Demonstration of Physical Interactions Between Consecutive Enzymes Of

Total Page:16

File Type:pdf, Size:1020Kb

Demonstration of Physical Interactions Between Consecutive Enzymes Of Fur J Blochein. 117. 527-535 (1981) c FEBS 1981 Demonstration of Physical Interactions between Consecutive Enzymes of the Citric Acid Cycle and of the Aspartate-Malate Shuttle A Study Involving Fumarase, Malate Dehydrogenase, Citrate Synthase and Aspartate Aminotransferase Sonia BEECKMANS and Louis KANAREK Laboratorium voor Chemie der Proteinen, Vrije Universiteit Brussel (Received September 15, 198O/Fehruary 26, 1981) By means of covalently immobilized fumarase and mitochondrial or cytoplasmic malate dehydrogenase we were able to detect physical interactions between different enzymes of the citric acid cycle (fumarase with malate dehydrogenase, malate dehydrogenase with citrate synthase and fumarase with citrate synthase) and between the enzymes of both mitochondrial and cytoplasmic halves of the aspartate-malate shuttle (aspartate amino- transferase and malate dehydrogenase). The interactions between fumarase and malate dehydrogenase were also investigated by immobilizing one enzyme indirectly through antibodies bound to Sepharose - protein A. Our results are consistent with a model in which maximally four molecules of malate dehydrogenase are bound to one fumarase molecule. This complex is able to bind either citrate synthase or aspartate aminotransferase. We propose that these enzymes bind alternatively, in order to allow the cell to perform citric acid cycle or shuttle reactions, according to its needs. The physiological meaning and implications on the regulation of me- tabolism of the existence of a large citric acid cycle/malate-aspartate shuttle multienzyme complex are discussed. Whereas it was generally assumed for many years that the Several publications have appeared lately pointing indeed citric acid cycle enzymes are randomly dispersed in the mito- to the existence of physical interactions between enzymes of chondrial matrix, there are in recent literature various publi- the citric acid cycle and aspartate-malate shuttle [7- 141. cations predicting the organization of these enzymes as a Furthermore, a certain compartmentation of different mito- multienzyme complex [I -41. Such predictions were mainly chondria] matrix enzymes has been observed [15] pointing based on the observation that the concentration of free oxalo- to a loose association of certain of the citric acid cycle enzymes acetate is so low that the calculated rate of the citrate syn- with the inner membrane. thase reaction is much slower than the experimentally deter- In this publication we present further indications of real mined citric acid cycle rate as measured by mitochondrial physical interactions between the consecutive citric acid cycle oxygen consumption. Moreover, oxaloacetate further appears enzymes, fumarase, malate dehydrogenase, citrate synthase to be a key metabolite in other important metabolic routes and between the shuttle enzymes malate dehydrogenase and in mitochondria : besides its direct participation in the citric aspartate aminotransferase of both compartments. Fumarase acid cycle and aspartate-malate shuttle it also strongly regu- was included in our experiments as it could be the anchor: lates succinate dehydrogenase activity, whereas it is mainly it links the next enzymes of the citric acid cycle to succinate synthesized by pyruvate carboxylase. It is also important in dehydrogenase, the only enzyme which is located within the cytoplasm: besides operating in the other half of the aspar- mitochondrial inner membrane [I 61 and which connects the tate-malate shuttle, it is the starting product of gluconeo- citric acid cycle with the respiratory chain. Malate dehydro- genesis as the substrate of phosphoenolpyruvate carboxy- genase catalyzes the only citric acid cycle reaction with a kinase [5,6]. Thus channeling on oxaloacetate metabolism highly unfavorable equilibrium malat late]/ [oxaloacetate] and physical association of previously called ‘soluble en- 2 lo4 [17,18]; this forces the cell to make sure that the end zymes’ might be suggested in both cellular compartments. product, oxaloacetate, is removed extremely rapidly in order The advantage of the organization of the citric acid cycle to secure proper functioning of the cycle. Moreover, citrate enzymes as a complex would be the creation of a special synthase, the enzyme next to malate dehydrogenase, is con- microcnvironment around the cycle : the cell would acquire sidered to be the main control point of the cycle [19,20]. One the possibility to maintain a high flux of substrate through could imagine that, besides extensive control by different the cycle with a moderate number of intermediate molecules. substances on this enzyme itself, the fact of switching on and __ ~~ off a physical interaction between malate dehydrogenase and Enzymes. Fumarase or fumarate hydratase (EC 4.2.1.2); malate citrate synthase would be an extra way of regulating the dehydrogenase (EC 1.1.1.37); aspartate aminotransferase (EC 2.6.1.1); cycle activity, especially with the equilibrium of the former citrate synthase (EC 4.1.3.7); aldolase or fructose-bisphosphate aldolase (EC 4.1.2.13); lysozyme (EC 3.2.2.17); succinate dehydrogenase (EC reaction lying far to the left. Moreover, many metabolites 1.3.99.1); pyruvate carhoxylase (EC 6.4.1.1); phosphoenolpyruvate car- which regulate the activity of citrate synthase in vitro (ATP, boxykinase (EC 4.1.1.32); argininosuccinatc lyase (EC 4.3.2.1); fumaryl- pyridine nucleotides and tricarboxylate compounds) have acetoacetase (EC 3.7.1.2); adenylosuccinate iyase (EC 4.3.2.2); glutamate been proven to be much less or even not at all effective dehydrogenase (EC 1.4.1.3). in vivo [21-241. Another question is how the cell manages 528 to separate the amount of oxaloacetate provided to flux enzyme which causes a rate of change of absorbance of through the cycle, from the oxaloacetate which has to operate 0.1 min-l at 25 "C under the experimental conditions. Specific in the shuttle. One possibility is the existence of two pools activities are 1300 units/mg for both mitochondrial aspartate of mitochondrial malate dehydrogenase, and consequently at aminotransferase from chicken and the cytoplasmic isoenzyme least two pools of oxaloacetate in the mitochondria. This from pig hearts; A:%",,,, = 14 1351. supposition is less probable, since the relative amounts of Citrate synthase activity was determined by titration of aspartate aminotransferase and cycle enzymes are constant the released sulphydryl groups of coenzyme A with 5,5'-di- in the mitochondria of all tissues in an organism [25,26]. thiobis(2-nitrobenzoate) as described by Moriyama and Srere Another possibility is regulation by promoting or inhibiting, [37]. One unit of citrate synthase is defined as the amount according to the needs of the cell, a direct interaction of of enzyme that catalyzes the formation of 1 pmol coenzyme A/ aspartate aminotransferase with the malate dehydrogenase min. The specific activity was 160 units/mg; A;% nm, cm = 16. involved in the cycle, thus forming a large combined citric acid cycle/aspartate-malate shuttle complex. Immobilization of Enzymes on Sepharose 48 Four different immobilized enzyme systems were designed MATERIALS AND METHODS with respectively pig fumarase, chicken fumarase, pig mito- chondrial malate dehydrogenase and pig cytoplasmic malate Purifications of Enzymes dehydrogenase covalently coupled to Sepharose 4B. The en- Fumarase from pig hearts [27] and from chicken hearts zymes to be coupled (20 mg of each) were dialyzed first against [28] was prepared as described previously. Mitochondria1 0.01 M potassium phosphate pH 8.2 and afterwards against malate dehydrogenase and mitochondrial aspartate amino- 0.1 M sodium bicarbonate pH 8.2 containing 0.02 M L-malic transferase from chicken hearts were prepared by affinity acid in order to protect the enzymes during the coupling step. chromatography on Sepharose-pyromellitic acid and blue The enzyme solutions were finally adjusted to a concentration Sepharose as will be described elsewhere. Mitochondrial of 1 mg/ml. For each enzyme, 10 g (wet weight) of Sepharose malate dehydrogenase from pig hearts was obtained from 4B (which corresponds to about 10 ml of packed gel), exten- Sigma Chem. Comp. and freed of minor impurities by per- sively washed with distilled water, was suspended in 20ml forming the same affinity chromatographic steps as used for distilled water and activated with 2 g of cyanogen bromide, the chicken heart preparation. Cytoplasmic malate dehydro- suspended in a minimal volume of freshly distilled dimethyl- genase and cytoplasmic aspartate aniinotransferase from pig formamide, during 8 min according to the classical method hearts were from Sigma Chem. Comp. Citrate synthase from of Cuatrecasas [38]. The activated Sepharose was washed chicken hearts was purified as described elsewhere [28]. The quickly with 1 I of cold 0.1 M NaHC03 pH 8.2 and resus- enzyme from pig hearts was obtained from Sigma Chem. pended in the 20 ml enzyme solution. Coupling of the enzymes Comp. All these enzymes were stored at 4°C as ammonium was achieved by overnight shaking of the suspension at 4 "C. sulphate precipitate in 0.01 M potassium phosphate buffer The gels were well washed with 1 1 of 0.1 M NaHC03 and pH 7.3. stored at 4 'C in the presence of sodium azide (200 mg/l All enzymes were tested for purity by electrophoresis in buffer) in order to prevent bacterial growth. the presence of sodium dodecylsulphate [29], by electro- phoresis at pH 8.3 according to Davis [30], by isoelectric Immunological Techniques focusing in Ampholine gradients pH 3.5 - 10 and by electro- phoresis in 6 M urea at pH 3.2 [31] and in 6 M urea at Antibodies against pig heart fumarase and against pig pH 8.0 [32]. Moreover, in neither of these enzyme prepara- heart mitochondrial malate dehydrogenase were raised in tions could we detect any contaminating activity of other rabbits as follows. A solution of 2 mg/ml enzyme was prepared citric acid cycle or aspartate-malate shuttle enzymes. in 0.01 M potassium phosphate buffer pH 8.0 and an emulsion Lysozyme and aldolase were obtained from Boehringer. was made with an equal volume of complete Freund's adju- vant.
Recommended publications
  • Tbamitchodral L Alizaion of the 4Aminobutyrate-2-&Oxoglutarate
    5d.em. J. (lWg77) 161,9O.-307 3O1 Printed in Great Britain Tbamitchodral L alizaion of the 4Aminobutyrate-2-&Oxoglutarate Transminase from Ox Brait By INGER SCHOUSDOE,* BIRGIT 1MO* and ARNE SCHOUSBOEt Department ofBDahemistry At andC*, University ofCopenhagen, 2200 Copenhagen M, Denark (Receved 4 June 1976) In order to determine the intramitochondrial location of 4-aminobutyrate transaminase, mitochondria were prepared from ox brain and freed from myelin and syiaptosomes by using conventional demitygradient-centrifugation techniques, and the purity was checked electron-microscopically. Iner and outer mimbrenes and matrix were prepared from the mitochondria by large-amplitude sweling and subsequent density-gradient centrfugationt The fractions were characterized by using both electron microscopy and differnt marker enzymes. From the specific activity of the 4-aminobutyrate transaminase in the submitochondrial fractions it was concluded that this enzyme is associated with the inner mitochondrial membrane. It is generally agreed that the 4-aminobutyrate-2- pyridoxal phosphate were from Sigma Chemical oxoglutarate transaminase (EC2.6.1.19) from brain is Co., St. Louis, MO, U.S.A. Ficoll was from mainly associated with free mitochondria (Salganicoff Pharmacia, Uppsala, Sweden, and crystallized & De Robertis, 1963, 1965; van den Berget al., 1965; bovine serum albumin was from BDH Biochemicals, van Kempen et at., 1965; Balazs et al., 1966; Poole, Dorset, U.K. 4-Amino[1-'4C]butyrate (sp. Waksman et al., 1968; Reijnierse et al., 1975), radioactivity 50mCi/mmol) and [1-14qtyramine (sp. and a preparation of a crude mitochondrial fraction radioactivity 9mCi/mmol) were obtained from was used by Schousboe et al. (1973) and Maitre et al.
    [Show full text]
  • Alternative Acetate Production Pathways in Chlamydomonas Reinhardtii During Dark Anoxia and the Dominant Role of Chloroplasts in Fermentative Acetate Productionw
    This article is a Plant Cell Advance Online Publication. The date of its first appearance online is the official date of publication. The article has been edited and the authors have corrected proofs, but minor changes could be made before the final version is published. Posting this version online reduces the time to publication by several weeks. Alternative Acetate Production Pathways in Chlamydomonas reinhardtii during Dark Anoxia and the Dominant Role of Chloroplasts in Fermentative Acetate ProductionW Wenqiang Yang,a,1 Claudia Catalanotti,a Sarah D’Adamo,b Tyler M. Wittkopp,a,c Cheryl J. Ingram-Smith,d Luke Mackinder,a Tarryn E. Miller,b Adam L. Heuberger,e Graham Peers,f Kerry S. Smith,d Martin C. Jonikas,a Arthur R. Grossman,a and Matthew C. Posewitzb a Carnegie Institution for Science, Department of Plant Biology, Stanford, California 94305 b Colorado School of Mines, Department of Chemistry and Geochemistry, Golden, Colorado 80401 c Stanford University, Department of Biology, Stanford, California 94305 d Clemson University, Department of Genetics and Biochemistry, Clemson, South Carolina 29634 e Colorado State University, Proteomics and Metabolomics Facility, Fort Collins, Colorado 80523 f Colorado State University, Department of Biology, Fort Collins, Colorado 80523 ORCID ID: 0000-0001-5600-4076 (W.Y.) Chlamydomonas reinhardtii insertion mutants disrupted for genes encoding acetate kinases (EC 2.7.2.1) (ACK1 and ACK2) and a phosphate acetyltransferase (EC 2.3.1.8) (PAT2, but not PAT1) were isolated to characterize fermentative acetate production. ACK1 and PAT2 were localized to chloroplasts, while ACK2 and PAT1 were shown to be in mitochondria.
    [Show full text]
  • Mutation of the Fumarase Gene in Two Siblings with Progressive Encephalopathy and Fumarase Deficiency T
    Mutation of the Fumarase Gene in Two Siblings with Progressive Encephalopathy and Fumarase Deficiency T. Bourgeron,* D. Chretien,* J. Poggi-Bach, S. Doonan,' D. Rabier,* P. Letouze,I A. Munnich,* A. R6tig,* P. Landneu,* and P. Rustin* *Unite de Recherches sur les Handicaps Genetiques de l'Enfant, INSERM U393, Departement de Pediatrie et Departement de Biochimie, H6pital des Enfants-Malades, 149, rue de Sevres, 75743 Paris Cedex 15, France; tDepartement de Pediatrie, Service de Neurologie et Laboratoire de Biochimie, Hopital du Kremlin-Bicetre, France; IFaculty ofScience, University ofEast-London, UK; and IService de Pediatrie, Hopital de Dreux, France Abstract chondrial enzyme (7). Human tissue fumarase is almost We report an inborn error of the tricarboxylic acid cycle, fu- equally distributed between the mitochondria, where the en- marase deficiency, in two siblings born to first cousin parents. zyme catalyzes the reversible hydration of fumarate to malate They presented with progressive encephalopathy, dystonia, as a part ofthe tricarboxylic acid cycle, and the cytosol, where it leucopenia, and neutropenia. Elevation oflactate in the cerebro- is involved in the metabolism of the fumarate released by the spinal fluid and high fumarate excretion in the urine led us to urea cycle. The two isoenzymes have quite homologous struc- investigate the activities of the respiratory chain and of the tures. In rat liver, they differ only by the acetylation of the Krebs cycle, and to finally identify fumarase deficiency in these NH2-terminal amino acid of the cytosolic form (8). In all spe- two children. The deficiency was profound and present in all cies investigated so far, the two isoenzymes have been found to tissues investigated, affecting the cytosolic and the mitochon- be encoded by a single gene (9,10).
    [Show full text]
  • Anti-Inflammatory Role of Curcumin in LPS Treated A549 Cells at Global Proteome Level and on Mycobacterial Infection
    Anti-inflammatory Role of Curcumin in LPS Treated A549 cells at Global Proteome level and on Mycobacterial infection. Suchita Singh1,+, Rakesh Arya2,3,+, Rhishikesh R Bargaje1, Mrinal Kumar Das2,4, Subia Akram2, Hossain Md. Faruquee2,5, Rajendra Kumar Behera3, Ranjan Kumar Nanda2,*, Anurag Agrawal1 1Center of Excellence for Translational Research in Asthma and Lung Disease, CSIR- Institute of Genomics and Integrative Biology, New Delhi, 110025, India. 2Translational Health Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India. 3School of Life Sciences, Sambalpur University, Jyoti Vihar, Sambalpur, Orissa, 768019, India. 4Department of Respiratory Sciences, #211, Maurice Shock Building, University of Leicester, LE1 9HN 5Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia- 7003, Bangladesh. +Contributed equally for this work. S-1 70 G1 S 60 G2/M 50 40 30 % of cells 20 10 0 CURI LPSI LPSCUR Figure S1: Effect of curcumin and/or LPS treatment on A549 cell viability A549 cells were treated with curcumin (10 µM) and/or LPS or 1 µg/ml for the indicated times and after fixation were stained with propidium iodide and Annexin V-FITC. The DNA contents were determined by flow cytometry to calculate percentage of cells present in each phase of the cell cycle (G1, S and G2/M) using Flowing analysis software. S-2 Figure S2: Total proteins identified in all the three experiments and their distribution betwee curcumin and/or LPS treated conditions. The proteins showing differential expressions (log2 fold change≥2) in these experiments were presented in the venn diagram and certain number of proteins are common in all three experiments.
    [Show full text]
  • Citric Acid Cycle
    CHEM464 / Medh, J.D. The Citric Acid Cycle Citric Acid Cycle: Central Role in Catabolism • Stage II of catabolism involves the conversion of carbohydrates, fats and aminoacids into acetylCoA • In aerobic organisms, citric acid cycle makes up the final stage of catabolism when acetyl CoA is completely oxidized to CO2. • Also called Krebs cycle or tricarboxylic acid (TCA) cycle. • It is a central integrative pathway that harvests chemical energy from biological fuel in the form of electrons in NADH and FADH2 (oxidation is loss of electrons). • NADH and FADH2 transfer electrons via the electron transport chain to final electron acceptor, O2, to form H2O. Entry of Pyruvate into the TCA cycle • Pyruvate is formed in the cytosol as a product of glycolysis • For entry into the TCA cycle, it has to be converted to Acetyl CoA. • Oxidation of pyruvate to acetyl CoA is catalyzed by the pyruvate dehydrogenase complex in the mitochondria • Mitochondria consist of inner and outer membranes and the matrix • Enzymes of the PDH complex and the TCA cycle (except succinate dehydrogenase) are in the matrix • Pyruvate translocase is an antiporter present in the inner mitochondrial membrane that allows entry of a molecule of pyruvate in exchange for a hydroxide ion. 1 CHEM464 / Medh, J.D. The Citric Acid Cycle The Pyruvate Dehydrogenase (PDH) complex • The PDH complex consists of 3 enzymes. They are: pyruvate dehydrogenase (E1), Dihydrolipoyl transacetylase (E2) and dihydrolipoyl dehydrogenase (E3). • It has 5 cofactors: CoASH, NAD+, lipoamide, TPP and FAD. CoASH and NAD+ participate stoichiometrically in the reaction, the other 3 cofactors have catalytic functions.
    [Show full text]
  • Complex Hereditary Spastic Paraplegia Associated with Episodic
    Tozawa et al. Human Genome Variation (2021) 8:4 https://doi.org/10.1038/s41439-021-00136-y Human Genome Variation DATA REPORT Open Access Complex hereditary spastic paraplegia associated with episodic visual loss caused by ACO2 variants Takenori Tozawa1,2,AkiraNishimura3, Tamaki Ueno2,4, Akane Shikata5, Yoshihiro Taura1,TakeshiYoshida 6, Naoko Nakagawa7, Takahito Wada 7, Shinji Kosugi7, Tomoko Uehara8, Toshiki Takenouchi 9, Kenjiro Kosaki8 and Tomohiro Chiyonobu1 Abstract Most patients with homozygous or compound heterozygous pathogenic ACO2 variants present with muscular hypotonia features, namely, infantile cerebellar-retinal degeneration. Recently, two studies reported rare familial cases of ACO2 variants presenting as complex hereditary spastic paraplegia (HSP) with broad clinical spectra. Here, we report the case of a 20-year-old Japanese woman with complex HSP caused by compound heterozygous ACO2 variants, revealing a new phenotype of episodic visual loss during febrile illness. The ACO2 gene on chromosome 22 encodes the aco- variants in the ACO2 gene presenting as complex her- nitase 2 (ACO2) protein in the mitochondrial matrix; editary spastic paraplegia (HSP) with a new phenotype of ACO2 catalyzes the stereospecific isomerization of citrate episodic visual loss after every febrile infection and pro- to isocitrate in the tricarboxylic acid (TCA) cycle1. gressive optic atrophy. This is the third familial report and ACO2 fi fi 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; Pathogenic variants were rst reported in eight the rst Asian patient with complex HSP caused by individuals from two Arab families, and they had infantile pathogenic ACO2 variants. cerebellar-retinal degeneration (ICRD, OMIM#614559)2. The proband was born to nonconsanguineous healthy Subsequently, ~20 cases of pathogenic homozygous or parents at 38 weeks gestational age after unremarkable compound heterozygous ACO2 variants have been delivery.
    [Show full text]
  • Microrna–Target Pairs in the Rat Kidney Identified by Microrna Microarray, Proteomic, and Bioinformatic Analysis Zhongmin Tian,1,2 Andrew S
    Downloaded from genome.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press Letter MicroRNA–target pairs in the rat kidney identified by microRNA microarray, proteomic, and bioinformatic analysis Zhongmin Tian,1,2 Andrew S. Greene,1,2 Jennifer L. Pietrusz,1 Isaac R. Matus,2 and Mingyu Liang1,3 1Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA; 2Biotechnology and Biomedical Engineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA Mammalian genomes contain several hundred highly conserved genes encoding microRNAs. In silico analysis has predicted that a typical microRNA may regulate the expression of hundreds of target genes, suggesting miRNAs might have broad biological significance. A major challenge is to obtain experimental evidence for predicted microRNA–target pairs. We reasoned that reciprocal expression of a microRNA and a predicted target within a physiological context would support the presence and relevance of a microRNA–target pair. We used microRNA microarray and proteomic techniques to analyze the cortex and the medulla of rat kidneys. Of the 377 microRNAs analyzed, we identified 6 as enriched in the renal cortex and 11 in the renal medulla. From ∼2100 detectable protein spots in two-dimensional gels, we identified 58 proteins as more abundant in the renal cortex and 72 in the renal medulla. The differential expression of several microRNAs and proteins was verified by real-time PCR and Western blot analyses, respectively. Several pairs of reciprocally expressed microRNAs and proteins were predicted to be microRNA–target pairs by TargetScan, PicTar, or miRanda. Seven pairs were predicted by two algorithms and two pairs by all three algorithms.
    [Show full text]
  • Is Gdh a Marker for Mitochondria in Brain? / James C
    Fordham University Masthead Logo DigitalResearch@Fordham Chemistry Faculty Publications Chemistry 1986 The ubs cellular localization of glutamate dehydrogenase (gdh): is gdh a marker for mitochondria in brain? / James C. K. Lai, Kwan-Fu Rex Sheu, Young Tai Kim, Donald D. Clarke, and John P. Blass Department of Neurology, Cornell University Medical College and Altschul Laboratory for Dementia Research Burke Rehabilitation Center White Plains, NY 10605 and Department of Medicine Cornell University Medical College New York, NY 10021 James C. K. Lai Cornell University. Department of Neurology and Neuroscience Kwan-Fu Rex Sheu Burke Rehabilitation Center Recommended Citation Lai, James C. K.; Sheu, Kwan-Fu Rex; Kim, Young Tai; and Clarke, Donald Dudley PhD, "The ubcs ellular localization of glutamate dehydrogenase (gdh): is gdh a marker for mitochondria in brain? / James C. K. Lai, Kwan-Fu Rex Sheu, Young Tai Kim, Donald D. Clarke, and John P. Blass Department of Neurology, Cornell University Medical College and Altschul Laboratory for Dementia Research Burke Rehabilitation Center White Plains, NY 10605 and Department of Medicine Cornell University Medical College New York, NY 10021" (1986). Chemistry Faculty Publications. 21. https://fordham.bepress.com/chem_facultypubs/21 This Article is brought to you for free and open access by the Chemistry at DigitalResearch@Fordham. It has been accepted for inclusion in Chemistry Faculty Publications by an authorized administrator of DigitalResearch@Fordham. For more information, please contact [email protected]. Young Tai Kim Cornell University. Medical College Donald Dudley Clarke PhD Fordham University, [email protected] Follow this and additional works at: https://fordham.bepress.com/chem_facultypubs Part of the Biochemistry Commons • Neurochemical Research, Vol.
    [Show full text]
  • Effect of Salt Stress on the Expression and Promoter Methylation of the Genes Encoding the Mitochondrial and Cytosolic Forms of Aconitase and Fumarase in Maize
    International Journal of Molecular Sciences Article Effect of Salt Stress on the Expression and Promoter Methylation of the Genes Encoding the Mitochondrial and Cytosolic Forms of Aconitase and Fumarase in Maize Alexander T. Eprintsev 1, Dmitry N. Fedorin 1, Mikhail V. Cherkasskikh 1 and Abir U. Igamberdiev 2,* 1 Department of Biochemistry and Cell Physiology, Voronezh State University, 394018 Voronezh, Russia; [email protected] (A.T.E.); [email protected] (D.N.F.); [email protected] (M.V.C.) 2 Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada * Correspondence: [email protected] Abstract: The influence of salt stress on gene expression, promoter methylation, and enzymatic activity of the mitochondrial and cytosolic forms of aconitase and fumarase has been investigated in maize (Zea mays L.) seedlings. The incubation of maize seedlings in 150-mM NaCl solution resulted in a several-fold increase of the mitochondrial activities of aconitase and fumarase that peaked at 6 h of NaCl treatment, while the cytosolic activity of aconitase and fumarase decreased. This corresponded to the decrease in promoter methylation of the genes Aco1 and Fum1 encoding the mitochondrial forms of these enzymes and the increase in promoter methylation of the genes Aco2 and Fum2 encoding the cytosolic forms. The pattern of expression of the genes encoding the mitochondrial forms of aconitase and fumarase corresponded to the profile of the increase of the stress marker gene Citation: Eprintsev, A.T.; Fedorin, ZmCOI6.1. It is concluded that the mitochondrial and cytosolic forms of aconitase and fumarase are D.N.; Cherkasskikh, M.V.; regulated via the epigenetic mechanism of promoter methylation of their genes in the opposite ways Igamberdiev, A.U.
    [Show full text]
  • Respiration with Pyruvate, Glutamate and Malate
    O2k-Protocols Mitochondrial Physiology Network 11.04: 1-9 (2011) 2007-2011 OROBOROS Version 6: 2011-12-11 Mitochondrial Pathways to Complex I: Respiration with Pyruvate, Glutamate and Malate Erich Gnaiger Medical University of Innsbruck D. Swarovski Research Laboratory A-6020 Innsbruck, Austria OROBOROS INSTRUMENTS Corp, high-resolution respirometry Schöpfstr 18, A-6020 Innsbruck, Austria [email protected]; www.oroboros.at Section 1. Malate ......................................................... 2 Page 2. Pyruvate+Malate: PM ..................................... 3 3. Glutamate ...................................................... 4 4. Glutamate+Malate: GM .................................. 5 5. Boundary conditions ..................................... 8 6. Notes - Pitfalls .............................................. 9 Introduction Mitochondrial respiration depends on a continuous flow of substrates across the mitochondrial membranes into the matrix space. Glutamate and malate are anions which cannot permeate through the lipid bilayer of membranes and hence require carriers, which is also true for pyruvate. Various anion carriers in the inner mitochondrial membrane are involved in the transport of mitochondrial metabolites. Their distribution across the mitochondrial membrane varies mainly with ΔpH and not Δψ, since most carriers (but not the glutamate-aspartate carrier) operate non- electrogenic by anion exchange or co-transport of protons. Depending on the concentration gradients, these carriers also allow for the transport of mitochondrial metabolites from the mitochondria into the cytosol, or for the loss of intermediary metabolites into the incubation medium. Export of intermediates of the tricarboxylic acid (TCA) cycle plays an important metabolic role in the intact cell. This must be considered when interpreting [email protected] www.oroboros.at MiPNet11.04 MitoPathways to CI 2 the effect on respiration of specific substrates used in studies of mitochondrial preparations (Gnaiger 2009).
    [Show full text]
  • (R409H) Cause Metabolic Defects in Primary Cardiac Malignant Tumor
    Zhou et al. Cell Death Discovery (2018) 4:70 DOI 10.1038/s41420-018-0072-3 Cell Death Discovery CORRESPONDENCE Open Access Combined effects of FH (E404D) and ACOX2 (R409H) cause metabolic defects in primary cardiac malignant tumor Xiangyu Zhou1,6, Mengjia Xu1, Weijia Zeng1, Zhongzhong Chen1,GuohuiLu2,YunGong2,RichardH.Finnell3, Huasheng Xiao4,BinQiao5 and Hongyan Wang1 Abstract Primary malignant cardiac tumors (PMCTs) are extremely rare. The apparent immunity of the heart to invasive cancer has attracted considerable interest given the continuously rising incidence of cancer in other organs. This study aims to determine the conditions that could result in cardiac carcinoma and expand our understanding of cardiac tumor occurrence. We report two cases: a male (Patient-1) with primary cardiac malignant fibrous histiocytoma (MFH) and a female (Patient-2) with primary cardiac angiosarcoma. Merged genome-wide analyses of aCGH, Exome sequencing, and RNA-sequencing were performed on Patient-1 using peripheral blood, carcinoma tissue, and samples of adjacent normal tissue. Only whole-transcriptome analysis was carried out on Patient-2, due to insufficient quantities of sample from Patient-2. We identified a novel inherited loss of functional mutation of FH (Glu404Asp), a recurrent somatic hotspot mutation of PIK3CA (His1047Arg) and a somatic duplication in copy number of HIF1A. FH (E404D) severely compromised FH enzyme activity and lead to decreased protein expression in cardiac tumor tissues. We previously reported a functional mutation ACOX2 (R409H), which is potentially associated with decreased β-oxidation of fatty 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; acids in the cardiac tumor tissue. Results of transcriptome analyses on two patients further revealed that the RNA expression of genes in the TCA cycle and beta-oxidation were uniformly downregulated.
    [Show full text]
  • Genome-Scale Methods Converge on Key Mitochondrial Genes For
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UCL Discovery 1 Title: “Genome-scale methods converge on key mitochondrial genes 2 for the survival of human cardiomyocytes in hypoxia.” 3 Authors: Lindsay M Edwardsa, Martin I Sigurdssonb,c, Peter A Robbinsd, Michael E 4 Wealee, Gianpiero L. Cavallerif, Hugh E Montgomeryg and Ines Thieleh 5 6 Affiliations: 7 a School of Biomedical Science, King’s College London, SE1 1UL, UK 8 bDepartment of Anaesthesia, Perioperative and Pain Medicine, Brigham and Women's 9 Hospital / Harvard Medical School, Boston, USA 10 d Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, 11 OX1 3PT, UK 12 e Department of Medical and Molecular Genetics, King's College London School of 13 Medicine, London, SE1 9RT, UK 14 f Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St. 15 Stephen's Green, Dublin 2, Ireland 16 g Institute for Human Health and Performance, University College London, N19 5LW, 17 UK 18 h Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, 7, 19 avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg 20 21 Address for Correspondence: 22 Dr Lindsay Edwards 23 Centre of Human & Aerospace Physiological Sciences, King’s College London 24 SH4.15 Guy’s Campus 25 London SE1 1UL. 26 Tel: +44 (0)20 7848 6978 27 E-mail: [email protected] 28 29 Running head: Constraint-based modelling, hypoxia and human genetics 30 31 1 32 Abstract 33 Background: Any reduction in myocardial oxygen delivery relative to its demands can 34 impair cardiac contractile performance.
    [Show full text]