Chilopoda, Lithobiomorpha): a New Member of the Polish Fauna
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Literature-Based Survey on the Swiss Fauna of Chilopoda
SOIL ORGANISMS Volume 81 (3) 2009 pp. 647–669 ISSN: 1864 - 6417 Literature-based survey on the Swiss fauna of Chilopoda Edi Stöckli Natural History Museum Basel, Augustinergasse 2, CH-4001 Basel, Switzerland; e-mail: [email protected] Abstract The Swiss centipede fauna has never been fully reviewed. Even though the first records date from 1845, a checklist has not been drawn up until now. Literature research based on 88 publications and 2 online databases offers a preliminary list of 62 species and 1 subspecies. Type species from the Swiss area are specified. Additional potential species are named and might be added in the future to a complete checklist incorporating almost 90 species. Keywords: fauna, Chilopoda, literature, species list, Switzerland 1. Introduction Research into the Diplopoda and the Chilopoda in Switzerland demonstrates two totally different levels. For the Diplopoda there is an excellent work by Ariane Pedroli-Christen dating from 1993. It covers the fauna and ecology of 127 species and presents their global and Swiss distribution (for Switzerland in a 5 x 5 km grid!). Unfortunately, she abandoned her scientific work some years ago and has no successor in Switzerland working with this group at such a level. In contrast, the Swiss centipedes have not had such an intensive level of study. Up to the end of 2008 a published checklist was not available, not even a preliminary one. This may seem surprising, as most of the surrounding countries or areas already possess such lists. As examples may be named Austria (Würmli 1972b: 71 species), France (Geoffroy & Iorio 2009: 145 species) or Italy (Checklist of the species of the Italian fauna 2003: 155 species). -
Black Sea-Caspian Steppe: Natural Conditions 20 1.1 the Great Steppe
The Pechenegs: Nomads in the Political and Cultural Landscape of Medieval Europe East Central and Eastern Europe in the Middle Ages, 450–1450 General Editors Florin Curta and Dušan Zupka volume 74 The titles published in this series are listed at brill.com/ecee The Pechenegs: Nomads in the Political and Cultural Landscape of Medieval Europe By Aleksander Paroń Translated by Thomas Anessi LEIDEN | BOSTON This is an open access title distributed under the terms of the CC BY-NC-ND 4.0 license, which permits any non-commercial use, distribution, and reproduction in any medium, provided no alterations are made and the original author(s) and source are credited. Further information and the complete license text can be found at https://creativecommons.org/licenses/by-nc-nd/4.0/ The terms of the CC license apply only to the original material. The use of material from other sources (indicated by a reference) such as diagrams, illustrations, photos and text samples may require further permission from the respective copyright holder. Publication of the presented monograph has been subsidized by the Polish Ministry of Science and Higher Education within the National Programme for the Development of Humanities, Modul Universalia 2.1. Research grant no. 0046/NPRH/H21/84/2017. National Programme for the Development of Humanities Cover illustration: Pechenegs slaughter prince Sviatoslav Igorevich and his “Scythians”. The Madrid manuscript of the Synopsis of Histories by John Skylitzes. Miniature 445, 175r, top. From Wikimedia Commons, the free media repository. Proofreading by Philip E. Steele The Library of Congress Cataloging-in-Publication Data is available online at http://catalog.loc.gov LC record available at http://catalog.loc.gov/2021015848 Typeface for the Latin, Greek, and Cyrillic scripts: “Brill”. -
The Ventral Nerve Cord of Lithobius Forficatus (Lithobiomorpha): Morphology, Neuroanatomy, and Individually Identifiable Neurons
76 (3): 377 – 394 11.12.2018 © Senckenberg Gesellschaft für Naturforschung, 2018. A comparative analysis of the ventral nerve cord of Lithobius forficatus (Lithobiomorpha): morphology, neuroanatomy, and individually identifiable neurons Vanessa Schendel, Matthes Kenning & Andy Sombke* University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, Soldmannstrasse 23, 17487 Greifswald, Germany; Vanessa Schendel [[email protected]]; Matthes Kenning [[email protected]]; Andy Sombke * [andy. [email protected]] — * Corresponding author Accepted 19.iv.2018. Published online at www.senckenberg.de/arthropod-systematics on 27.xi.2018. Editors in charge: Markus Koch & Klaus-Dieter Klass Abstract. In light of competing hypotheses on arthropod phylogeny, independent data are needed in addition to traditional morphology and modern molecular approaches. One promising approach involves comparisons of structure and development of the nervous system. In addition to arthropod brain and ventral nerve cord morphology and anatomy, individually identifiable neurons (IINs) provide new charac- ter sets for comparative neurophylogenetic analyses. However, very few species and transmitter systems have been investigated, and still fewer species of centipedes have been included in such analyses. In a multi-methodological approach, we analyze the ventral nerve cord of the centipede Lithobius forficatus using classical histology, X-ray micro-computed tomography and immunohistochemical experiments, combined with confocal laser-scanning microscopy to characterize walking leg ganglia and identify IINs using various neurotransmitters. In addition to the subesophageal ganglion, the ventral nerve cord of L. forficatus is composed of the forcipular ganglion, 15 well-separated walking leg ganglia, each associated with eight pairs of nerves, and the fused terminal ganglion. Within the medially fused hemiganglia, distinct neuropilar condensations are located in the ventral-most domain. -
Catalogue of Chilean Centipedes (Myriapoda, Chilopoda)
90 (1) · April 2018 pp. 27–37 Catalogue of Chilean centipedes (Myriapoda, Chilopoda) Emmanuel Vega-Román1,2* and Víctor Hugo Ruiz2 1 Universidad del Bío Bío, Facultad de Educación, Av. Casilla 5-C, Collao 1202, Concepción, Región del Bío Bío, Chile 2 Universidad de Concepción, Facultad de Ciencias Naturales y Oceanográficas, Departamento de Zoología, Barrio Universitario, Sin dirección. Casilla 160-C, Concepción, Bío Bío, Chile * Corresponding author, e-mail: [email protected] Received 11 January 2017 | Accepted 22 March 2018 Published online at www.soil-organisms.de 1 April 2018 | Printed version 15 April 2018 Abstract A review of all literature, published between 1847 and 2016, provides a comprehensive inventory of research on Chilean Chilo- poda. A total of 4 orders, 10 families, 28 genera and 70 species were recorded, highlighting the diversity of Chilopoda species in Chile. The geographical distribution and habitat preferences of all species are given with reference to the literature. Keywords Arthropoda | Chilopoda | Chile | taxonomy | biogeography 1. Introduction cross-referenced against ChiloBase 2.0, an international database of Chilopoda taxonomy (Bonato et al. 2016). The Chilopoda are a group of arthropods distributed Where species identification was considered ambiguous worldwide, occupying a wide variety of ecosystems with in the literature, it was excluded from the present analysis to the exception of polar areas (Edgecombe & Giribet 2007). avoid erroneous or non-reliable results. The exclusion cri- They are nocturnal arthropods, preferring areas with teria considered that most records were taken directly from high humidity, even inhabiting intertidal and supratidal the literature without the possibility to check the material zones (Barber 2009). -
Arachnides 88
ARACHNIDES BULLETIN DE TERRARIOPHILIE ET DE RECHERCHES DE L’A.P.C.I. (Association Pour la Connaissance des Invertébrés) 88 2019 Arachnides, 2019, 88 NOUVEAUX TAXA DE SCORPIONS POUR 2018 G. DUPRE Nouveaux genres et nouvelles espèces. BOTHRIURIDAE (5 espèces nouvelles) Brachistosternus gayi Ojanguren-Affilastro, Pizarro-Araya & Ochoa, 2018 (Chili) Brachistosternus philippii Ojanguren-Affilastro, Pizarro-Araya & Ochoa, 2018 (Chili) Brachistosternus misti Ojanguren-Affilastro, Pizarro-Araya & Ochoa, 2018 (Pérou) Brachistosternus contisuyu Ojanguren-Affilastro, Pizarro-Araya & Ochoa, 2018 (Pérou) Brachistosternus anandrovestigia Ojanguren-Affilastro, Pizarro-Araya & Ochoa, 2018 (Pérou) BUTHIDAE (2 genres nouveaux, 41 espèces nouvelles) Anomalobuthus krivotchatskyi Teruel, Kovarik & Fet, 2018 (Ouzbékistan, Kazakhstan) Anomalobuthus lowei Teruel, Kovarik & Fet, 2018 (Kazakhstan) Anomalobuthus pavlovskyi Teruel, Kovarik & Fet, 2018 (Turkmenistan, Kazakhstan) Ananteris kalina Ythier, 2018b (Guyane) Barbaracurus Kovarik, Lowe & St'ahlavsky, 2018a Barbaracurus winklerorum Kovarik, Lowe & St'ahlavsky, 2018a (Oman) Barbaracurus yemenensis Kovarik, Lowe & St'ahlavsky, 2018a (Yémen) Butheolus harrisoni Lowe, 2018 (Oman) Buthus boussaadi Lourenço, Chichi & Sadine, 2018 (Algérie) Compsobuthus air Lourenço & Rossi, 2018 (Niger) Compsobuthus maidensis Kovarik, 2018b (Somaliland) Gint childsi Kovarik, 2018c (Kénya) Gint amoudensis Kovarik, Lowe, Just, Awale, Elmi & St'ahlavsky, 2018 (Somaliland) Gint gubanensis Kovarik, Lowe, Just, Awale, Elmi & St'ahlavsky, -
Anisotropy of Magnetic Susceptibility of Pleistocene Loess-Paleosol Sequences from Ukraine and Its Paleoenvironment Implications
Geophysical Research Abstracts Vol. 21, EGU2019-365, 2019 EGU General Assembly 2019 © Author(s) 2018. CC Attribution 4.0 license. Anisotropy of magnetic susceptibility of Pleistocene loess-paleosol sequences from Ukraine and its paleoenvironment implications Dmytro Hlavatskyi and Volodymyr Bakhmutov S.I. Subbotin Institute of Geophysics, National Academy of Sciences of Ukraine, Kyiv, Ukraine ([email protected]) Anisotropy of magnetic susceptibility (AMS) of the loess-paleosol sequences from Ukraine was analyzed in order to define Pleistocene paleowind directions and to prove the viability of AMS-based paleoclimatic reconstructions, spanning the past 1.0 Ma. For the AMS studies more than 1200 oriented samples were taken from 7 loess-paleosol sections located in the area between Bug and Dnieper rivers, and the Black Sea. Our results indicate normal sedimentary magnetic fabric for almost of all samples, characterized by minimum sus- ceptibility axes grouped in vertical direction. The distribution of magnetic susceptibility axes allows to define main wind directions for different time intervals, which are comparable to regional paleogeographic reconstructions of each unit. An oblate magnetic fabric is prevalent in all horizons. Magnetic lineation, foliation and anisotropy de- gree depend on lithology, having higher values in Late Pleistocene loess horizons of Volhynian Upland sequences in Western Ukraine. The AMS of the loess-paleosol sediments from the Black Sea region is much weaker, than noted in loess and paleosol of Western and Northern Ukraine, comparable to distinguished Chinese loess. The destruction of primary fabric due to pedogenesis has been observed in Middle Pleistocene paleosol layers from Podolian Upland and Dnieper Lowland sections in Central Ukraine. -
Dinburgh Encyclopedia;
THE DINBURGH ENCYCLOPEDIA; CONDUCTED DY DAVID BREWSTER, LL.D. \<r.(l * - F. R. S. LOND. AND EDIN. AND M. It. LA. CORRESPONDING MEMBER OF THE ROYAL ACADEMY OF SCIENCES OF PARIS, AND OF THE ROYAL ACADEMY OF SCIENCES OF TRUSSLi; JIEMBER OF THE ROYAL SWEDISH ACADEMY OF SCIENCES; OF THE ROYAL SOCIETY OF SCIENCES OF DENMARK; OF THE ROYAL SOCIETY OF GOTTINGEN, AND OF THE ROYAL ACADEMY OF SCIENCES OF MODENA; HONORARY ASSOCIATE OF THE ROYAL ACADEMY OF SCIENCES OF LYONS ; ASSOCIATE OF THE SOCIETY OF CIVIL ENGINEERS; MEMBER OF THE SOCIETY OF THE AN TIQUARIES OF SCOTLAND; OF THE GEOLOGICAL SOCIETY OF LONDON, AND OF THE ASTRONOMICAL SOCIETY OF LONDON; OF THE AMERICAN ANTlftUARIAN SOCIETY; HONORARY MEMBER OF THE LITERARY AND PHILOSOPHICAL SOCIETY OF NEW YORK, OF THE HISTORICAL SOCIETY OF NEW YORK; OF THE LITERARY AND PHILOSOPHICAL SOClE'i'Y OF li riiECHT; OF THE PimOSOPHIC'.T- SOC1ETY OF CAMBRIDGE; OF THE LITERARY AND ANTIQUARIAN SOCIETY OF PERTH: OF THE NORTHERN INSTITUTION, AND OF THE ROYAL MEDICAL AND PHYSICAL SOCIETIES OF EDINBURGH ; OF THE ACADEMY OF NATURAL SCIENCES OF PHILADELPHIA ; OF THE SOCIETY OF THE FRIENDS OF NATURAL HISTORY OF BERLIN; OF THE NATURAL HISTORY SOCIETY OF FRANKFORT; OF THE PHILOSOPHICAL AND LITERARY SOCIETY OF LEEDS, OF THE ROYAL GEOLOGICAL SOCIETY OF CORNWALL, AND OF THE PHILOSOPHICAL SOCIETY OF YORK. WITH THE ASSISTANCE OF GENTLEMEN. EMINENT IN SCIENCE AND LITERATURE. IN EIGHTEEN VOLUMES. VOLUME VII. EDINBURGH: PRINTED FOR WILLIAM BLACKWOOD; AND JOHN WAUGH, EDINBURGH; JOHN MURRAY; BALDWIN & CRADOCK J. M. RICHARDSON, LONDON 5 AND THE OTHER PROPRIETORS. M.DCCC.XXX.- . -
Steppe of Dnieper Ecological Corridor
Ukrainian Journal of Ecology Ukrainian Journal of Ecology, 2020, 10(2), 209-218, doi: 10.15421/2020_87 ORIGINAL ARTICLE UDC 502.13(282.247.32:23.071:477) A Study of the Emerald Network objects in Ukrainian Forest- Steppe of Dnieper Ecological Corridor І.V. Solomakha1, V.V. Konishchuk1, O.V. Mudrak*2, H.V. Mudrak3 1Institute of Agroecology and Environmental Management NAAS of Ukraine, 12 Metrolohichna St., Kyiv, 03143, Ukraine, 2 Vinnytsia Academy of Continuing Education, 13 Hrushevskyi St., Vinnytsia, 21050, Ukraine, 3Vinnytsia National Agrarian University, 3 Soniachna st., Vinnytsia, 21008, Ukraine *Corresponding author E-mail: [email protected] Received: 20.03.2020. Accepted: 21.04.2020 The national ecological network is being developed in Ukraine to create pan-European ecological network. The legislative framework is adopted, the network of nature reserve fund objects is expanded, and ecological corridors of national and regional significance are formed. The Dnieper Ecological Corridor is one of the largest ones in Ukraine and has trans-boundary significance. Thus, the priority task is to study flora, fauna, and natural habitats of the region in order to preserve and reproduce the rare components of biotic and landscape diversity. To fulfill these tasks, the Emerald Network was created. It includes territories of special nature conservation significance. The Emerald Network of Ukraine ensures conservation of the most valuable and typical components of landscape and biotic diversity, including habitats of rare and endangered animals and plants species. These areas include natural objects in the valley of the forest steppe part of Dnieper River basin, where there is a combination of reservoirs cascade with the remnants of the Dnieper flood plain and mouth areas. -
Late Quaternary Climate Change in Western Eurasia a Spatio-Temporal
Late Quaternary Climate Change in Western Eurasia A spatio-temporal review of climate proxies A Dissertation Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Natural Sciences (Dr.rer.nat) to the Department of Earth Sciences Physical Geography of the Freie Universität Berlin Author Bostonalieva Zhyldyz Kubatalievna, M.Sc. Berlin, 2013 First Supervisor: Prof. Dr. Brigitta Schütt Freie Universität Berlin, Institute of Geographical Sciences Physical Geography Second Supervisor: Prof. Dr. Elke Kaiser Freie Universität Berlin, Department of History and Cultural Studies, Institute of Prehistoric Archaeology Date of the defense: 10 March 2014 Acknowledgements. I would like to express my sincere and deepest gratitude to my supervisor Prof. Dr. Brigitta Schütt for providing the opportunity to write this thesis, thank you for her supervision, constructive and valuable advice, for giving fruitful discussions and scientific revision of my thesis and continuous encouragement throughout the entire work of this Ph.D. thesis. I would like to express my sincere gratitude to Prof. Dr. Elke Kaiser, who has became the second supervisor of my thesis, thank for her helping me in the collection of factual material, for your support and also for her provision of an office. I also would like express my gratitude to Prof. Dr. Tilman Rost, Dr. Jan Krause and Dr. Tolkunbek Asykulov for valuable numerous consultations and for helping thesis. I express my deep gratitude to Dipl. Georg. Marlen Schloffel, Dr. Steffen Schneider for their help in the development of GIS software in the creation of palaeoclimatic cards, for creating a friendly atmosphere of mutual, friendly and open communication.I would like express my gratitude to all colleagues and friends from Physical Geography, Institute of Geography, Department of Earth Sciences, Freie Universität Berlin who have helped, supported me and gave comments on my thesis. -
Lithobiomorpha, Lithobiidae)
ZooKeys 980: 43–55 (2020) A peer-reviewed open-access journal doi: 10.3897/zookeys.980.47295 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research An unusual new centipede subgenus Lithobius (Sinuispineus), with two new species from China (Lithobiomorpha, Lithobiidae) Xiaodong Chang1, Sujian Pei1, Chunying Zhu1, Huiqin Ma1,2 1 Institute of Myriapodology, School of Life Sciences, Hengshui University, Hengshui, Hebei 053000, China 2 Hebei Key Laboratory of Wetland Ecology and Conservation, Hengshui, Hebei 053000, China Corresponding author: Huiqin Ma ([email protected]) Academic editor: M. Zapparoli | Received 15 October 2019 | Accepted 22 September 2020 | Published 28 October 2020 http://zoobank.org/E3EB2FC3-3070-47DB-9C51-A65C793754F8 Citation: Chang X, Pei S, Zhu C, Ma H (2020) An unusual new centipede subgenus Lithobius (Sinuispineus), with two new species from China (Lithobiomorpha, Lithobiidae). ZooKeys 980: 43–55. https://doi.org/10.3897/ zookeys.980.47295 Abstract The present study describes a new Lithobiomorpha subgenus, Lithobius (Sinuispineus) subgen. nov., and two new species, L. (Sinuispineus) sinuispineus sp. nov. and L. (Sinuispineus) minuticornis sp. nov. from China. The representatives of the new subgenus are characterized by a considerable sexual dimorphism of the ultimate leg pair 15, having the femur and tibia unusually enlarged in males, and the dorsal side of the femur with curved posterior spurs. These features distinguishLithobius (Sinuispineus) subgen. nov. from all other subgenera of Lithobius. The diagnosis and the main morphological characters of the new subgenus and of the two new species are given for both male and female specimens. Keywords Chilopoda, Lithobius (Sinuispineus) minuticornis sp. nov., Lithobius (Sinuispineus) sinuispineus sp. -
Comparative Morphology of Ultimate and Walking Legs in the Centipede Lithobius Forficatus (Myriapoda) with Functional Implicatio
Kenning et al. Zoological Letters (2019) 5:3 https://doi.org/10.1186/s40851-018-0115-x RESEARCH ARTICLE Open Access Comparative morphology of ultimate and walking legs in the centipede Lithobius forficatus (Myriapoda) with functional implications Matthes Kenning1,2* , Vanessa Schendel1,3, Carsten H. G. Müller2 and Andy Sombke1,4 Abstract Background: In the context of evolutionary arthopodial transformations, centipede ultimate legs exhibit a plethora of morphological modifications and behavioral adaptations. Many species possess significantly elongated, thickened, or pincer-like ultimate legs. They are frequently sexually dimorphic, indicating a role in courtship and mating. In addition, glandular pores occur more commonly on ultimate legs than on walking legs, indicating a role in secretion, chemical communication, or predator avoidance. In this framework, this study characterizes the evolutionarily transformed ultimate legs in Lithobius forficatus in comparison with regular walking legs. Results: A comparative analysis using macro-photography, SEM, μCT, autofluorescence, backfilling, and 3D- reconstruction illustrates that ultimate legs largely resemble walking legs, but also feature a series of distinctions. Substantial differences are found with regard to aspects of the configuration of specific podomeres, musculature, abundance of epidermal glands, typology and distribution of epidermal sensilla, and architecture of associated nervous system structures. Conclusion: In consideration of morphological and behavioral characteristics, ultimate legs in L. forficatus primarily serve a defensive, but also a sensory function. Moreover, morphologically coherent characteristics in the organization of the ultimate leg versus the antenna-associated neuromere point to constructional constraints in the evolution of primary processing neuropils. Keywords: Chilopoda, Evolution, microCT, Neuroanatomy, Nervous system, Scanning electron microscopy, Backfilling Background evolutionary transformations of the ultimate legs. -
1 the RESTRUCTURING of ARTHROPOD TROPHIC RELATIONSHIPS in RESPONSE to PLANT INVASION by Adam B. Mitchell a Dissertation Submitt
THE RESTRUCTURING OF ARTHROPOD TROPHIC RELATIONSHIPS IN RESPONSE TO PLANT INVASION by Adam B. Mitchell 1 A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Entomology and Wildlife Ecology Winter 2019 © Adam B. Mitchell All Rights Reserved THE RESTRUCTURING OF ARTHROPOD TROPHIC RELATIONSHIPS IN RESPONSE TO PLANT INVASION by Adam B. Mitchell Approved: ______________________________________________________ Jacob L. Bowman, Ph.D. Chair of the Department of Entomology and Wildlife Ecology Approved: ______________________________________________________ Mark W. Rieger, Ph.D. Dean of the College of Agriculture and Natural Resources Approved: ______________________________________________________ Douglas J. Doren, Ph.D. Interim Vice Provost for Graduate and Professional Education I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: ______________________________________________________ Douglas W. Tallamy, Ph.D. Professor in charge of dissertation I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: ______________________________________________________ Charles R. Bartlett, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: ______________________________________________________ Jeffery J. Buler, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy.