,7,8-tetrachlorodibenzo-ρ- dioxin (TCDD), causes various deleterious physiological effects, such as tumor promotion, chloracne, wasting syndrome, and hepatic steatosis. Over the last several decades, the AHR has been the focus of extensive research. Even with this depth of inquiry, there is a lack of understanding to the mechanism of action for AHR-mediated toxicity. Several possibilities have been proposed. For example, since the AHR is a transcription factor, it has been proposed that one, or more, of the genes that is regulated by the AHR leads to toxicity. The cytochrome P450 monooxygenases (CYPs) and TCDD-inducible poly (ADP-ribose) polymerase (TiPARP) are primary targets of AHR-regulated expression and are capable of promoting oxidative stress. In addition, the AHR can participate in crosstalk with other signaling pathways related to proliferation, development, differentiation, immune suppression, lipid metabolism and apoptosis. Several of these pathways are also involved in mediating the cellular response to oxidative stress. Given that oxidative stress is central to multiple pathways involved in AHR-mediated TCDD-induced toxicity and that the mitochondria, which consume most of cellular oxygen, are the main site generating oxidative stress, the role of the mitochondria in AHR signaling and toxicity was explored. Using the protease protection assay with digitonin extraction, the AHR was localized to the inter-membrane space (IMS) of the mitochondria. TCDD exposure induced a degradation of mitochondrial AHR similar to that of cytosolic AHR. Using siRNA in mouse hepatoma hepa1c1c7 cells, TOM20 and AHR-interacting protein (AIP) knockdown revealed that these two proteins are involved in the import of AHR into the mitochondria. The inhibition of heat shock protein-90kDa (HSP90) activity using an ATPase inhibitor, geldanamycin, also suggested that activity of HSP90 decided the level of mitochondrial AHR. TCDD altered the metabolic rate of cells in an AHR-dependent manner as measured by oxygen consumption rate (OCR) using the XF24 Extracellular Flux Analyzer. 30 nM TCDD exposure in hepa1c1c7 cells caused a significant AHR-dependent decrease in the OCR, but no change in the respiratory control ratio and the enzyme activities in ETC and ATP synthase. On the other hand, 30 nM TCDD exposure in AHR-deficient hepac12 cells caused no significant changes but the increased the respiratory control ratio and the activity of complex I. The mitochondria proteome was investigated using stable isotope labeling by amino acids in cell culture (SILAC). SILAC identified a battery of proteins that were influenced by TCDD in an AHR-dependent manner. The proteomic data suggested TCDD-induced AHR-mediated regulation in heme metabolism, lipid metabolism, redox potential, and mitochondrial biogenesis. Collectively, the data suggest the model 1) mitochondrial AHR in the IMS binds to components in the inner-membrane (IM), 2) TCDD induces the loss of interaction of AHR between a component in the IM, possibly causing an alteration in respiratory machinery, 3) AHR might help maintain homeostasis in respiratory efficiency against TCDD via regulating complex I or complex IV activity, and 4) AHR regulates the expression of genes that encode proteins that are important for various mitochondrial metabolic pathway and this regulation can be a result of mitochondrial retrograde signaling. This model supports a role for the mitochondria and possibly mitochondrial localized AHR in TCDD-induced toxicity, including metabolic dysfunction, wasting syndrome and hepatic steatosis. ACKNOWLEDGEMENTS The graduate school life in the MSU brought me wonderful memories within my life. Those couldn’t have been made without people whom I have had known, and I would never have achieved a PhD without them. First, I would like to thank Dr. John LaPres, my PI, for his consistent support, encouragement, and patience. He is a good model of scientist. He has taught me how and what a scientist must think and consider. He was always accessible and provided valuable advice. His guidance made me get through tough challenges from experiments and endless learning. Next, I would like to thank my committee members, for their precious time and supportive advice, Drs. Shelagh Ferguson-Miller, Kathy Gallo, Bill Henry, and Jeff MacKeigan. In every committee meeting, I got valuable guidance and insightful comments. I would especially like to thank Dr. Ferguson-Miller for providing a wealth of knowledge and collaboration regarding mitochondria and experimental techniques. Also, I had luck to work with wonderful people, the members of LaPres lab. I thank Drs. Scott Lynn, Dorothy Tappenden, and Ajith Vengellur for being exceptional colleagues, scientific mentors, and friends. I also thank Dr. Steve Proper for help and friendship. Finally, I want to thank the current members, Peter Dornbos and Michelle Steidemann, and the past graduate rotation students and undergraduate students, Taylor, Sarah, Mike, Larissa, Kai, for their huge efforts and help in the project. I would like to thank the Biochemistry & Molecular Biology program, and RTSF facility for their assistance. In addition, I also want to thank Dr. Laurie Kaguni for giving me the opportunity to attend the mitochondria summer schools. Lastly, I would like to thank my family for their love, supports and being there. Without you, I could not have done all of mine here. I love you and thank you. iv TABLE OF CONTENTS LIST OF TABLES ........................................................................................................................ vii! LIST OF FIGURES ..................................................................................................................... viii! KEY TO SYMBOLS AND ABBREVIATIONS ................................................................................ x! CHAPTER 1. LITERATURE REVIEW .......................................................................................... 1! PER-ARNT-SIM (PAS) DOMAIN PROTEINS ........................................................................... 2! ARYL HYDROCARBON RECEPTOR ...................................................................................... 3! Domains of AHR ................................................................................................................... 4! Transactivation of AHR ......................................................................................................... 8! Deactivation of AHR .............................................................................................................. 9! AHR Chaperones ................................................................................................................ 10! Ligands of AHR ................................................................................................................... 11! Endogenous ligands ....................................................................................................... 11! Xenobiotics ..................................................................................................................... 14! AHR Target Genes ............................................................................................................. 17! Physiological Roles of AHR ................................................................................................ 20! MITOCHONDRIA .................................................................................................................... 23! Structure of Mitochondria .................................................................................................... 23! Mitochondrial DNA (mtDNA) ............................................................................................... 24! Synthesis of Mitochondrial Proteins .................................................................................... 25! Synthesis of mitochondrial gene encoded proteins ........................................................ 25! Synthesis of nuclear gene encoded mitochondrial proteins ............................................ 26! Nuclear-encoded Mitochondrial Protein Translocation ....................................................... 26! Nuclear Transcription Factors for Mitochondrial Biogenesis ............................................... 28! Mitochondrial Respiration and Reactive Oxygen Species .................................................. 29! TCA Cycle ........................................................................................................................... 33! Fatty Acid β-oxidation and Ketogenesis ............................................................................
Recommended publications
  • Tbamitchodral L Alizaion of the 4Aminobutyrate-2-&Oxoglutarate
    5d.em. J. (lWg77) 161,9O.-307 3O1 Printed in Great Britain Tbamitchodral L alizaion of the 4Aminobutyrate-2-&Oxoglutarate Transminase from Ox Brait By INGER SCHOUSDOE,* BIRGIT 1MO* and ARNE SCHOUSBOEt Department ofBDahemistry At andC*, University ofCopenhagen, 2200 Copenhagen M, Denark (Receved 4 June 1976) In order to determine the intramitochondrial location of 4-aminobutyrate transaminase, mitochondria were prepared from ox brain and freed from myelin and syiaptosomes by using conventional demitygradient-centrifugation techniques, and the purity was checked electron-microscopically. Iner and outer mimbrenes and matrix were prepared from the mitochondria by large-amplitude sweling and subsequent density-gradient centrfugationt The fractions were characterized by using both electron microscopy and differnt marker enzymes. From the specific activity of the 4-aminobutyrate transaminase in the submitochondrial fractions it was concluded that this enzyme is associated with the inner mitochondrial membrane. It is generally agreed that the 4-aminobutyrate-2- pyridoxal phosphate were from Sigma Chemical oxoglutarate transaminase (EC2.6.1.19) from brain is Co., St. Louis, MO, U.S.A. Ficoll was from mainly associated with free mitochondria (Salganicoff Pharmacia, Uppsala, Sweden, and crystallized & De Robertis, 1963, 1965; van den Berget al., 1965; bovine serum albumin was from BDH Biochemicals, van Kempen et at., 1965; Balazs et al., 1966; Poole, Dorset, U.K. 4-Amino[1-'4C]butyrate (sp. Waksman et al., 1968; Reijnierse et al., 1975), radioactivity 50mCi/mmol) and [1-14qtyramine (sp. and a preparation of a crude mitochondrial fraction radioactivity 9mCi/mmol) were obtained from was used by Schousboe et al. (1973) and Maitre et al.
    [Show full text]
  • Alternative Acetate Production Pathways in Chlamydomonas Reinhardtii During Dark Anoxia and the Dominant Role of Chloroplasts in Fermentative Acetate Productionw
    This article is a Plant Cell Advance Online Publication. The date of its first appearance online is the official date of publication. The article has been edited and the authors have corrected proofs, but minor changes could be made before the final version is published. Posting this version online reduces the time to publication by several weeks. Alternative Acetate Production Pathways in Chlamydomonas reinhardtii during Dark Anoxia and the Dominant Role of Chloroplasts in Fermentative Acetate ProductionW Wenqiang Yang,a,1 Claudia Catalanotti,a Sarah D’Adamo,b Tyler M. Wittkopp,a,c Cheryl J. Ingram-Smith,d Luke Mackinder,a Tarryn E. Miller,b Adam L. Heuberger,e Graham Peers,f Kerry S. Smith,d Martin C. Jonikas,a Arthur R. Grossman,a and Matthew C. Posewitzb a Carnegie Institution for Science, Department of Plant Biology, Stanford, California 94305 b Colorado School of Mines, Department of Chemistry and Geochemistry, Golden, Colorado 80401 c Stanford University, Department of Biology, Stanford, California 94305 d Clemson University, Department of Genetics and Biochemistry, Clemson, South Carolina 29634 e Colorado State University, Proteomics and Metabolomics Facility, Fort Collins, Colorado 80523 f Colorado State University, Department of Biology, Fort Collins, Colorado 80523 ORCID ID: 0000-0001-5600-4076 (W.Y.) Chlamydomonas reinhardtii insertion mutants disrupted for genes encoding acetate kinases (EC 2.7.2.1) (ACK1 and ACK2) and a phosphate acetyltransferase (EC 2.3.1.8) (PAT2, but not PAT1) were isolated to characterize fermentative acetate production. ACK1 and PAT2 were localized to chloroplasts, while ACK2 and PAT1 were shown to be in mitochondria.
    [Show full text]
  • Mutation of the Fumarase Gene in Two Siblings with Progressive Encephalopathy and Fumarase Deficiency T
    Mutation of the Fumarase Gene in Two Siblings with Progressive Encephalopathy and Fumarase Deficiency T. Bourgeron,* D. Chretien,* J. Poggi-Bach, S. Doonan,' D. Rabier,* P. Letouze,I A. Munnich,* A. R6tig,* P. Landneu,* and P. Rustin* *Unite de Recherches sur les Handicaps Genetiques de l'Enfant, INSERM U393, Departement de Pediatrie et Departement de Biochimie, H6pital des Enfants-Malades, 149, rue de Sevres, 75743 Paris Cedex 15, France; tDepartement de Pediatrie, Service de Neurologie et Laboratoire de Biochimie, Hopital du Kremlin-Bicetre, France; IFaculty ofScience, University ofEast-London, UK; and IService de Pediatrie, Hopital de Dreux, France Abstract chondrial enzyme (7). Human tissue fumarase is almost We report an inborn error of the tricarboxylic acid cycle, fu- equally distributed between the mitochondria, where the en- marase deficiency, in two siblings born to first cousin parents. zyme catalyzes the reversible hydration of fumarate to malate They presented with progressive encephalopathy, dystonia, as a part ofthe tricarboxylic acid cycle, and the cytosol, where it leucopenia, and neutropenia. Elevation oflactate in the cerebro- is involved in the metabolism of the fumarate released by the spinal fluid and high fumarate excretion in the urine led us to urea cycle. The two isoenzymes have quite homologous struc- investigate the activities of the respiratory chain and of the tures. In rat liver, they differ only by the acetylation of the Krebs cycle, and to finally identify fumarase deficiency in these NH2-terminal amino acid of the cytosolic form (8). In all spe- two children. The deficiency was profound and present in all cies investigated so far, the two isoenzymes have been found to tissues investigated, affecting the cytosolic and the mitochon- be encoded by a single gene (9,10).
    [Show full text]
  • Anti-Inflammatory Role of Curcumin in LPS Treated A549 Cells at Global Proteome Level and on Mycobacterial Infection
    Anti-inflammatory Role of Curcumin in LPS Treated A549 cells at Global Proteome level and on Mycobacterial infection. Suchita Singh1,+, Rakesh Arya2,3,+, Rhishikesh R Bargaje1, Mrinal Kumar Das2,4, Subia Akram2, Hossain Md. Faruquee2,5, Rajendra Kumar Behera3, Ranjan Kumar Nanda2,*, Anurag Agrawal1 1Center of Excellence for Translational Research in Asthma and Lung Disease, CSIR- Institute of Genomics and Integrative Biology, New Delhi, 110025, India. 2Translational Health Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India. 3School of Life Sciences, Sambalpur University, Jyoti Vihar, Sambalpur, Orissa, 768019, India. 4Department of Respiratory Sciences, #211, Maurice Shock Building, University of Leicester, LE1 9HN 5Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia- 7003, Bangladesh. +Contributed equally for this work. S-1 70 G1 S 60 G2/M 50 40 30 % of cells 20 10 0 CURI LPSI LPSCUR Figure S1: Effect of curcumin and/or LPS treatment on A549 cell viability A549 cells were treated with curcumin (10 µM) and/or LPS or 1 µg/ml for the indicated times and after fixation were stained with propidium iodide and Annexin V-FITC. The DNA contents were determined by flow cytometry to calculate percentage of cells present in each phase of the cell cycle (G1, S and G2/M) using Flowing analysis software. S-2 Figure S2: Total proteins identified in all the three experiments and their distribution betwee curcumin and/or LPS treated conditions. The proteins showing differential expressions (log2 fold change≥2) in these experiments were presented in the venn diagram and certain number of proteins are common in all three experiments.
    [Show full text]
  • Citric Acid Cycle
    CHEM464 / Medh, J.D. The Citric Acid Cycle Citric Acid Cycle: Central Role in Catabolism • Stage II of catabolism involves the conversion of carbohydrates, fats and aminoacids into acetylCoA • In aerobic organisms, citric acid cycle makes up the final stage of catabolism when acetyl CoA is completely oxidized to CO2. • Also called Krebs cycle or tricarboxylic acid (TCA) cycle. • It is a central integrative pathway that harvests chemical energy from biological fuel in the form of electrons in NADH and FADH2 (oxidation is loss of electrons). • NADH and FADH2 transfer electrons via the electron transport chain to final electron acceptor, O2, to form H2O. Entry of Pyruvate into the TCA cycle • Pyruvate is formed in the cytosol as a product of glycolysis • For entry into the TCA cycle, it has to be converted to Acetyl CoA. • Oxidation of pyruvate to acetyl CoA is catalyzed by the pyruvate dehydrogenase complex in the mitochondria • Mitochondria consist of inner and outer membranes and the matrix • Enzymes of the PDH complex and the TCA cycle (except succinate dehydrogenase) are in the matrix • Pyruvate translocase is an antiporter present in the inner mitochondrial membrane that allows entry of a molecule of pyruvate in exchange for a hydroxide ion. 1 CHEM464 / Medh, J.D. The Citric Acid Cycle The Pyruvate Dehydrogenase (PDH) complex • The PDH complex consists of 3 enzymes. They are: pyruvate dehydrogenase (E1), Dihydrolipoyl transacetylase (E2) and dihydrolipoyl dehydrogenase (E3). • It has 5 cofactors: CoASH, NAD+, lipoamide, TPP and FAD. CoASH and NAD+ participate stoichiometrically in the reaction, the other 3 cofactors have catalytic functions.
    [Show full text]
  • Complex Hereditary Spastic Paraplegia Associated with Episodic
    Tozawa et al. Human Genome Variation (2021) 8:4 https://doi.org/10.1038/s41439-021-00136-y Human Genome Variation DATA REPORT Open Access Complex hereditary spastic paraplegia associated with episodic visual loss caused by ACO2 variants Takenori Tozawa1,2,AkiraNishimura3, Tamaki Ueno2,4, Akane Shikata5, Yoshihiro Taura1,TakeshiYoshida 6, Naoko Nakagawa7, Takahito Wada 7, Shinji Kosugi7, Tomoko Uehara8, Toshiki Takenouchi 9, Kenjiro Kosaki8 and Tomohiro Chiyonobu1 Abstract Most patients with homozygous or compound heterozygous pathogenic ACO2 variants present with muscular hypotonia features, namely, infantile cerebellar-retinal degeneration. Recently, two studies reported rare familial cases of ACO2 variants presenting as complex hereditary spastic paraplegia (HSP) with broad clinical spectra. Here, we report the case of a 20-year-old Japanese woman with complex HSP caused by compound heterozygous ACO2 variants, revealing a new phenotype of episodic visual loss during febrile illness. The ACO2 gene on chromosome 22 encodes the aco- variants in the ACO2 gene presenting as complex her- nitase 2 (ACO2) protein in the mitochondrial matrix; editary spastic paraplegia (HSP) with a new phenotype of ACO2 catalyzes the stereospecific isomerization of citrate episodic visual loss after every febrile infection and pro- to isocitrate in the tricarboxylic acid (TCA) cycle1. gressive optic atrophy. This is the third familial report and ACO2 fi fi 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; Pathogenic variants were rst reported in eight the rst Asian patient with complex HSP caused by individuals from two Arab families, and they had infantile pathogenic ACO2 variants. cerebellar-retinal degeneration (ICRD, OMIM#614559)2. The proband was born to nonconsanguineous healthy Subsequently, ~20 cases of pathogenic homozygous or parents at 38 weeks gestational age after unremarkable compound heterozygous ACO2 variants have been delivery.
    [Show full text]
  • Mice Lacking the Mitochondrial Exonuclease MGME1 Accumulate Mtdna Deletions Without Developing Progeria
    ARTICLE DOI: 10.1038/s41467-018-03552-x OPEN Mice lacking the mitochondrial exonuclease MGME1 accumulate mtDNA deletions without developing progeria Stanka Matic1, Min Jiang1, Thomas J. Nicholls2, Jay P. Uhler2, Caren Dirksen-Schwanenland1, Paola Loguercio Polosa3, Marie-Lune Simard1, Xinping Li4, Ilian Atanassov 4, Oliver Rackham 5, Aleksandra Filipovska5, James B. Stewart 1, Maria Falkenberg2, Nils-Göran Larsson 1,6 & Dusanka Milenkovic 1 1234567890():,; Replication of mammalian mitochondrial DNA (mtDNA) is an essential process that requires high fidelity and control at multiple levels to ensure proper mitochondrial function. Mutations in the mitochondrial genome maintenance exonuclease 1 (MGME1) gene were recently reported in mitochondrial disease patients. Here, to study disease pathophysiology, we generated Mgme1 knockout mice and report that homozygous knockouts develop depletion and multiple deletions of mtDNA. The mtDNA replication stalling phenotypes vary drama- tically in different tissues of Mgme1 knockout mice. Mice with MGME1 deficiency accumulate a long linear subgenomic mtDNA species, similar to the one found in mtDNA mutator mice, but do not develop progeria. This finding resolves a long-standing debate by showing that point mutations of mtDNA are the main cause of progeria in mtDNA mutator mice. We also propose a role for MGME1 in the regulation of replication and transcription termination at the end of the control region of mtDNA. 1 Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne 50931, Germany. 2 Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg 405 30, Sweden. 3 Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari 70125, Italy.
    [Show full text]
  • Computational Modeling of Lysine Post-Translational Modification: an Overview Md
    c and S eti ys h te nt m y s S B Hasan MM et al., Curr Synthetic Sys Biol 2018, 6:1 t i n o e l Current Synthetic and o r r g DOI: 10.4172/2332-0737.1000137 u y C ISSN: 2332-0737 Systems Biology CommentaryResearch Article OpenOpen Access Access Computational Modeling of Lysine Post-Translational Modification: An Overview Md. Mehedi Hasan 1*, Mst. Shamima Khatun2, and Hiroyuki Kurata1,3 1Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan 2Department of Statistics, Laboratory of Bioinformatics, Rajshahi University-6205, Bangladesh 3Biomedical Informatics R&D Center, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan Commentary hot spot for PTMs, and a number of protein lysine modifications could occur in both histone and non-histone proteins [11,12]. For instance, Living organisms have a magnificent ordered and complex lysine methylation in non-histone proteins can regulate the protein structure. In regulating the cellular functions, post-translational activity and protein structure stability [13]. In 2004, the Nobel Prize in modifications (PTMs) are critical molecular measures. They alter Chemistry was awarded jointly to Aaron Ciechanover, Avram Hershko protein conformation, modulating their activity, stability and and Irwin Rose for the discovery of lysine ubiquitin-mediated protein localization. Up to date, more than 300 types of PTMs are experimentally degradation [14]. discovered in vivo and in vitro pathways [1,2]. Major and common PTMs are methylation, ubiquitination, succinylation, phosphorylation, Moreover, in biological process, lysine can be modified by the glycosylation, acetylation, and sumoylation.
    [Show full text]
  • Loss of Conserved Ubiquitylation Sites in Conserved Proteins During Human Evolution
    INTERNATIONAL JOURNAL OF MOleCular meDICine 42: 2203-2212, 2018 Loss of conserved ubiquitylation sites in conserved proteins during human evolution DONGBIN PARK, CHUL JUN GOH, HYEIN KIM, JI SEOK LEE and YOONSOO HAHN Department of Life Science, Chung‑Ang University, Seoul 06974, Republic of Korea Received January 30, 2018; Accepted July 6, 2018 DOI: 10.3892/ijmm.2018.3772 Abstract. Ubiquitylation of lysine residues in proteins serves Introduction a pivotal role in the efficient removal of misfolded or unused proteins and in the control of various regulatory pathways Ubiquitylation, in which the highly conserved 76‑residue poly- by monitoring protein activity that may lead to protein peptide ubiquitin is covalently attached to a lysine residue of degradation. The loss of ubiquitylated lysines may affect substrate proteins, mediates the targeted destruction of ubiq- the ubiquitin‑mediated regulatory network and result in the uitylated proteins by the ubiquitin‑proteasome system (1‑4). emergence of novel phenotypes. The present study analyzed The ubiquitin‑mediated protein degradation pathway serves a mouse ubiquitylation data and orthologous proteins from crucial role in the efficient and specific removal of misfolded 62 mammals to identify 193 conserved ubiquitylation sites from proteins and certain key regulatory proteins (5,6). Ubiquitin 169 proteins that were lost in the Euarchonta lineage leading and other ubiquitin‑like proteins, including autophagy‑related to humans. A total of 8 proteins, including betaine homo- protein 8, Ubiquitin‑like
    [Show full text]
  • Loss-Of-Function Mutations in MGME1 Impair Mtdna Replication and Cause Multisystemic Mitochondrial Disease
    LETTERS Loss-of-function mutations in MGME1 impair mtDNA replication and cause multisystemic mitochondrial disease Cornelia Kornblum1,13, Thomas J Nicholls2,13, Tobias B Haack3,13, Susanne Schöler4,5, Viktoriya Peeva4,5, Katharina Danhauser3, Kerstin Hallmann4,5, Gábor Zsurka4,5, Joanna Rorbach2, Arcangela Iuso3, Thomas Wieland3, Monica Sciacco6, Dario Ronchi7, Giacomo P Comi7, Maurizio Moggio6, Catarina M Quinzii8, Salvatore DiMauro8, Sarah E Calvo9–11, Vamsi K Mootha9–11, Thomas Klopstock12, Tim M Strom3, Thomas Meitinger3, Michal Minczuk2, Wolfram S Kunz4,5 & Holger Prokisch3 Known disease mechanisms in mitochondrial DNA (mtDNA) maintenance disorders. Their clinical manifestations range from maintenance disorders alter either the mitochondrial severe multiorgan involvement in early childhood to tissue- replication machinery (POLG, POLG2 and C10orf2)1–3 or specific manifestations, for example, myopathies, in late adulthood. the biosynthesis pathways of deoxyribonucleoside Progressive external ophthalmoplegia (PEO) is commonly associated 5′-triphosphates for mtDNA synthesis4–11. However, in many with these disorders, particularly the late-onset phenotypes. of these disorders, the underlying genetic defect has yet to We identified a Lebanese family (family I) with three chil- be discovered. Here, we identify homozygous nonsense and dren affected by a severe multisystemic mitochondrial disorder missense mutations in the orphan gene C20orf72 in three (Supplementary Fig. 1a). Initial symptoms included ptosis in child- families with a mitochondrial syndrome characterized by hood followed by mild PEO, diffuse skeletal muscle wasting and external ophthalmoplegia, emaciation and respiratory weakness, profound emaciation and respiratory distress. Skeletal failure. Muscle biopsies showed mtDNA depletion and muscle biopsies showed scattered cytochrome c oxidase (COX)- multiple mtDNA deletions. C20orf72, hereafter MGME1 negative fibers and ragged red fibers (RRFs) in all affected individu- (mitochondrial genome maintenance exonuclease 1), encodes als.
    [Show full text]
  • Metabolomics-Assisted Proteomics Identifies Succinylation and SIRT5 As Important Regulators of Cardiac Function
    Metabolomics-assisted proteomics identifies succinylation and SIRT5 as important regulators of cardiac function Sushabhan Sadhukhana, Xiaojing Liub,c,d, Dongryeol Ryue, Ornella D. Nelsona, John A. Stupinskif, Zhi Lia, Wei Cheng, Sheng Zhangg, Robert S. Weissf, Jason W. Locasaleb,c,d, Johan Auwerxe,1, and Hening Lina,h,1 aDepartment of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853; bDuke Cancer Institute, Duke University School of Medicine, Durham, NC 27710; cDuke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27710; dDepartment of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710; eLaboratory of Integrative and Systems Physiology, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; fDepartment of Biomedical Sciences, Cornell University, Ithaca, NY 14853; gProteomics & Mass Spectrometry Facility, Institute of Biotechnology, Cornell University, Ithaca, NY 14853; and hHoward Hughes Medical Institute, Cornell University, Ithaca, NY 14853 Edited by Kevan M. Shokat, University of California, San Francisco, CA, and approved March 9, 2016 (received for review October 7, 2015) Cellular metabolites, such as acyl-CoA, can modify proteins, leading SIRT4 and SIRT5 have very weak deacetylase activities (14). SIRT5 to protein posttranslational modifications (PTMs). One such PTM is possesses unique enzymatic activity on hydrolyzing negatively lysine succinylation, which is regulated by sirtuin 5 (SIRT5). Although charged
    [Show full text]
  • SUMO and Transcriptional Regulation: the Lessons of Large-Scale Proteomic, Modifomic and Genomic Studies
    molecules Review SUMO and Transcriptional Regulation: The Lessons of Large-Scale Proteomic, Modifomic and Genomic Studies Mathias Boulanger 1,2 , Mehuli Chakraborty 1,2, Denis Tempé 1,2, Marc Piechaczyk 1,2,* and Guillaume Bossis 1,2,* 1 Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France; [email protected] (M.B.); [email protected] (M.C.); [email protected] (D.T.) 2 Equipe Labellisée Ligue Contre le Cancer, Paris, France * Correspondence: [email protected] (M.P.); [email protected] (G.B.) Abstract: One major role of the eukaryotic peptidic post-translational modifier SUMO in the cell is transcriptional control. This occurs via modification of virtually all classes of transcriptional actors, which include transcription factors, transcriptional coregulators, diverse chromatin components, as well as Pol I-, Pol II- and Pol III transcriptional machineries and their regulators. For many years, the role of SUMOylation has essentially been studied on individual proteins, or small groups of proteins, principally dealing with Pol II-mediated transcription. This provided only a fragmentary view of how SUMOylation controls transcription. The recent advent of large-scale proteomic, modifomic and genomic studies has however considerably refined our perception of the part played by SUMO in gene expression control. We review here these developments and the new concepts they are at the origin of, together with the limitations of our knowledge. How they illuminate the SUMO-dependent Citation: Boulanger, M.; transcriptional mechanisms that have been characterized thus far and how they impact our view of Chakraborty, M.; Tempé, D.; SUMO-dependent chromatin organization are also considered.
    [Show full text]