Geological Characteristics and Resource Potentials of Oil Shale In
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Oil Shale and Tar Sands
Fundamentals of Materials for Energy and Environmental Sustainability Editors David S. Ginley and David Cahen Oil shale and tar sands James W. Bunger 11 JWBA, Inc., Energy Technology and Engineering, Salt Lake City, UT, USA 11.1 Focus 11.2 Synopsis Tar sands and oil shale are “uncon- Oil shale and tar sands occur in dozens of countries around the world. With in-place ventional” oil resources. Unconven- resources totaling at least 4 trillion barrels (bbl), they exceed the world's remaining tional oil resources are characterized petroleum reserves, which are probably less than 2 trillion bbl. As petroleum becomes by their solid, or near-solid, state harder to produce, oil shale and tar sands are finding economic and thermodynamic under reservoir conditions, which parity with petroleum. Thermodynamic parity, e.g., similarity in the energy cost requires new, and sometimes of producing energy, is a key indicator of economic competitiveness. unproven, technology for their Oil is being produced on a large commercial scale by Canada from tar sands, recovery. For tar sands the hydrocar- and to a lesser extent by Venezuela. The USA now imports well over 2 million barrels bon is a highly viscous bitumen; for of oil per day from Canada, the majority of which is produced from tar sands. oil shale, it is a solid hydrocarbon Production of oil from oil shale is occurring in Estonia, China, and Brazil albeit on called “kerogen.” Unconventional smaller scales. Importantly, the USA is the largest holder of oil-shale resources. oil resources are found in greater For that reason alone, and because of the growing need for imports in the USA, quantities than conventional petrol- oil shale will receive greater development attention as petroleum supplies dwindle. -
Eubrontes and Anomoepus Track
Sullivan, R.M. and Lucas, S.G., eds., 2016, Fossil Record 5. New Mexico Museum of Natural History and Science Bulletin 74. 345 EUBRONTES AND ANOMOEPUS TRACK ASSEMBLAGES FROM THE MIDDLE JURASSIC XIASHAXIMIAO FORMATION OF ZIZHONG COUNTY, SICHUAN, CHINA: REVIEW, ICHNOTAXONOMY AND NOTES ON PRESERVED TAIL TRACES LIDA XING1, MARTIN G. LOCKLEY2, GUANGZHAO PENG3, YONG YE3, JIANPING ZHANG1, MASAKI MATSUKAWA4, HENDRIK KLEIN5, RICHARD T. MCCREA6 and W. SCOTT PERSONS IV7 1School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China; -email: [email protected]; 2Dinosaur Trackers Research Group, University of Colorado Denver, P.O. Box 173364, Denver, CO 80217; 3 Zigong Dinosaur Museum, Zigong 643013, Sichuan, China; 4 Department of Environmental Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan; 5 Saurierwelt Paläontologisches Museum Alte Richt 7, D-92318 Neumarkt, Germany; 6 Peace Region Palaeontology Research Centre, Box 1540, Tumbler Ridge, British Columbia V0C 2W0, Canada; 7 Department of Biological Sciences, University of Alberta 11455 Saskatchewan Drive, Edmonton, Alberta T6G 2E9, Canada Abstract—The Nianpanshan dinosaur tracksite, first studied in the 1980s, was designated as the type locality of the monospecific ichnogenus Jinlijingpus, and the source of another tridactyl track, Chuanchengpus, both presumably of theropod affinity. After the site was mapped in 2001, these two ichnotaxa were considered synonyms of Eubrontes and Anomoepus, respectively, the latter designation being the first identification of this ichnogenus in China. The assemblage indicates a typical Jurassic ichnofauna. The present study reinvestigates the site in the light of the purported new ichnospecies Chuanchengpus shenglingensis that was introduced in 2012. After re- evaluation of the morphological and extramorphological features, C. -
Spatial Heterogeneous of Ecological Vulnerability in Arid and Semi-Arid Area: a Case of the Ningxia Hui Autonomous Region, China
sustainability Article Spatial Heterogeneous of Ecological Vulnerability in Arid and Semi-Arid Area: A Case of the Ningxia Hui Autonomous Region, China Rong Li 1, Rui Han 1, Qianru Yu 1, Shuang Qi 2 and Luo Guo 1,* 1 College of the Life and Environmental Science, Minzu University of China, Beijing 100081, China; [email protected] (R.L.); [email protected] (R.H.); [email protected] (Q.Y.) 2 Department of Geography, National University of Singapore; Singapore 117570, Singapore; [email protected] * Correspondence: [email protected] Received: 25 April 2020; Accepted: 26 May 2020; Published: 28 May 2020 Abstract: Ecological vulnerability, as an important evaluation method reflecting regional ecological status and the degree of stability, is the key content in global change and sustainable development. Most studies mainly focus on changes of ecological vulnerability concerning the temporal trend, but rarely take arid and semi-arid areas into consideration to explore the spatial heterogeneity of the ecological vulnerability index (EVI) there. In this study, we selected the Ningxia Hui Autonomous Region on the Loess Plateau of China, a typical arid and semi-arid area, as a case to investigate the spatial heterogeneity of the EVI every five years, from 1990 to 2015. Based on remote sensing data, meteorological data, and economic statistical data, this study first evaluated the temporal-spatial change of ecological vulnerability in the study area by Geo-information Tupu. Further, we explored the spatial heterogeneity of the ecological vulnerability using Getis-Ord Gi*. Results show that: (1) the regions with high ecological vulnerability are mainly concentrated in the north of the study area, which has high levels of economic growth, while the regions with low ecological vulnerability are mainly distributed in the relatively poor regions in the south of the study area. -
Bedrock Geology Glossary from the Roadside Geology of Minnesota, Richard W
Minnesota Bedrock Geology Glossary From the Roadside Geology of Minnesota, Richard W. Ojakangas Sedimentary Rock Types in Minnesota Rocks that formed from the consolidation of loose sediment Conglomerate: A coarse-grained sedimentary rock composed of pebbles, cobbles, or boul- ders set in a fine-grained matrix of silt and sand. Dolostone: A sedimentary rock composed of the mineral dolomite, a calcium magnesium car- bonate. Graywacke: A sedimentary rock made primarily of mud and sand, often deposited by turbidi- ty currents. Iron-formation: A thinly bedded sedimentary rock containing more than 15 percent iron. Limestone: A sedimentary rock composed of calcium carbonate. Mudstone: A sedimentary rock composed of mud. Sandstone: A sedimentary rock made primarily of sand. Shale: A deposit of clay, silt, or mud solidified into more or less a solid rock. Siltstone: A sedimentary rock made primarily of sand. Igneous and Volcanic Rock Types in Minnesota Rocks that solidified from cooling of molten magma Basalt: A black or dark grey volcanic rock that consists mainly of microscopic crystals of pla- gioclase feldspar, pyroxene, and perhaps olivine. Diorite: A plutonic igneous rock intermediate in composition between granite and gabbro. Gabbro: A dark igneous rock consisting mainly of plagioclase and pyroxene in crystals large enough to see with a simple magnifier. Gabbro has the same composition as basalt but contains much larger mineral grains because it cooled at depth over a longer period of time. Granite: An igneous rock composed mostly of orthoclase feldspar and quartz in grains large enough to see without using a magnifier. Most granites also contain mica and amphibole Rhyolite: A felsic (light-colored) volcanic rock, the extrusive equivalent of granite. -
Study of Folk Art Based on Revolutionary Culture
Advances in Social Science, Education and Humanities Research, volume 123 2nd International Conference on Education, Sports, Arts and Management Engineering (ICESAME 2017) Study of Folk Art based on Revolutionary Culture ——A Case Study of the New Yangge Movement in Yan'an Period Gangtao Jia1, a, Xi Kang2, b 1 2 Shaanxi University of Science & Technology, Xi’an, Shaanxi, 710021 a email, b email Keywords: Yan'an, New Yangge Movement, Popular Arts Abstract. During the period of Yan'an, the new Yangge from the self-entertainment activities of the masses to the masses of the Chinese Communist Party and the masses, from the old Yangge to the transformation of the revolutionary yangko, it is "speech" after the border literary and artistic workers to create a new pattern of practice, but also reflects the transformation of the CPC Folk art, adhere to the popular arts and literature of the course. Inheriting the spirit of Yan'an, drawing on the development of rural culture in Yan'an period, especially the experience of the new Yangge movement, the new era of rural culture construction is not without revelation. Introduction In the special historical context of "people's enlightenment and rural revolution", the CCP paid special attention to the political mobilization and propaganda and education function of traditional folk art. In the speech at the Yan'an Forum on Literature and Art (hereinafter referred to as "speech"), Mao Zedong proposed that literature and art should "serve the tens of thousands of working people" and stressed the important role of Yangge. The broad masses of literary and art workers actively study the spirit of "speech" and go deep into the masses. -
Nber Working Paper Series from Fog to Smog: the Value
NBER WORKING PAPER SERIES FROM FOG TO SMOG: THE VALUE OF POLLUTION INFORMATION Panle Jia Barwick Shanjun Li Liguo Lin Eric Zou Working Paper 26541 http://www.nber.org/papers/w26541 NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 December 2019, Revised January 2020 We thank Antonio Bento, Fiona Burlig, Trudy Cameron, Lucas Davis, Todd Gerarden, Jiming Hao, Guojun He, Joshua Graff Zivin, Matt Khan, Jessica Leight, Cynthia Lin Lowell, Grant Mc- Dermott, Francesca Molinari, Ed Rubin, Ivan Rudik, Joe Shapiro, Jeff Shrader, Jörg Stoye, Jeffrey Zabel, Shuang Zhang, and seminar participants at the 2019 NBER Chinese Economy Working Group Meeting, the 2019 NBER EEE Spring Meeting, the 2019 Northeast Workshop on Energy Policy and Environmental Economics, MIT, Resources for the Future, University of Alberta, University of Chicago, Cornell University, GRIPS Japan, Indiana University, University of Kentucky, University of Maryland, University of Oregon, University of Texas at Austin, and Xiamen University for helpful comments. We thank Jing Wu and Ziye Zhang for generous help with data. Luming Chen, Deyu Rao, Binglin Wang, and Tianli Xia provided outstanding research assistance. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research. NBER working papers are circulated for discussion and comment purposes. They have not been peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications. © 2019 by Panle Jia Barwick, Shanjun Li, Liguo Lin, and Eric Zou. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source. -
Originally, the Descendants of Hua Xia Were Not the Descendants of Yan Huang
E-Leader Brno 2019 Originally, the Descendants of Hua Xia were not the Descendants of Yan Huang Soleilmavis Liu, Activist Peacepink, Yantai, Shandong, China Many Chinese people claimed that they are descendants of Yan Huang, while claiming that they are descendants of Hua Xia. (Yan refers to Yan Di, Huang refers to Huang Di and Xia refers to the Xia Dynasty). Are these true or false? We will find out from Shanhaijing ’s records and modern archaeological discoveries. Abstract Shanhaijing (Classic of Mountains and Seas ) records many ancient groups of people in Neolithic China. The five biggest were: Yan Di, Huang Di, Zhuan Xu, Di Jun and Shao Hao. These were not only the names of groups, but also the names of individuals, who were regarded by many groups as common male ancestors. These groups first lived in the Pamirs Plateau, soon gathered in the north of the Tibetan Plateau and west of the Qinghai Lake and learned from each other advanced sciences and technologies, later spread out to other places of China and built their unique ancient cultures during the Neolithic Age. The Yan Di’s offspring spread out to the west of the Taklamakan Desert;The Huang Di’s offspring spread out to the north of the Chishui River, Tianshan Mountains and further northern and northeastern areas;The Di Jun’s and Shao Hao’s offspring spread out to the middle and lower reaches of the Yellow River, where the Di Jun’s offspring lived in the west of the Shao Hao’s territories, which were near the sea or in the Shandong Peninsula.Modern archaeological discoveries have revealed the authenticity of Shanhaijing ’s records. -
Secure Fuels from Domestic Resources ______Profiles of Companies Engaged in Domestic Oil Shale and Tar Sands Resource and Technology Development
5th Edition Secure Fuels from Domestic Resources ______________________________________________________________________________ Profiles of Companies Engaged in Domestic Oil Shale and Tar Sands Resource and Technology Development Prepared by INTEK, Inc. For the U.S. Department of Energy • Office of Petroleum Reserves Naval Petroleum and Oil Shale Reserves Fifth Edition: September 2011 Note to Readers Regarding the Revised Edition (September 2011) This report was originally prepared for the U.S. Department of Energy in June 2007. The report and its contents have since been revised and updated to reflect changes and progress that have occurred in the domestic oil shale and tar sands industries since the first release and to include profiles of additional companies engaged in oil shale and tar sands resource and technology development. Each of the companies profiled in the original report has been extended the opportunity to update its profile to reflect progress, current activities and future plans. Acknowledgements This report was prepared by INTEK, Inc. for the U.S. Department of Energy, Office of Petroleum Reserves, Naval Petroleum and Oil Shale Reserves (DOE/NPOSR) as a part of the AOC Petroleum Support Services, LLC (AOC- PSS) Contract Number DE-FE0000175 (Task 30). Mr. Khosrow Biglarbigi of INTEK, Inc. served as the Project Manager. AOC-PSS and INTEK, Inc. wish to acknowledge the efforts of representatives of the companies that provided information, drafted revised or reviewed company profiles, or addressed technical issues associated with their companies, technologies, and project efforts. Special recognition is also due to those who directly performed the work on this report. Mr. Peter M. Crawford, Director at INTEK, Inc., served as the principal author of the report. -
A) Conglomerate B) Dolostone C) Siltstone D) Shale 1. Which
1. Which sedimentary rock would be composed of 7. Which process could lead most directly to the particles ranging in size from 0.0004 centimeter to formation of a sedimentary rock? 0.006 centimeter? A) metamorphism of unmelted material A) conglomerate B) dolostone B) slow solidification of molten material C) siltstone D) shale C) sudden upwelling of lava at a mid-ocean ridge 2. Which sedimentary rock could form as a result of D) precipitation of minerals from evaporating evaporation? water A) conglomerate B) sandstone 8. Base your answer to the following question on the C) shale D) limestone diagram below. 3. Limestone is a sedimentary rock which may form as a result of A) melting B) recrystallization C) metamorphism D) biologic processes 4. The dot below is a true scale drawing of the smallest particle found in a sample of cemented sedimentary rock. Which sedimentary rock is shown in the diagram? What is this sedimentary rock? A) conglomerate B) sandstone C) siltstone D) shale A) conglomerate B) sandstone C) siltstone D) shale 9. Which statement about the formation of a rock is best supported by the rock cycle? 5. Which sequence of events occurs in the formation of a sedimentary rock? A) Magma must be weathered before it can change to metamorphic rock. A) B) Sediment must be compacted and cemented before it can change to sedimentary rock. B) C) Sedimentary rock must melt before it can change to metamorphic rock. C) D) Metamorphic rock must melt before it can change to sedimentary rock. D) 6. Which sedimentary rock formed from the compaction and cementation of fragments of the skeletons and shells of sea organisms? A) shale B) gypsum C) limestone D) conglomerate Base your answers to questions 10 and 11 on the diagram below, which is a geologic cross section of an area where a river has exposed a 300-meter cliff of sedimentary rock layers. -
Poverty Mapping in China: Do Environmental Variables Matter
UNIVERSITY OF WAIKATO Hamilton New Zealand Mapping Poverty in Rural China: How Much Does the Environment Matter? Susan Olivia University of California, Davis John Gibson University of Waikato Scott Rozelle Stanford University Jikun Huang and Xiangzheng Deng Chinese Academy of Sciences Department of Economics Working Paper in Economics 14/08 September 2008 Corresponding Author John Gibson Department of Economics University of Waikato, Private Bag 3105, Hamilton, New Zealand Fax: +64 (7) 838 4331 Email: [email protected] Abstract In this paper, we apply a recently developed small-area estimation technique to derive geographically detailed estimates of consumption-based poverty and inequality in rural Shaanxi, China. We also investigate whether using environmental variables derived mainly from satellite remote sensing improves upon traditional approaches that only use household survey and census data. According to our results, ignoring environmental variables in statistical analyses that predict small-area poverty rates leads to targeting errors. In other words, using environmental variables both helps more accurately identify poor areas (so they should be able to receive more transfers of poor area funds) and identify non-poor areas (which would allow policy makers to reduce poverty funds in these better off areas and redirect them to poor areas). Using area-based targeting may be an efficient way to reach the poor since many counties and townships in rural Shaanxi have low levels of inequality, even though, on average, there is more within-group than between-group inequality. Using information on locations that are, in fact, receiving poverty assistance, our analysis also produces evidence that official poverty policy in Shaanxi targets particular areas which in reality are no poorer than other areas that do not get targeted. -
Chinacoalchem
ChinaCoalChem Monthly Report Issue May. 2019 Copyright 2019 All Rights Reserved. ChinaCoalChem Issue May. 2019 Table of Contents Insight China ................................................................................................................... 4 To analyze the competitive advantages of various material routes for fuel ethanol from six dimensions .............................................................................................................. 4 Could fuel ethanol meet the demand of 10MT in 2020? 6MTA total capacity is closely promoted ....................................................................................................................... 6 Development of China's polybutene industry ............................................................... 7 Policies & Markets ......................................................................................................... 9 Comprehensive Analysis of the Latest Policy Trends in Fuel Ethanol and Ethanol Gasoline ........................................................................................................................ 9 Companies & Projects ................................................................................................... 9 Baofeng Energy Succeeded in SEC A-Stock Listing ................................................... 9 BG Ordos Started Field Construction of 4bnm3/a SNG Project ................................ 10 Datang Duolun Project Created New Monthly Methanol Output Record in Apr ........ 10 Danhua to Acquire & -
Level Universities in Shaanxi Province Keyin Liang Xi’ an International University, Xi’ An, Shaanxi, 710077
Advances in Social Science, Education and Humanities Research, volume 123 2nd International Conference on Education, Sports, Arts and Management Engineering (ICESAME 2017) Study on the Construction Dilemma and Improvement Path of Private High - level Universities in Shaanxi Province Keyin Liang Xi’ an International University, Xi’ an, Shaanxi, 710077 Keywords: Shaanxi Province, Private High-level University, Construction Dilemma Abstract. At present, with the further deepening of reform and opening up, how to promote the comprehensive progress of society, how to deepen the educational reform has become a major theoretical and practical problem of school education. With the deepening of the development and reform of colleges and universities in our country, private colleges and universities have gradually developed into an important part of our universities. In recent years, private education has flourished in various parts of the country. As an important content of college education, how to carry out the work is one of the important criteria to measure the overall work of colleges and universities. It is also the fundamental requirement of social development to cultivate talents. Due to the conditions, scale, system and guiding ideology of the running of private colleges and universities, the efficiency of running schools is also very different. We must strengthen the management of private colleges and universities. Introduction Shaanxi Province is located in the western part of China, ranking the middle reaches of the Yellow River, is located in the hinterland of China's interior, north and Inner Mongolia, Ningxia border, west and Gansu connected, south and Sichuan, Chongqing, Hubei Tong, east and Shanxi, Henan adjacent to China's northwest Portal, is to connect China's eastern and central regions and northwest, southwest of the transport hub.