Analysis of Comments for Oriya LGR Proposal Revision: June 30, 2019
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Assessment of Options for Handling Full Unicode Character Encodings in MARC21 a Study for the Library of Congress
1 Assessment of Options for Handling Full Unicode Character Encodings in MARC21 A Study for the Library of Congress Part 1: New Scripts Jack Cain Senior Consultant Trylus Computing, Toronto 1 Purpose This assessment intends to study the issues and make recommendations on the possible expansion of the character set repertoire for bibliographic records in MARC21 format. 1.1 “Encoding Scheme” vs. “Repertoire” An encoding scheme contains codes by which characters are represented in computer memory. These codes are organized according to a certain methodology called an encoding scheme. The list of all characters so encoded is referred to as the “repertoire” of characters in the given encoding schemes. For example, ASCII is one encoding scheme, perhaps the one best known to the average non-technical person in North America. “A”, “B”, & “C” are three characters in the repertoire of this encoding scheme. These three characters are assigned encodings 41, 42 & 43 in ASCII (expressed here in hexadecimal). 1.2 MARC8 "MARC8" is the term commonly used to refer both to the encoding scheme and its repertoire as used in MARC records up to 1998. The ‘8’ refers to the fact that, unlike Unicode which is a multi-byte per character code set, the MARC8 encoding scheme is principally made up of multiple one byte tables in which each character is encoded using a single 8 bit byte. (It also includes the EACC set which actually uses fixed length 3 bytes per character.) (For details on MARC8 and its specifications see: http://www.loc.gov/marc/.) MARC8 was introduced around 1968 and was initially limited to essentially Latin script only. -
The Ancient Egyptian Hieroglyphic Language Was Created by Sumerian Turks
Advances in Anthropology, 2017, 7, 197-250 http://www.scirp.org/journal/aa ISSN Online: 2163-9361 ISSN Print: 2163-9353 The Ancient Egyptian Hieroglyphic Language Was Created by Sumerian Turks Metin Gündüz Retired Physician, Diplomate ABEM (American Board of Emergency Medicine), Izmir, Turkey How to cite this paper: Gündüz, M. (2017). Abstract The Ancient Egyptian Hieroglyphic Lan- guage Was Created by Sumerian Turks. The “phonetic sound value of each and every hieroglyphic picture’s expressed Advances in Anthropology, 7, 197-250. and intended meaning as a verb or as a noun by the creators of the ancient https://doi.org/10.4236/aa.2017.74013 Egyptian hieroglyphic picture symbols, ‘exactly matches’, the same meaning” Received: August 2, 2017 as well as the “first letter of the corresponding meaning of the Turkish word’s Accepted: October 13, 2017 first syllable” with the currently spoken dialects of the Turkish language. The Published: October 16, 2017 exact intended sound value as well as the meaning of hieroglyphic pictures as Copyright © 2017 by author and nouns or verbs is individually and clearly expressed in the original hierog- Scientific Research Publishing Inc. lyphic pictures. This includes the 30 hieroglyphic pictures of well-known con- This work is licensed under the Creative sonants as well as some vowel sounds-of the language of the ancient Egyp- Commons Attribution International tians. There is no exception to this rule. Statistical and probabilistic certainty License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/ beyond any reasonable doubt proves the Turkish language connection. The Open Access hieroglyphic pictures match with 2 variables (the phonetic value and intended meaning). -
5. the Harappan Script Controversy
5. The Harappan script controversy (Subchapters 5.1-10 are the text of the paper “The Vedic Harappans in writing: Remarks in expectation of a decipherment of the Indus script”, written in late 1999, if I remember correctly. Instead of a postscript, subchapters 5.11-12 summarize a later development in 2003-2004, which throws an entirely different light on the meaning of the Indus script. At the time of editing this collection, I am agnostic on this question.) 5.1. Introduction In the Harappan cities some 4200 seals, many of them duplicates, have been found which carry short inscriptions in an otherwise unknown script. There is not the slightest doubt that this harvest of Harappan writings is but the tip of an iceberg, in this sense that the Harappan culture must have produced much more copious writings, but that most of them disappeared because the writing materials were not resistant to the ravages of time, particularly in the Indian climate. This fatality can still be seen today, when the libraries of many impoverished maharajas' castles are full of manuscripts which are decaying under our very eyes, turning large chunks of India's national memory and heritage into dust. Even of the oldest and most popular texts, the extant manuscripts are seldom older than a few centuries, copies made as the only guarantee to save the texts from the ravages of time which were destroying the earlier copies. It is fair to assume that a text corpus proportionate in size to the enormous extent of the Harappan cultural space, has gone the same way into oblivion. -
Proposal for a Kannada Script Root Zone Label Generation Ruleset (LGR)
Proposal for a Kannada Script Root Zone Label Generation Ruleset (LGR) Proposal for a Kannada Script Root Zone Label Generation Ruleset (LGR) LGR Version: 3.0 Date: 2019-03-06 Document version: 2.6 Authors: Neo-Brahmi Generation Panel [NBGP] 1. General Information/ Overview/ Abstract The purpose of this document is to give an overview of the proposed Kannada LGR in the XML format and the rationale behind the design decisions taken. It includes a discussion of relevant features of the script, the communities or languages using it, the process and methodology used and information on the contributors. The formal specification of the LGR can be found in the accompanying XML document: proposal-kannada-lgr-06mar19-en.xml Labels for testing can be found in the accompanying text document: kannada-test-labels-06mar19-en.txt 2. Script for which the LGR is Proposed ISO 15924 Code: Knda ISO 15924 N°: 345 ISO 15924 English Name: Kannada Latin transliteration of the native script name: Native name of the script: ಕನ#ಡ Maximal Starting Repertoire (MSR) version: MSR-4 Some languages using the script and their ISO 639-3 codes: Kannada (kan), Tulu (tcy), Beary, Konkani (kok), Havyaka, Kodava (kfa) 1 Proposal for a Kannada Script Root Zone Label Generation Ruleset (LGR) 3. Background on Script and Principal Languages Using It 3.1 Kannada language Kannada is one of the scheduled languages of India. It is spoken predominantly by the people of Karnataka State of India. It is one of the major languages among the Dravidian languages. Kannada is also spoken by significant linguistic minorities in the states of Andhra Pradesh, Telangana, Tamil Nadu, Maharashtra, Kerala, Goa and abroad. -
The Unicode Standard, Version 4.0--Online Edition
This PDF file is an excerpt from The Unicode Standard, Version 4.0, issued by the Unicode Consor- tium and published by Addison-Wesley. The material has been modified slightly for this online edi- tion, however the PDF files have not been modified to reflect the corrections found on the Updates and Errata page (http://www.unicode.org/errata/). For information on more recent versions of the standard, see http://www.unicode.org/standard/versions/enumeratedversions.html. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and Addison-Wesley was aware of a trademark claim, the designations have been printed in initial capital letters. However, not all words in initial capital letters are trademark designations. The Unicode® Consortium is a registered trademark, and Unicode™ is a trademark of Unicode, Inc. The Unicode logo is a trademark of Unicode, Inc., and may be registered in some jurisdictions. The authors and publisher have taken care in preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein. The Unicode Character Database and other files are provided as-is by Unicode®, Inc. No claims are made as to fitness for any particular purpose. No warranties of any kind are expressed or implied. The recipient agrees to determine applicability of information provided. Dai Kan-Wa Jiten used as the source of reference Kanji codes was written by Tetsuji Morohashi and published by Taishukan Shoten. -
An Introduction to Indic Scripts
An Introduction to Indic Scripts Richard Ishida W3C [email protected] HTML version: http://www.w3.org/2002/Talks/09-ri-indic/indic-paper.html PDF version: http://www.w3.org/2002/Talks/09-ri-indic/indic-paper.pdf Introduction This paper provides an introduction to the major Indic scripts used on the Indian mainland. Those addressed in this paper include specifically Bengali, Devanagari, Gujarati, Gurmukhi, Kannada, Malayalam, Oriya, Tamil, and Telugu. I have used XHTML encoded in UTF-8 for the base version of this paper. Most of the XHTML file can be viewed if you are running Windows XP with all associated Indic font and rendering support, and the Arial Unicode MS font. For examples that require complex rendering in scripts not yet supported by this configuration, such as Bengali, Oriya, and Malayalam, I have used non- Unicode fonts supplied with Gamma's Unitype. To view all fonts as intended without the above you can view the PDF file whose URL is given above. Although the Indic scripts are often described as similar, there is a large amount of variation at the detailed implementation level. To provide a detailed account of how each Indic script implements particular features on a letter by letter basis would require too much time and space for the task at hand. Nevertheless, despite the detail variations, the basic mechanisms are to a large extent the same, and at the general level there is a great deal of similarity between these scripts. It is certainly possible to structure a discussion of the relevant features along the same lines for each of the scripts in the set. -
International Language Environments Guide for Oracle® Solaris 11.4
International Language Environments ® Guide for Oracle Solaris 11.4 Part No: E61001 November 2020 International Language Environments Guide for Oracle Solaris 11.4 Part No: E61001 Copyright © 2011, 2020, Oracle and/or its affiliates. License Restrictions Warranty/Consequential Damages Disclaimer This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. Warranty Disclaimer The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. Restricted Rights Notice If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable: U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are -
Beginnings of Indian Astronomy with Reference to a Parallel Development in China
History of Science in South Asia A journal for the history of all forms of scientific thought and action, ancient and modern, in all regions of South Asia Beginnings of Indian Astronomy with Reference to a Parallel Development in China Asko Parpola University of Helsinki MLA style citation form: Asko Parpola, “Beginnings of Indian Astronomy, with Reference to a Parallel De- velopment in China” History of Science in South Asia (): –. Online version available at: http://hssa.sayahna.org/. HISTORY OF SCIENCE IN SOUTH ASIA A journal for the history of all forms of scientific thought and action, ancient and modern, in all regions of South Asia, published online at http://hssa.sayahna.org Editorial Board: • Dominik Wujastyk, University of Vienna, Vienna, Austria • Kim Plofker, Union College, Schenectady, United States • Dhruv Raina, Jawaharlal Nehru University, New Delhi, India • Sreeramula Rajeswara Sarma, formerly Aligarh Muslim University, Düsseldorf, Germany • Fabrizio Speziale, Université Sorbonne Nouvelle – CNRS, Paris, France • Michio Yano, Kyoto Sangyo University, Kyoto, Japan Principal Contact: Dominik Wujastyk, Editor, University of Vienna Email: [email protected] Mailing Address: Krishna GS, Editorial Support, History of Science in South Asia Sayahna, , Jagathy, Trivandrum , Kerala, India This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Copyrights of all the articles rest with the respective authors and published under the provisions of Creative Commons Attribution- ShareAlike . Unported License. The electronic versions were generated from sources marked up in LATEX in a computer running / operating system. was typeset using XƎTEX from TEXLive . -
Information, Characters, Unicode
Information, Characters, Unicode Unicode © 24 August 2021 1 / 107 Hidden Moral Small mistakes can be catastrophic! Style Care about every character of your program. Tip: printf Care about every character in the program’s output. (Be reasonably tolerant and defensive about the input. “Fail early” and clearly.) Unicode © 24 August 2021 2 / 107 Imperative Thou shalt care about every Ěaracter in your program. Unicode © 24 August 2021 3 / 107 Imperative Thou shalt know every Ěaracter in the input. Thou shalt care about every Ěaracter in your output. Unicode © 24 August 2021 4 / 107 Information – Characters In modern computing, natural-language text is very important information. (“number-crunching” is less important.) Characters of text are represented in several different ways and a known character encoding is necessary to exchange text information. For many years an important encoding standard for characters has been US ASCII–a 7-bit encoding. Since 7 does not divide 32, the ubiquitous word size of computers, 8-bit encodings are more common. Very common is ISO 8859-1 aka “Latin-1,” and other 8-bit encodings of characters sets for languages other than English. Currently, a very large multi-lingual character repertoire known as Unicode is gaining importance. Unicode © 24 August 2021 5 / 107 US ASCII (7-bit), or bottom half of Latin1 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SS SI DLE DC1 DC2 DC3 DC4 NAK SYN ETP CAN EM SUB ESC FS GS RS US !"#$%&’()*+,-./ 0123456789:;<=>? @ABCDEFGHIJKLMNO PQRSTUVWXYZ[\]^_ `abcdefghijklmno pqrstuvwxyz{|}~ DEL Unicode Character Sets © 24 August 2021 6 / 107 Control Characters Notice that the first twos rows are filled with so-called control characters. -
Proposal for an Oriya Script Root Zone Label Generation Ruleset (LGR)
Proposal for an Oriya Script Root Zone Label Generation Ruleset (LGR) LGR Version: 3.0 Date: 2019-03-06 Document version: 2.12 Authors: Neo-Brahmi Generation Panel [NBGP] 1 General Information/ Overview/ Abstract The purpose of this document is to give an overview of the proposed Root Zone Level Generation Rules for the Oriya script. It includes a discussion of relevant features of the script, the communities or languages using it, the process and methodology used and information on the contributors. The formal specification of the LGR can be found in the accompanying XML document: proposal-oriya-lgr-06mar19-en.xml Labels for testing can be found in the accompanying text document: oriya-test-labels-06mar19-en.txt 2 Script for which the LGR is proposed ISO 15924 Code: Orya ISO 15924 Key N°: 327 ISO 15924 English Name: Oriya (Odia) Latin transliteration of native script name: oṛiā Native name of the script: ଓଡ଼ିଆ Maximal Starting Repertoire (MSR) version: MSR-4 3 Background on Script and Principal Languages using it Oriya (amended later as Odia) is an Eastern Indic language spoken by about 40 million people (3,75,21,324 as per census 2011(http://censusindia.gov.in/2011Census/Language- 2011/Statement-4.pdf) mainly in the Indian state of Orissa, and also in parts of West Proposal for an Oriya Root Zone LGR Neo-Brahmi Generation Panel Bengal, Jharkhand, Chhattisgarh and Andhra Pradesh. Oriya(Odia) is one of the many official languages of India. It is the official language of Odisha, and the second official language of Jharkhand. -
Globalization Support Oracle Unicode Database Support
Globalization Support Oracle Unicode database support An Oracle White Paper May 2005 Oracle Unicode database support Introduction ....................................................................................................... 3 Requirement....................................................................................................... 3 What is UNICODE? ........................................................................................ 4 Supplementary Characters........................................................................... 4 Unicode Encodings ...................................................................................... 5 UTF-8 Encoding ...................................................................................... 5 UCS-2 Encoding ...................................................................................... 6 UTF-16 Encoding.................................................................................... 6 Unicode and Oracle .......................................................................................... 7 AL24UTFFSS................................................................................................ 7 UTF8 .............................................................................................................. 8 UTFE.............................................................................................................. 8 AL32UTF8 .................................................................................................... 8 AL16UTF16 ................................................................................................. -
The Unicode Standard, Version 3.0, Issued by the Unicode Consor- Tium and Published by Addison-Wesley
The Unicode Standard Version 3.0 The Unicode Consortium ADDISON–WESLEY An Imprint of Addison Wesley Longman, Inc. Reading, Massachusetts · Harlow, England · Menlo Park, California Berkeley, California · Don Mills, Ontario · Sydney Bonn · Amsterdam · Tokyo · Mexico City Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and Addison-Wesley was aware of a trademark claim, the designations have been printed in initial capital letters. However, not all words in initial capital letters are trademark designations. The authors and publisher have taken care in preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein. The Unicode Character Database and other files are provided as-is by Unicode®, Inc. No claims are made as to fitness for any particular purpose. No warranties of any kind are expressed or implied. The recipient agrees to determine applicability of information provided. If these files have been purchased on computer-readable media, the sole remedy for any claim will be exchange of defective media within ninety days of receipt. Dai Kan-Wa Jiten used as the source of reference Kanji codes was written by Tetsuji Morohashi and published by Taishukan Shoten. ISBN 0-201-61633-5 Copyright © 1991-2000 by Unicode, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or other- wise, without the prior written permission of the publisher or Unicode, Inc.