Bibliography of the Edwards Aquifer, Texas, Through 1993

Total Page:16

File Type:pdf, Size:1020Kb

Bibliography of the Edwards Aquifer, Texas, Through 1993 BIBLIOGRAPHY OF THE EDWARDS AQUIFER, TEXAS, THROUGH 1993 Compiled by Julie A. Menard U.S. GEOLOGICAL SURVEY Open-File Report 95-336 Prepared in support of a study by the CENTER FOR RESEARCH IN WATER RESOURCES, UNIVERSITY OF TEXAS AT AUSTIN Austin, Texas 1995 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. For additional information write to: Copies of this report can be purchased from: U.S. Geological Survey Earth Science Information Center District Chief Open-File Reports Section U.S. Geological Survey Box 25286, Mail Stop 517 8011 Cameron Rd. Denver Federal Center Austin, TX 78754-3898 Denver, CO 80225-0046 CONTENTS Abstract .................................................................................................................^^ 1 Introduction ....................................................................................................................^^ 1 Purpose and Scope .................................................................................................................................................... 1 Description of the Edwards Aquifer ......................................................................................................................... 1 Sources of Related Information ................................................................................................................................ 3 Approach ....................................................................... 3 Organization of References ...................................................................................................................................... 3 Acknowledgments .................................................................................................................................................... 5 References Cited in the Introduction ........................................................................................................................ 5 Bibliography ............................................................................ 6 Overview Studies ...................................................................................................................................................... 6 Archaeology.............................................................................................................................................................. 6 Biology ...........................................................................^ 7 Invertebrates.................................................................................................................................................. 8 Crustaceans ........................................................................................................................................ 9 Insects ................................................................................................................................................ 9 MoUuscs........................................................................................................................^ 10 Plants, Algae, Fungi, Bacteria ....................................................................................................................... 10 Vertebrates ..................................................................................................................................................... 12 Amphibians........................................................................................................................................ 12 Fishes ................................................................................................................................................. 13 Climatology ............................................................................. 17 Education .................................................................................................................................................... 17 Geochemistry..........................................................................._ 17 Geology ........................................................................ 19 Economic Geology ........................................................................................................................................ 21 Environmental Geology ................................................................................................................................ 22 Paleontology.................................................................................................................................................. 23 Sedimentation, Sedimentary Petrology ......................................................................................................... 23 Stratigraphy ................................................................................................................................................... 25 Structural Geology ........................................................................................................................................ 27 Geomorphology and Caves ...................................................................................................................................... 28 History ............................................................................................................................................. 29 Hydrology and Hydrogeology .................................................................................................................................. 30 Floods and Droughts ..................................................................................................................................... 36 Ground-Water Movement ............................................................................................................................. 37 Ground-Water Recharge, Recharge Zone ..................................................................................................... 38 Springs, Ground-Water Discharge ................................................................................................................ 39 Surface-Water Ground-Water Relations ........................................................................................................ 41 WaterQuality ................................................................................................................................................ 42 Water-Resources Data ...................................................................;............................................................... 45 Water-Resources Planning and Management................................................................................................ 49 WaterUse ..............................................._ 53 News ......................................................................................................................................................................... 54 Recreation ............................................................................. 56 Remote Sensing ........................................................................................................................................................ 56 Soils .......................................................................................................................................... 56 Subject Index .................................................................................._^ 57 Author Index ............................................................................................................................................................. 67 CONTENTS III FIGURE 1. Map showing location of the Edwards aquifer, Texas TABLE 1. List of bibliographic data bases searched ................... CONVERSION FACTORS Multiply By To obtain acre-foot (acre-ft) 0.001233 cubic hectometer mile (mi) 1.609 kilometer square mile (mi2) 2.590 square kilometer Iv Bibliography of the Edwards Aquifer, Texas, Through 1993 Compiled'byr Julie A. Menard Abstract its natural resources. The bibliography comprises 1,022 references for books, journal and magazine arti­ The bibliography comprises 1,022 multidis- cles, conference proceedings, abstracts, technical ciplinary references to technical and general liter­ reports, master's theses, doctoral dissertations, maps, ature for the three regions of the Edwards aquifer, regulatory actions, videos, and newspaper and newslet­ Texas San Antonio area; Barton Springs seg­ ter articles dating from the late 1800's through 1993. ment, Austin area; and northern segment, Austin The bibliography also includes references to electronic area. The references in the bibliography were com­ publications in AP (Associated Press) News and BNA piled from computerized data bases and from pub­ (Bureau of National Affairs) Daily News from Wash­ lished bibliographies and reports. Dates of ington. references range from the late 1800's through Description of the Edwards Aquifer 1993. Subject and author indexes are included. The Edwards aquifer is a cavernous limestone INTRODUCTION reservoir in central Texas that lies along the Balcones escarpment, a line of low hills that locally separates the The highly productive Edwards aquifer is the vast Great Plains physiographic province from the sole source of water for more than 1 million people in Coastal Plains (fig. 1).
Recommended publications
  • Anchialine Cave Biology in the Era of Speleogenomics Jorge L
    International Journal of Speleology 45 (2) 149-170 Tampa, FL (USA) May 2016 Available online at scholarcommons.usf.edu/ijs International Journal of Speleology Off icial Journal of Union Internationale de Spéléologie Life in the Underworld: Anchialine cave biology in the era of speleogenomics Jorge L. Pérez-Moreno1*, Thomas M. Iliffe2, and Heather D. Bracken-Grissom1 1Department of Biological Sciences, Florida International University, Biscayne Bay Campus, North Miami FL 33181, USA 2Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77553, USA Abstract: Anchialine caves contain haline bodies of water with underground connections to the ocean and limited exposure to open air. Despite being found on islands and peninsular coastlines around the world, the isolation of anchialine systems has facilitated the evolution of high levels of endemism among their inhabitants. The unique characteristics of anchialine caves and of their predominantly crustacean biodiversity nominate them as particularly interesting study subjects for evolutionary biology. However, there is presently a distinct scarcity of modern molecular methods being employed in the study of anchialine cave ecosystems. The use of current and emerging molecular techniques, e.g., next-generation sequencing (NGS), bestows an exceptional opportunity to answer a variety of long-standing questions pertaining to the realms of speciation, biogeography, population genetics, and evolution, as well as the emergence of extraordinary morphological and physiological adaptations to these unique environments. The integration of NGS methodologies with traditional taxonomic and ecological methods will help elucidate the unique characteristics and evolutionary history of anchialine cave fauna, and thus the significance of their conservation in face of current and future anthropogenic threats.
    [Show full text]
  • A Look at the Texas Hill Country Following the Path We Are on Today Through 2030
    A Look at the Texas Hill Country Following the path we are on today through 2030 This unique and special region will grow, but what will the Hill Country look like in 2030? Growth of the Hill Country The Hill Country Alliance (HCA) is a nonprofit organization whose purpose is to raise public awareness and build community support around the need to preserve the natural resources and heritage of the Central Texas Hill Country. HCA was formed in response to the escalating challenges brought to the Texas Hill Country by rapid development occurring in a sensitive eco-system. Concerned citizens began meeting in September of 2004 to share ideas about strengthening community activism and educating the public about regional planning, conservation development and a more responsible approach growth in the Hill Country. This report was prepared for the Texas Hill Country Alliance by Pegasus Planning 2 Growth of the Hill Country 3 Growth of the Hill Country Table of Contents Executive Summary Introduction The Hill Country Today The Hill Country in 2030 Strategic Considerations Reference Land Development and Provision of Utilities in Texas (a primer) Organizational Resources Materials Reviewed During Project End Notes Methodology The HCA wishes to thank members of its board and review team for assistance with this project, and the authors and contributors to the many documents and studies that were reviewed. September 2008 4 Growth of the Hill Country The Setting The population of the 17-County Hill Country region grew from approximately 800,000 in 1950 (after the last drought on record) to 2.6 million in 2000.
    [Show full text]
  • Eaabibliography.Pdf
    1615 N. St. Mary’s San Antonio, Texas 78215 http://www.edwardsaquifer.org EDWARDS AQUIFER BIBLIOGRAPHY THROUGH 2005 Compiled by: Roberto Esquilin, P.G. Hydrogeologist October 2006 ii TABLE OF CONTENTS INTRODUCTION ..............................................................................................................1 Purpose and Scope ..................................................................................................1 Description of the Edwards Aquifer .......................................................................2 Other Edwards Aquifer-related Bibliographies ......................................................4 Methodology and Approach ...................................................................................4 References Organization.........................................................................................5 Acknowledgements.................................................................................................6 References Cited in the Introduction ......................................................................7 BIBLIOGRAPHY Overview Studies....................................................................................................9 Archeology............................................................................................................18 Biography..............................................................................................................20 Biology..................................................................................................................20
    [Show full text]
  • LOCAL SPOTLIGHT Edwards Aquifer, San Antonio, Texas, United States—Protecting Groundwater
    LOCAL SPOTLIGHT Edwards Aquifer, San Antonio, Texas, United States—Protecting groundwater Photo: © Blake Gordon Photo: © Blake Gordon North America Left. Officials release a benign "tracer dye" into Edwards Aquifer drainage systems to chart flows and track the underground water pathways. Right. Hydrogeologist descends into a sinkhole to check on the Edwards Aquifer. The challenge As one of the largest, most prolific artesian aquifers in the world, the Edwards Aquifer serves as the primary source of drinking water for nearly 2 million central Texans, including every resident of San Antonio—the second largest city in Texas—and much of the surrounding Hill Country. Its waters feed springs, rivers and lakes and sustain diverse plant and animal life, including rare and endangered species. The aquifer supports agricultural, industrial and recreational activities that not only sustain the Texas economy, but also contribute immeasurably to the culture and heritage of the Lone Star State. AUSTIN The aquifer stretches beneath 12 Texas counties, and the land above it includes several important hydrological areas. Two areas in particular— the drainage area and the recharge zone—replenish the aquifer by “catching” rainwater, which then seeps through fissures, cracks and sinkholes into the porous limestone that dominates the region. While this natural filtration system helps refill the aquifer with high-quality water, the growing city of San Antonio is expanding into territories of the very sensitive recharge zone, increasing the risk of contamination. In Edwards Aquifer SAN ANTONIO addition to a rising population, the state’s water supplies have been impacted by multi-year droughts. By 2060, Texas is projected to be home to approximately 50 million people while the annual available water resources are estimated to decrease by nearly 10 percent.
    [Show full text]
  • Evolutionary History of Inversions in the Direction of Architecture-Driven
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.09.085712; this version posted May 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Evolutionary history of inversions in the direction of architecture- driven mutational pressures in crustacean mitochondrial genomes Dong Zhang1,2, Hong Zou1, Jin Zhang3, Gui-Tang Wang1,2*, Ivan Jakovlić3* 1 Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China. 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 Bio-Transduction Lab, Wuhan 430075, China * Corresponding authors Short title: Evolutionary history of ORI events in crustaceans Abbreviations: CR: control region, RO: replication of origin, ROI: inversion of the replication of origin, D-I skew: double-inverted skew, LBA: long-branch attraction bioRxiv preprint doi: https://doi.org/10.1101/2020.05.09.085712; this version posted May 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Abstract Inversions of the origin of replication (ORI) of mitochondrial genomes produce asymmetrical mutational pressures that can cause artefactual clustering in phylogenetic analyses. It is therefore an absolute prerequisite for all molecular evolution studies that use mitochondrial data to account for ORI events in the evolutionary history of their dataset.
    [Show full text]
  • Pervasive Gene Flow Across Critical Habitat for Four Narrowly Endemic
    Freshwater Biology (2016) doi:10.1111/fwb.12758 Pervasive gene flow across critical habitat for four narrowly endemic, sympatric taxa † † ‡ LAUREN K. LUCAS* , ZACHARIAH GOMPERT ,J.RANDYGIBSON , KATHERINE L. BELL*, § C. ALEX BUERKLE AND CHRIS C. NICE* *Department of Biology, Texas State University, San Marcos, TX, U.S.A. † Department of Biology, Utah State University, Logan, UT, U.S.A. ‡ U.S. Fish & Wildlife Service, San Marcos Aquatic Resources Center, San Marcos, TX, U.S.A. § Department of Botany, University of Wyoming, Laramie, WY, U.S.A. SUMMARY 1. We studied genetic variation in four endangered animal taxa in the largest freshwater spring complex in the southwestern U.S.A., Comal Springs (TX): Eurycea salamanders, Heterelmis riffle beetles, Stygobromus amphipods and Stygoparnus dryopid beetles. They inhabit a spring complex with nearly stable conditions, which is threatened by climate change and aquifer withdrawals. The four taxa vary in their habitat affinities and body sizes. 2. We used genotyping-by-sequencing to obtain hundreds to thousands of genetic markers to accurately infer the demographic history of the taxa. We used approximate Bayesian computation to test models of gene flow and compare the results among taxa. We also looked for evidence that would suggest local adaptation within the spring complex. 3. An island model (equal gene flow among all subpopulations) was the most probable of the five models tested, and all four taxa had high migration rate estimates. 4. Small numbers of single nucleotide polymorphisms (SNPs) in each taxon tested were associated with environmental conditions and provide some evidence for potential local adaptation to slightly variable conditions across habitat patches within Comal Springs.
    [Show full text]
  • Bibliography-Of-Texas-Speleology
    1. Anonymous. n.d. University of Texas Bulletin No. 4631, pp. 51. 2. Anonymous. 1992. Article on Pendejo Cave. Washington Post, 10 February 1992. 3. Anonymous. 1992. Article on bats. Science News, 8 February 1992. 4. Anonymous. 2000. National Geographic, 2000 (December). 5. Anonymous. n.d. Believe odd Texas caves is Confederate mine; big rock door may be clue to mystery. 6. Anonymous. n.d. The big dig. Fault Zone, 4:8. 7. Anonymous. n.d. Cannibals roam Texas cave. Georgetown (?). 8. Anonymous. n.d. Cavern under highway is plugged by road crew. Source unknown. 9. Anonymous. n.d. Caverns of Sonora: Better Interiors. Olde Mill Publ. Co., West Texas Educators Credit Union. 10. Anonymous. n.d. Crawling, swimming spelunkers discover new rooms of cave. Austin(?). Source unknown. 11. Anonymous. n.d. Discovery (of a sort) in Airmen's Cave. Fault Zone, 5:16. 12. Anonymous. n.d. Footnotes. Fault Zone, 5:13. 13. Anonymous. n.d. Help the blind... that is, the Texas blind salamander [Brochure]: Texas Nature Conservancy. 2 pp. 14. Anonymous. n.d. Honey Creek map. Fault Zone, 4:2. 15. Anonymous. n.d. The Langtry mini-project. Fault Zone, 5:3-5. 16. Anonymous. n.d. Neuville or Gunnels Cave. http:// www.shelbycountytexashistory.org/neuvillecave.htm [accessed 9 May 2008]. 17. Anonymous. n.d. Palo Duro Canyon State Scenic Park. Austin: Texas Parks and Wildlife Department. 2 pp. 18. Anonymous. n.d. Texas blind salamander (Typhlomolge rathbuni). Mississippi Underground Dispatch, 3(9):8. 19. Anonymous. n.d. The TSA at Cascade Caverns. Fault Zone, 4:1-3, 7-8.
    [Show full text]
  • Speleogenesis in Comal County, Texas
    RICE UNIVERSITY SPELEOGENES IS IN COMAL COUNTY, TEXAS by Barry F. Beck A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARTS IN GEOLOGY Thesis Director's signature: Houston, Texas May, 1968 ABSTRACT 0AR Hi F> BBct( Caves in Comal County, Texas, were examined with regard to their lithologic and geomorphic setting, paying particular attention to con¬ trols such as stratigraphic variation, topography, jointing, and ground-water flow. In the light of these data, a new classification of caves is pro¬ posed "based upon the mode of water flow involved in their formation. Influent caves are formed by water flowing from the surface to the ground-water table. Effluent caves are formed by water flowing from the ground-water reservoir to the surface. Conduit caves are formed principally by- phreatic flow with little, or no, surface relationship. This classification is extremely useful in identifying the factors involved in speleogenesis when used in conjunction with areal maps of the aforementioned controls. Effluent caves in the lower Glen Rose Formation are localized within a massive, fossiliferous aquifer and oriented generally down-dip, thus substantiating Gardner’s (1935) theory of speleogenesis. Influent caves in both the upper and lower Glen Rose Formation are developed in areas with low surface gradient and consequently high infiltration. They develop vertically until the water reaches a suitable calcareous stratum which conducts it away laterally. A later change of conditions may cause further deepening and a series of pits and passages may develop. Conduit caves in the upper Glen Rose Formation appear to be localized within the more calcareous strata because of the high solubility of these layers in contrast to the shales, marls, and dolomites composing the major part of the section.
    [Show full text]
  • Salado Oh, Snidely!
    Looking for Lodging? Turn to Page 5B for B&Bs Salado VVillageillage VVoiceoice Vol. XXIX, Number 16 Thursday, July 27, 2006 254/947-5321 fax 254/947-9479 www.saladovillagevoice.com 50¢ Preview Party set at Inn Village will outsource future on Creek for Art Fair Aug. 4 building inspections BY TIM FLEISCHER a building permit for storage buildings. The Salado Chamber EDITOR-IN-CHIEF Storage buildings in excess of 150 sq. ft. of Commerce will kick will require a building permit and inspec- off the celebration of The Village of Salado may soon begin tion, while storage buildings of 25-150 sq. its 40th Annual Salado outsourcing its building inspections after ft. will only require an inspection. Art Fair with a Preview aldermen authorized Mayor Rick Ashe to The board also approved a Grandfather- Party 7-9 p.m. Aug. 4 on begin negotiations with Bureau Veritas. ing Ordinance, which regulates develop- the grounds of Inn on the “Based on their credentials and services ments and construction which have been Creek. they provide, I have not seen anyone who approved under previous zoning or subdi- Fred Fuller, Salado’s provides that level of service,” Bruno Mata- vision regulations. The ordinance provides well-known singing razzo, code enforcement officer for the Vil- a timeframe in which a project must be cowboy, will perform lage of Salado, told the board of aldermen. completed before it must come back for for party-goers who Matarazzo currently conducts the in- approval. The complete ordinance can be will also enjoy light hors spections for the Village, in addition to his found on the Village of Salado website, d’oeuvres by Inn on the duties as an investigative police officer on www.villageofsalado.org.
    [Show full text]
  • Docket No. FWS-R2-ES-2012-0082]
    This document is scheduled to be published in the Federal Register on 10/19/2012 and available online at http://federalregister.gov/a/2012-25578, and on FDsys.gov 1 DEPARTMENT OF THE INTERIOR Fish and Wildlife Service 50 CFR Part 17 [Docket No. FWS-R2-ES-2012-0082] [4500030114] RIN 1018-AY20 Endangered and Threatened Wildlife and Plants; Proposed Revision of Critical Habitat for the Comal Springs Dryopid Beetle, Comal Springs Riffle Beetle, and Peck’s Cave Amphipod AGENCY: Fish and Wildlife Service, Interior. ACTION: Proposed rule. SUMMARY: We, the U.S. Fish and Wildlife Service (Service), propose to revise 2 designation of critical habitat for the Comal Springs dryopid beetle (Stygoparnus comalensis), Comal Springs riffle beetle (Heterelmis comalensis), and Peck’s cave amphipod (Stygobromus pecki), under the Endangered Species Act of 1973, as amended (Act). In total, approximately 169 acres (68 hectares) are being proposed for revised critical habitat. The proposed revision of critical habitat is located in Comal and Hays Counties, Texas. DATES: We will accept comments received or postmarked on or before [INSERT DATE 60 DAYS AFTER DATE OF PUBLICATION IN THE FEDERAL REGISTER]. Comments submitted electronically using the Federal eRulemaking Portal (see ADDRESSES section, below) must be received by 11:59 p.m. Eastern Time on the closing date. We must receive requests for public hearings, in writing, at the address shown in FOR FURTHER INFORMATION CONTACT by [INSERT DATE 45 DAYS AFTER DATE OF PUBLICATION IN THE FEDERAL REGISTER]. ADDRESSES: You may submit comments by one of the following methods: (1) Electronically: Go to the Federal eRulemaking Portal: http://www.regulations.gov.
    [Show full text]
  • Stewardship of the Edwards Aquifer
    STEWARDSHIP OF THE EDWARDS AQUIFER What is the Edwards Aquifer? “The Edwards Aquifer is one of the most valuable resources in the central How does this affect me? Aquifer: an underground area that holds enough water Texas area. In most places, it takes time for stormwater to travel to provide a usable supply. over land and filter through soil to reach the rivers and This aquifer provides water for lakes that supply drinking water to residents. In the municipal, industrial, and agricultural Edwards Aquifer region, recharge features provide a direct link between groundwater and our underground uses as well as sustaining a number of water supply. This means that stormwater pollution rare and endangered species. directly affects the quality of our drinking water. To preserve these beneficial uses, As a result, TCEQ has implemented extra water quality San Antonio ReportSan Texans must protect water quality in requirements to protect the aquifer. Examples include Source: this aquifer from degradation water quality treatments like rain gardens and water resulting from human activities.” quality ponds, as well as erosion and sedimentation While other aquifers in Texas are made up of sand and controls at construction sites. gravel, the Edwards Aquifer is a karst aquifer, composed - Texas Commission on Environmental of porous limestone formations that serve as conduits Quality (TCEQ), RG-348 for water as it travels underground. (Edwards Aquifer Authority) As shown in the graphic to the right, the Edwards Aquifer region encompasses much of South Central Texas. Portions of the City Antonio ReportSan of West Lake Hills lie within the Edwards Aquifer Contributing and Recharge Zones.
    [Show full text]
  • Wildlife Populations in Texas
    Wildlife Populations in Texas • Five big game species – White-tailed deer – Mule deer – Pronghorn – Bighorn sheep – Javelina • Fifty-seven small game species – Forty-six migratory game birds, nine upland game birds, two squirrels • Sixteen furbearer species (i.e. beaver, raccoon, fox, skunk, etc) • Approximately 900 terrestrial vertebrate nongame species • Approximately 70 species of medium to large-sized exotic mammals and birds? White-tailed Deer Deer Surveys Figure 1. Monitored deer range within the Resource Management Units (RMU) of Texas. 31 29 30 26 22 18 25 27 17 16 24 21 15 02 20 28 23 19 14 03 05 06 13 04 07 11 12 Ecoregion RMU Area (Ha) 08 Blackland Prairie 20 731,745 21 367,820 Cross Timbers 22 771,971 23 1,430,907 24 1,080,818 25 1,552,348 Eastern Rolling Plains 26 564,404 27 1,162,939 Ecoregion RMU Area (Ha) 29 1,091,385 Post Oak Savannah 11 690,618 Edwards Plateau 4 1,308,326 12 475,323 5 2,807,841 18 1,290,491 6 583,685 19 2,528,747 7 1,909,010 South Texas Plains 8 5,255,676 28 1,246,008 Southern High Plains 2 810,505 Pineywoods 13 949,342 TransPecos 3 693,080 14 1,755,050 Western Rolling Plains 30 4,223,231 15 862,622 31 1,622,158 16 1,056,147 39,557,788 Total 17 735,592 Figure 2. Distribution of White-tailed Deer by Ecological Area 2013 Survey Period 53.77% 11.09% 6.60% 10.70% 5.89% 5.71% 0.26% 1.23% 4.75% Edwards Plateau Cross Timbers Western Rolling Plains Post Oak Savannah South Texas Plains Pineywoods Eastern Rolling Plains Trans Pecos Southern High Plains Figure 3.
    [Show full text]