Structure of Arsenic-Treated Indium Phosphide „001… Surfaces During Metalorganic Vapor-Phase Epitaxy

Total Page:16

File Type:pdf, Size:1020Kb

Structure of Arsenic-Treated Indium Phosphide „001… Surfaces During Metalorganic Vapor-Phase Epitaxy PHYSICAL REVIEW B 66, 045314 ͑2002͒ Structure of arsenic-treated indium phosphide „001… surfaces during metalorganic vapor-phase epitaxy D. C. Law, Y. Sun, C. H. Li, S. B. Visbeck, G. Chen, and R. F. Hicks* Department of Chemical Engineering, University of California, Los Angeles, California 90095 ͑Received 4 February 2002; published 22 July 2002͒ We have studied the initial stages of heterojunction formation during the metalorganic vapor-phase epitaxy of indium arsenide on indium phosphide. Exposing an InP ͑001͒ film to 10 mTorr of tertiarybutylarsine below 500 °C results in the deposition of a thin InAs layer from 1.5 to 5.0 atomic layers thick ͑2.3–7.5 Å͒. The surface of this epilayer remains atomically smooth independent of arsenic exposure time. However, in an overpressure of tertiarybutylarsine at or above 500 °C, the arsenic atoms diffuse into the bulk, creating strained InAsP films. These films form three-dimensional island structures to relieve the built-up strain. The activation energy and pre-exponential factor for arsenic diffusion into indium phosphide have been determined to be ϭ Ϯ ϭ Ϯ ϫ Ϫ7 2 Ed 1.7 0.2 eV and Do 2.3 1.0 10 cm /s. DOI: 10.1103/PhysRevB.66.045314 PACS number͑s͒: 68.35.Bs, 68.35.Dv, 68.35.Fx, 68.35.Ct INTRODUCTION In this work, we have characterized the initial stages of InGaAs/InP heterojunction formation during MOVPE Compound semiconductors and their alloys are the key growth by x-ray photoelectron spectroscopy ͑XPS͒, low- materials for high-speed electronic and optoelectronic de- energy electron diffraction ͑LEED͒, and scanning tunneling vices, such as heterojunction bipolar transistors, lasers, and microscopy ͑STM͒. The surface roughness, atomic structure, photodetectors.1–3 Indium phosphide materials have gained and composition of the indium phosphide films during interest recently due to their application in high-frequency growth interruptions, t1 and t2 , have been determined as a devices used for fiber-optic communication.4–6 These opto- function of temperature and time. We find that arsenic atoms electronic devices consist of alternating thin films of lattice- incorporate into only the top two to three bilayers of indium matched InGaAs, InGaAsP, and InP.3,4,7 The interface struc- phosphide below 500 °C, whereas at or above 500 °C, they ture between the alloy layers and indium phosphide have a diffuse into the bulk crystal as well. direct impact on device performance.2,6,8–10 In particular, the interfacial layers may contain defects and exhibit composi- EXPERIMENTAL METHODS tion gradients that reduce electron mobility, enhance nonra- Indium phosphide films, 0.20 ␮m thick, were grown on diative carrier recombination, or alter quantum confinement n-type vicinal InP ͑001͒ substrates in a horizontal MOVPE energies.8,11 Thus, in order to fabricate high-performance de- reactor.15 The growth temperature and total reactor pressure vices, one must control the interface structure on the atomic were 535 °C and 20 Torr. Hydrogen carrier gas was passed ͑ ͒ scale. through a SAES Pure Gas H2 purifier PS4-MT3-H to re- Metalorganic vapor-phase epitaxy ͑MOVPE͒ is widely move oxygen, nitrogen, water, and other impurities. Trimeth- used to fabricate InP-based materials.2 During the growth of ylindium ͑TMIn͒ and tertiarybutylphosphine ͑TBP͒ were heterojunctions, e.g., InGaAs on InP, the group-V source used to deposit the films with partial pressures of 6.5 Ϫ Ϫ must be switched from phosphorus to arsenic. However, si- ϫ10 4 and 1.3ϫ10 1 Torr, respectively. After deposition, multaneous adsorption, desorption, and bulk diffusion of ar- the InP crystals were heated in flowing hydrogen at 500 °C senic and phosphorus atoms have made it challenging to fab- for up to 20 min creating an In-rich surface. The samples ricate atomically abrupt interfaces.2,3 Switching procedures were then either transferred directly to the UHV system for with growth interruptions have been implemented in an at- surface analysis, or remained in the reactor for TBAs expo- tempt to solve this problem. This has led to many studies that sure. focus on the effect of precursor switching procedures on ma- terial quality and device properties.1,2,6,12–14 Most switching sequences consist of a hydrogen annealing step, t1 , a brief exposure to arsine, t2 , and then addition of the group-III precursors. This sequence is illustrated in Fig. 1. The flowing H2 gas sweeps any remaining phosphine out of the MOVPE reactor, so that no phosphorus is incorporated into subse- quently deposited layers. Introduction of arsine or tertiarybu- tylarsine prior to the group-III precursors ensures that the surface is group-V rich and prevents the formation of metal droplets at the onset of film growth. However, little is known about the evolution of the semiconductor surface structure FIG. 1. Schematic of the precursor switching sequence during during the hydrogen and arsine exposure steps. the growth of an InGaAs/InP heterojunction by MOVPE. 0163-1829/2002/66͑4͒/045314͑7͒/$20.0066 045314-1 ©2002 The American Physical Society LAW, SUN, LI, VISBECK, CHEN, AND HICKS PHYSICAL REVIEW B 66, 045314 ͑2002͒ FIG. 2. The mass spectrometer response to a reaction by- product, propylene, during the introduction of tertiarybutylarsine to FIG. 3. The dependence of the phosphorus coverage on time the MOVPE reactor. during exposure of the InP ͑001͒ surface to 20 Torr hydrogen at 500 °C. Arsenic was introduced to the indium phosphide surface by exposing the crystal to 10.0 mTorr of tertiarybutylarsine time at 500 °C. The coverage is assessed from LEED pat- at 350–600 °C for 5–600 s. A mass spectrometer was at- terns and STM images, which correspond to known surface tached to the exhaust of the MOVPE reactor to monitor the 16 structures as described in the following paragraph. The as- arsenic exposure in real time. Figure 2 shows the instanta- grown InP film is terminated with 1.5 monolayers ͑ML’s͒ of ͑ neous increase in concentration of pyrolysis by-products in P atoms. Annealing for 3, 15, and 20 min decreases the phos- ͒ this case, propylene when TBAs was introduced into the phorus coverage to 1.0, 0.25, and finally 0.125 ML’s, respec- reactor. After the exposure, the samples were cooled to 30 °C tively. Holding the InP film for longer times in flowing H2 in an H2 ambient at a rate of 4 °C/s. results in surface degradation and indium droplet formation. Periodically during the TBAs exposure, the indium phos- Hicks and co-workers have determined the surface struc- phide samples were analyzed by XPS, LEED, and STM. ture of InP ͑001͒ as a function of the phosphorus Core-level photoemission spectra of the As 3d,P2p, and In 20–22 ␪ ϭ ϫ ϫ coverage. At P 1.5 ML’s, a (2 2)/(2 1) recon- 3d lines were collected by a PHI 3057 XPS spectrometer, struction is observed that consists of half a monolayer of ␯ϭ using aluminum K␣ x-rays (h 1486.6 eV). The binding phosphorus dimers adsorbed on top of a complete layer of P energies of the As 3d,P2p, and In 3d levels are 41.5, 17 atoms. Desorbing the excess phosphorus yields a pure (2 133.0, and 444.0 eV, respectively. The As 3d and P 2p, ϫ ␪ ϭ ϫ 1) phase with P 1.0 ML. The (2 1) is covered with a photoelectrons exhibit the same inelastic mean free path of complete layer of buckled phosphorus dimers, which are re- ϳ 18,19 25 Å. All XPS spectra were taken in small area mode vealed in STM images as zigzagging rows of gray spots.21 At with a 7° acceptance angle and 23.5-eV pass energy. The ␪ ϭ ␴ ϫ P 0.25 ML, an indium-rich (2 4) reconstruction is re- take-off angle with respect to the surface normal was 25°. corded. The unit cell of this structure contains a single phos- The indium phosphide surface structure was characterized phorus dimer sitting astride four indium dimers. As observed using a Princeton Instruments low-energy electron diffracto- in the STM, the P dimers from adjacent unit cells line up in meter. In addition, filled-states scanning tunneling micro- straight rows extending along the ͓¯110͔ direction. At a graphs were obtained with a Park Scientific Instruments Au- Ϫ slightly lower P coverage of 0.125 ML, the ␦(2ϫ4) phase is toProbe VP at a bias of 3.6 V and a tunneling current of 1.0 ␴ ϫ nA. Images were acquired on different areas of each sample observed. This structure is the same as the (2 4) except that the P-P dimer in the top layer is replaced with a mixed for comparison. Height data were acquired from the STM 22 images at a resolution of 256ϫ256 pixels. These data were In-P dimer. used to calculate the root-mean-square ͑rms͒ surface rough- The indium phosphide surface remains atomically smooth ness: during the phase transition from a P-rich to an In-rich sur- face. Figure 4 shows an STM micrograph of the In-rich sur- 1 face obtained after annealing in 20 Torr flowing H2 for 20 ϭͱ ͚ ͒Ϫ¯ 2 ͑ ͒ Rq ͓h͑x,y h͔ , 1 min at 500 °C. The surface exhibits atomically flat terraces N with an rms roughness of 1.1 Å. A sharp (2ϫ4) LEED pat- where h(x,y) is the surface height at location (x,y), h is the tern is recorded for this sample. In addition, the reflectance average surface height, and N is the total number of data difference spectrum is indicative of a ␦(2ϫ4) reconstruction 23,24 points.
Recommended publications
  • TR-499: Indium Phosphide (CASRN 22398-80-7) in F344/N Rats And
    NTP TECHNICAL REPORT ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF INDIUM PHOSPHIDE (CAS NO. 22398-80-7) IN F344/N RATS AND B6C3F1 MICE (INHALATION STUDIES) NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709 July 2001 NTP TR 499 NIH Publication No. 01-4433 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health FOREWORD The National Toxicology Program (NTP) is made up of four charter agencies of the U.S. Department of Health and Human Services (DHHS): the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS. The NTP coordinates the relevant programs, staff, and resources from these Public Health Service agencies relating to basic and applied research and to biological assay development and validation. The NTP develops, evaluates, and disseminates scientific information about potentially toxic and hazardous chemicals. This knowledge is used for protecting the health of the American people and for the primary prevention of disease. The studies described in this Technical Report were performed under the direction of the NIEHS and were conducted in compliance with NTP laboratory health and safety requirements and must meet or exceed all applicable federal, state, and local health and safety regulations. Animal care and use were in accordance with the Public Health Service Policy on Humane Care and Use of Animals.
    [Show full text]
  • Advanced VCSEL Technology: Self-Heating and Intrinsic Modulation Response
    IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 54, NO. 3, JUNE 2018 2400209 Advanced VCSEL Technology: Self-Heating and Intrinsic Modulation Response Dennis G. Deppe, Fellow, IEEE, Mingxin Li, Xu Yang, and Mina Bayat (Invited Paper) Abstract— Experimental data and modeling results are can efficiently conduct heat from the strongly pumped laser presented for a new type of vertical-cavity surface-emitting active volume, and in a laser cavity much smaller than possible laser (VCSEL) that solves numerous problems with oxide before with commercial edge-emitting laser diodes. VCSELs. In addition, the new oxide-free VCSEL can be scaled to small size. Modeling shows that this small size can dramatically This change made it possible to obtain much higher cur- increase the speed of the laser through control of self-heating. rent density, and therefore higher photon density, and higher Modeling compared with both the oxide and the new oxide-free stimulated emission rate than other laser diodes. Continually VCSEL predict intrinsic modulation speed for room temperature reducing the laser active volume and relying on relatively > approaching 80 GHz, indicating the potential for 100-Gb/s data high efficiency VCSEL designs have produced ever-increasing speed from directly modulated VCSELs. The modeling is one of if not the first to include self-heating and spectral detuning between laser diode speed. VCSELs now reign supreme in laboratory the gain and the cavity resonance that results from self-heating. demonstrations of direct modulation data speed due largely to The modeling results accurately accounts for the saturation in their combined small volume, matched cavity and gain region, modulation speed in very high-speed oxide VCSELs operating at and high internal heat flow through high quality epitaxial high temperature and accounts for the temperature of differential mirrors [15]–[23].
    [Show full text]
  • Indium Arsenide/Gallium Arsenide Quantum Dots and Nanomesas: Multimillion-Atom Molecular Dynamics Solutions on Parallel Architectures
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 2001 Indium Arsenide/Gallium Arsenide Quantum Dots and Nanomesas: Multimillion-Atom Molecular Dynamics Solutions on Parallel Architectures. Xiaotao Su Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Su, Xiaotao, "Indium Arsenide/Gallium Arsenide Quantum Dots and Nanomesas: Multimillion-Atom Molecular Dynamics Solutions on Parallel Architectures." (2001). LSU Historical Dissertations and Theses. 319. https://digitalcommons.lsu.edu/gradschool_disstheses/319 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI fiims the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • Scalable Synthesis of Inas Quantum Dots Mediated Through Indium Redox Chemistry Matthias Ginterseder, Daniel Franke, Collin F
    pubs.acs.org/JACS Communication Scalable Synthesis of InAs Quantum Dots Mediated through Indium Redox Chemistry Matthias Ginterseder, Daniel Franke, Collin F. Perkinson, Lili Wang, Eric C. Hansen, and Moungi G. Bawendi* Cite This: J. Am. Chem. Soc. 2020, 142, 4088−4092 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information ABSTRACT: Next-generation optoelectronic applications centered in the near-infrared (NIR) and short-wave infrared (SWIR) wavelength regimes require high-quality materials. Among these materials, colloidal InAs quantum dots (QDs) stand out as an infrared-active candidate material for biological imaging, lighting, and sensing applications. Despite significant development of their optical properties, the synthesis of InAs QDs still routinely relies on hazardous, commercially unavailable precursors. Herein, we describe a straightforward single hot injection procedure revolving around In(I)Cl as the key precursor. Acting as a simultaneous reducing agent and In source, In(I)Cl smoothly reacts with a tris(amino)arsenic precursor to yield colloidal InAs quantitatively and at gram scale. Tuning the reaction temperature produces InAs cores with a first excitonic absorption feature in the range of 700− 1400 nm. A dynamic disproportionation equilibrium between In(I), In metal, and In(III) opens up additional flexibility in precursor selection. CdSe shell growth on the produced cores enhances their optical properties, furnishing particles with center emission wavelengths between 1000 and 1500 nm and narrow photoluminescence full-width at half-maximum (FWHM) of about 120 meV throughout. The simplicity, scalability, and tunability of the disclosed precursor platform are anticipated to inspire further research on In-based colloidal QDs.
    [Show full text]
  • III-V Material Properties Welcome to This Section on III-V PV Technology. in This Video We Will Discuss the Material
    III-V Material Properties Welcome to this section on III-V PV technology. In this video we will discuss the material properties of the semiconductors used for this technology. In this video, you will learn what the III-V PV technology exactly is and how it is different from other solar cell technologies. We will then discuss the structural properties of III-V semiconductors. In the next video we will look into the electrical and optical properties of III- V materials. The III-V PV technology, as the name implies, utilizes elements of the 3-A group and the 5-A group in the periodic table of elements. As you might recall, group 3 elements have 3 electrons in their outer valence shell, and group 5 elements have 5 valence electrons. One of the most common III-V absorber materials is formed by bonding the group 3 material gallium, with the group 5 material arsenic. Several such combinations are possible however, and many different III-V alloys are used as an absorber material by the PV industry. Examples include Gallium phosphide, Indium phosphide, indium arsenide, Gallium indium arsenide, gallium indium phosphide, aluminium-gallium-indium-arsenide and aluminium- gallium-indium-phosphide. An important question for III-V technology is how abundant are the III- and V- elements. As discussed at the start of this course, of these five elements, only aluminium and phosphorus are relatively abundant in nature. Gallium, arsenide and germanium are not rare or precious metals, but they are much less abundant than silicon. Indium is rare and in high demand.
    [Show full text]
  • Environmental Protection Agency § 712.30
    Environmental Protection Agency § 712.30 (2) As a non-isolated intermediate. ment Information Manufacturer’s Re- (3) As an impurity. port for each chemical substance or [47 FR 26998, June 22, 1982; 47 FR 28382, June mixture that is listed or designated in 30, 1982] this section. (2) Unless a respondent has already § 712.28 Form and instructions. prepared a Manufacturer’s Report in (a) Manufacturers and importers sub- conformity with conditions set forth in ject to this subpart must submit a sin- paragraph (a)(3) of this section, the in- gle EPA Form No. 7710–35, ‘‘Manufac- formation in each Manufacturer’s Re- turer’s Report—Preliminary Assess- port must cover the respondent’s latest ment Information,’’ for each plant site complete corporate fiscal year as of the manufacturing or importing a chem- effective date. The effective date will ical substance listed in § 712.30. be 30 days after the FEDERAL REGISTER (b) Reporting companies may submit publishes a rule amendment making their reports through individual plant the substance or mixture subject to sites or company headquarters as they this subpart B. choose. A separate form must be sub- (3) Persons subject to this subpart B mitted for each plant site manufac- need not comply with the requirements turing the chemical substance. of paragraph (a)(2) of this section if (c) You must submit forms by one of they meet either one of the following the following methods: conditions: (1) Mail, preferably certified, to the (i) The respondent has previously and Document Control Office (DCO) voluntarily provided EPA with a Manu- (7407M), Office of Pollution Prevention facturer’s Report on a chemical sub- and Toxics (OPPT), Environmental stance or mixture subject to this sub- Protection Agency, 1200 Pennsylvania part B, which contains data for a one- Ave., NW., Washington, DC 20460–0001, year period ending no more than three ATTN: 8(a) PAIR Reporting.
    [Show full text]
  • Properties of Indium-Arsenide Measured by Low Temperature Photoluminescence
    PROPERTIES OF INDIUM-ARSENIDE MEASURED BY LOW TEMPERATURE PHOTOLUMINESCENCE YVESLACROIX B.Sc.(Honours) S.Sp. Physics, Queen's University, 1991 THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of PHYSICS @ Yves Lacroix 1996 SIMON FRASER UNIVERSITY April, 1996 All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without permission of the author. Approval Page NAME: Yves Lacroix DEGREE: Doctor of Philosophy (Physics) TITLE OF THESIS: Properties of Indium-Arsenide Measured by Low Temperature Photoluminescence EXAMINING COMMITTEE: CHAIR: Jeff Dahn Mike Thewalt Senior Supervisor Professor of Physics Simon Watkins Assistant Professor of Physics ~ohn-echhoefer ' Internal External Examiner Professor of Physics Alain Roth External Examiner Senior research officer, C.N.R.C. PARTLAL COPYRIGHT LICENSE I hereby grant to Simon Fraser Universi the right to lend my thesis, pro'ect or extended essay (the title o7 which is shown below) to users od the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. I further agree that permission for multiple copying of this work for scholarly purposes may be granted by me or the Dean of Graduate Studies. It is understood that copying or publication of this work for financial gain shall not be allowed without my written permission. Title of Thesis *- Pro~ertiesof Indium Arsenide Measured by Low Temperature Photoluminescence.
    [Show full text]
  • INDIUM PHOSPHIDE 1. Exposure Data
    pp197-226.qxd 31/05/2006 09:38 Page 197 INDIUM PHOSPHIDE 1. Exposure Data 1.1 Chemical and physical data 1.1.1 Nomenclature Chem. Abstr. Serv. Reg. No.: 22398-80-7 Deleted CAS Reg. No.: 1312-40-9, 99658-38-5, 312691-22-8 Chem. Abstr. Serv. Name: Indium phosphide (InP) IUPAC Systematic Name: Indium phosphide Synonyms: Indium monophosphide 1.1.2 Molecular formula and relative molecular mass InP Relative molecular mass: 145.79 1.1.3 Chemical and physical properties of the pure substance (a) Description: Black cubic crystals (Lide, 2003) (b) Melting-point: 1062 °C (Lide, 2003) (c) Density: 4.81 g/cm3 (Lide, 2003) (d) Solubility: Slightly soluble in acids (Lide, 2003) (e) Reactivity: Can react with moisture or acids to liberate phosphine (PH3); when heated to decomposition, it may emit toxic fumes of POx (ESPI, 1994) 1.1.4 Technical products and impurities No data were available to the Working Group. 1.1.5 Analysis Occupational exposure to indium phosphide can be determined by measurement of the indium concentration in workplace air or by biological monitoring of indium. No analytical –197– pp197-226.qxd 31/05/2006 09:38 Page 198 198 IARC MONOGRAPHS VOLUME 86 methods are available for determination of indium phosphide per se. Determination of phosphorus cannot provide the required information on occupational exposure. (a) Workplace air monitoring The respirable fraction of airborne indium, collected by drawing air through a membrane filter in a stationary or personal sampler, can be determined by nondestructive, INAA. This technique has been applied to the determination of indium concentration in ambient air particulates (Kucera et al., 1999).
    [Show full text]
  • Continuous-Wave Room-Temperature Inas Quantum Cascade Laser
    86 Technology focus: Lasers Continuous-wave room-temperature InAs quantum cascade laser Doping profile used to red-shift optically pumped long-wavelength quantum well. niversity of Montpellier in France has claimed Uthe first continuous- wave (cw) operation at room temperature of a 15µm indium arsenide (InAs) quantum cascade laser (QCL) [Alexei N. Baranov et al, Optics Express, vol. 24, p18799, 2016]. “To our knowledge, the longest emission wavelength of RT cw operation for QCLs fabricated from other materials is 12.4µm,” the team reports. The thresholds are also claimed to be the lowest to-date for InAs QCLs. “One of the reasons of this progress can be attributed to the reduction of optical losses both in the waveguide itself and in the laser active region Figure 1. Threshold current density (circles) and initial slope of light-current due to the decreased doping curves (squares) in pulsed mode as a function of temperature for lasers and shorter operating wave- with different ridge width: full symbols, 16µm; open symbols 20µm. Inset: length and thus weaker free emission spectra of 16µm-wide laser at room temperature and at 400K. carrier absorption,” the team comments. perature. The pulsed threshold current density (Jth) The cascade consisted of 55 active stages with InAs varied between 1.22kA/cm2 for a QCL with a 8µm-wide wells and aluminium antimonide (AlSb) barriers. ridge and 0.73kA/cm2 for one with a 20µm ridge. The doping of the active region was reduced by 6x The researchers comment: “The higher Jth in narrow compared with a previous device reported by the devices is due to a larger overlap of the optical mode same researchers.
    [Show full text]
  • Gallium Arsenide
    pp 163-196.qxp 31/05/2006 10:18 Page 163 GALLIUM ARSENIDE 1. Exposure Data 1.1 Chemical and physical data 1.1.1 Nomenclature Chem. Abstr. Serv. Reg. No.: 1303-00-0 Deleted CAS Reg. No.: 12254-95-4, 106495-92-5, 116443-03-9, 385800-12-4 Chem. Abstr. Serv. Name: Gallium arsenide (GaAs) IUPAC Systematic Name: Gallium arsenide Synonyms: Gallium monoarsenide 1.1.2 Molecular formula and relative molecular mass GaAs Relative molecular mass: 144.6 1.1.3 Chemical and physical properties of the pure substance (a) Description: Grey, cubic crystals (Lide, 2003) (b) Melting-point: 1238 °C (Lide, 2003) (c) Density: 5.3176 g/cm3 (Lide, 2003) (d) Solubility: Insoluble in water (Wafer Technology Ltd, 1997); slightly soluble in 0.1 M phosphate buffer at pH 7.4 (Webb et al., 1984) (e) Stability: Decomposes with evolution of arsenic vapour at temperatures above 480 °C (Wafer Technology Ltd, 1997) (f) Reactivity: Reacts with strong acid reducing agents to produce arsine gas (Wafer Technology Ltd, 1997) 1.1.4 Technical products and impurities Purity requirements for the raw materials used to produce gallium arsenide are stringent. For optoelectronic devices (light-emitting diodes (LEDs), laser diodes, photo- detectors, solar cells), the gallium and arsenic must be at least 99.9999% pure; for –163– pp 163-196.qxp 31/05/2006 10:18 Page 164 164 IARC MONOGRAPHS VOLUME 86 integrated circuits, a purity of 99.99999% is required. These purity levels are referred to by several names: 99.9999%-pure gallium is often called 6-nines, 6N or optoelectronic grade, while 99.99999%-pure gallium is called 7-nines, 7N, semi-insulating (SI) or integrated circuit (IC) grade.
    [Show full text]
  • Family Type and Incidence
    STRAINED INDIUM ARSENIDE/GALLIUM ARSENIDE LAYER FOR QUANTUM CASCADE LASER DESIGN USING GENETIC ALGORITHM David Mueller Dr. Gregory Triplett, Dissertation Supervisor ABSTRACT Achieving high power, continuous wave, room temperature operation of midinfrared (3-5 um) lasers is diffcult due to the effects of auger recombination in band-to-band designs. Intersubband laser designs such as quantum cascade lasers reduce the effects of recombination, increasing efficiency and have advantages in large tunability of wavelength ranges. Highly efficient quantum cascade laser designs are typically used in lasers designed for >5 um wavelength operation due to the small offset of conduction band energy in lattice matched materials. Some promising material systems have been used to achieve high-power output in the first atmospheric window (3-5 um) but still suffer from low efficiency. Larger ıconduction band offset is attainable through the use of strained materials. However, these material systems have limitations on the traditional (100) crystal orientation due to the large strain and low critical thickness. The necessity for controlled two-dimensional, optical quality layer growth limits the amount of strain incorporation due to defect formation in highly lattice mis-matched layers. The material systems used in this study are GaAs (100) and (111)B, AlGaAs, and (Ga)InAs. In the initial stage of research, I found that pseudomorphic growth of highly strained InAs layers on GaAs (111)B is possible. However, the growth window is very narrow and necessitates precise control over growth temperature and anion overpressure to achieve optical quality layers. As a result, a second stage of research explores the design space made available by this finding by using genetic algorithm based design and simulation of devices with a Schrodinger-Poisson solver.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,166,734 B2 Shenai-Khatkhate Et Al
    USOO7166734B2 (12) United States Patent (10) Patent No.: US 7,166,734 B2 Shenai-Khatkhate et al. (45) Date of Patent: Jan. 23, 2007 (54) METHOD FOR MAKING 3,808.207 A 4/1974 Shepherd et al. ........... 260/247 ORGANOMETALLC COMPOUNDS 4,364,872 A 12, 1982 Diefenbach ............. 260,448 A 4,364,873. A 12/1982 Difenbach . ... 260/448 A (75) Inventors: Deodatta Vinayak Shenai-Khatkhate, i.e. A t NG et al. O's...b wk 4 C. a. - - - RNA W. East S 4,841,082. A 6/1989 Eidt et al. ......... ... 556,129 mamchyan, Wakefield, MA (US) 4,847,399 A 7/1989 Hallock et al. ................ 556.1 5,350,869 A 9/1994 Kanjolia et al. ............... 556.1 (73) Assignee: Rohm and Haas Electronic Materials 5,473,090 A 12, 1995 Smit et al. ..................... 556.1 LLC, Marlborough, MA (US) 5,543,537 A 8/1996 Eisenberg et al. ... 556,157 - 0 5,663,390 A 9, 1997 Giolando ....................... 556.1 (*) Notice: Subject to any disclaimer, the term of this 5,756,786 A 5/1998 Power et al. .. ... 556.1 patent is extended or adjusted under 35 5,817.847. A 10, 1998 Giolando ....................... 556.1 U.S.C. 154(b) by 0 days. 6,660,874 B2 12/2003 Shenai-Khatkhate et al. .. 556/70 6,680,397 B2 1/2004 Shenai-Khatkhate et al. .. 556/1 (21) Appl. No.: 11/219,227 6,770,769 B2 8, 2004 Shenai-Khatkhate et al. .. 556/1 2004/O198042 A1 10, 2004 Shanai-Khatkhate (22) Filed: Sep.
    [Show full text]