(12) United States Patent (10) Patent No.: US 7,166,734 B2 Shenai-Khatkhate Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) United States Patent (10) Patent No.: US 7,166,734 B2 Shenai-Khatkhate Et Al USOO7166734B2 (12) United States Patent (10) Patent No.: US 7,166,734 B2 Shenai-Khatkhate et al. (45) Date of Patent: Jan. 23, 2007 (54) METHOD FOR MAKING 3,808.207 A 4/1974 Shepherd et al. ........... 260/247 ORGANOMETALLC COMPOUNDS 4,364,872 A 12, 1982 Diefenbach ............. 260,448 A 4,364,873. A 12/1982 Difenbach . ... 260/448 A (75) Inventors: Deodatta Vinayak Shenai-Khatkhate, i.e. A t NG et al. O's...b wk 4 C. a. - - - RNA W. East S 4,841,082. A 6/1989 Eidt et al. ......... ... 556,129 mamchyan, Wakefield, MA (US) 4,847,399 A 7/1989 Hallock et al. ................ 556.1 5,350,869 A 9/1994 Kanjolia et al. ............... 556.1 (73) Assignee: Rohm and Haas Electronic Materials 5,473,090 A 12, 1995 Smit et al. ..................... 556.1 LLC, Marlborough, MA (US) 5,543,537 A 8/1996 Eisenberg et al. ... 556,157 - 0 5,663,390 A 9, 1997 Giolando ....................... 556.1 (*) Notice: Subject to any disclaimer, the term of this 5,756,786 A 5/1998 Power et al. .. ... 556.1 patent is extended or adjusted under 35 5,817.847. A 10, 1998 Giolando ....................... 556.1 U.S.C. 154(b) by 0 days. 6,660,874 B2 12/2003 Shenai-Khatkhate et al. .. 556/70 6,680,397 B2 1/2004 Shenai-Khatkhate et al. .. 556/1 (21) Appl. No.: 11/219,227 6,770,769 B2 8, 2004 Shenai-Khatkhate et al. .. 556/1 2004/O198042 A1 10, 2004 Shanai-Khatkhate (22) Filed: Sep. 2, 2005 et al. .......................... 438,680 (65) Prior Publication Data OTHER PUBLICATIONS US 2006/OO.47 132 A1 Mar. 2, 2006 Bradley et al., Synthesis and characterization of trialkylaluminium dialkylamine adducts: X-ray diffraction and "H NMR studies; J. Related U.S. Application Data Chen. Soc., Dalton Trans., 1999, pp. 3553-3558. Eisch et al., “Organometallic Compounds of Group III. I. The (60) Provisional application No. 60/606,795, filed on Sep. Preparation of Gallium and Indium Alkyls from Organoaluminum 2, 2004. Compounds'; Journal of the American Chemical Society, vol. 84. No. 19, Oct. 177, 1962, pp. 3605-3610. (51) Int.C07F Cl. 5/06 (2006.01) Primary Examiner Porfirio Nazario-Gonzalez (52) U.S. Cl 556/187: 556/1:55.6/129: (74) Attorney, Agent, or Firm—S. Matthew Cairns 556/170 (57) ABSTRACT (58) Field of Classification Search .................... 556/1, S lication file f let R 187 Organometallic compounds of Group IIB and IIIA metals ee appl1cauon Ille Ior complete searcn n1story. that are substantially pure and contain low levels of oxy (56) References Cited genated impurities are provided. Also provided are methods of preparing such organometallic compounds. U.S. PATENT DOCUMENTS 2.954,389 A 9, 1960 Nobis et al. ................ 260/448 15 Claims, No Drawings US 7,166,734 B2 1. 2 METHOD FOR MAKING a=1–3, b is the valence of M, c=0–2, and a--c=b; having a ORGANOMETALLIC COMPOUNDS purity of 99.9999% and having less than 0.5 ppm of oxy genated impurities. This application claims the benefit of U.S. provisional Also provided by the present invention is a method of application Ser. No. 60/606,795, filed on Sep. 2, 2004. preparing the above-described compound including the steps of reacting a compound of the formula R'M1'Y', BACKGROUND OF THE INVENTION (formula 2), wherein each R" is independently a (C-Co.) organic radical, M1 is a Group IIB or IIIA metal, each Y is This invention relates generally to the field of organome independently a (C-C) carboxylate or halogen, a' 0–2, b' tallic compounds. In particular, this invention relates to the 10 is the valence of M1, c'=1-3, and a'+c'-b', with a compound preparation of organometallic compounds suitable for use in of the formula R,M2Y, (formula 3), wherein each R is vapor deposition and epitaxial growth of metal-containing independently a (C-C) organic radical, M2 is a Group films. IIIA metal, each Y is independently a (C-C) carboxylate Metal films may be deposited on surfaces by a variety of or halogen, X=1-3, in the presence of a tertiary amine or a means such as chemical vapor deposition (“CVD), physical 15 tertiary phosphine, wherein an electronegativity of M12an vapor deposition (“PVD), and other epitaxial techniques electronegativity of M2. such as liquid phase epitaxy (“LPE'), molecular beam The present invention further provides a vapor delivery epitaxy (MBE), chemical beam epitaxy (“CBE) and device including one or more of the above-described com atomic layer deposition (ALD). Chemical vapor deposi pounds. In addition, methods including one or more Group tion processes, such as metalorganic chemical vapor depo IIB or IIIA metals using the above-described compounds are sition (“MOCVD), deposit a metal layer by decomposing contemplated by this invention. organometallic compounds (often referred to as “precur sors”) at elevated temperatures, i.e., above room tempera DETAILED DESCRIPTION OF THE ture, either at atmospheric pressure or at reduced pressures. INVENTION A wide variety of metals may be deposited using such CVD 25 or MOCVD processes. As used throughout this specification, the following For semiconductor and electronic device applications, abbreviations shall have the following meanings, unless the these organometallic compounds must be highly pure and be context clearly indicates otherwise: C. degrees centigrade; substantially free of detectable levels of both metallic impu mol moles; mmol millimoles; b.p.-boiling point, g gram; rities, such as silicon and Zinc, as well as oxygenated 30 L-liter, um micron micrometer, ppm parts per million; impurities. Oxygenated impurities are typically present from ppb-parts per billion; kPa kilopascals; and mL-milliliter. the solvents, such as ethereal solvents, used to prepare such "Halogen refers to fluorine, chlorine, bromine and iodine organometallic compounds, and are also present from other and "halo' refers to fluoro, chloro, bromo and iodo. Like adventitious sources of moisture or oxygen. wise, “halogenated refers to fluorinated, chlorinated, bro Organometallic compounds of Group IIB and IIIA metals 35 minated and iodinated. “Alkyl includes linear, branched may be prepared by a variety of conventional methods. Such and cyclic alkyl. Likewise, “alkenyl and “alkynyl include methods include reacting a Group IIB or IIIA metal halide linear, branched and cyclic alkenyl and alkynyl, respec with a Grignard reagent in an ethereal Solvent, reacting an tively. “Aryl refers to any aromatic moiety, and preferably organo halide with a metal melt, and transalkylating a metal an aromatic hydrocarbon. The articles “a” and “an refer to halide using a trialkyl aluminum, among other methods. 40 the singular and the plural. As used herein, “CVD' is Transalkylation reactions, such as those disclosed in U.S. intended to include all forms of chemical vapor deposition Pat. Nos. 5,756,786, and 6,770,769 are particularly useful as such as MOCVD, MOVPE, OMVPE, OMCVD and ethereal solvents can be avoided. RPCVD. When transmethylation reactions are employed using a Unless otherwise noted, all amounts are percent by weight Group IIIA metal trihalide, such as indium trihalide, and 45 and all ratios are molar ratios. All numerical ranges are trimethyl aluminum, the reaction is not efficient with respect inclusive and combinable in any order except where it is to the methyl groups transferred. For one mole of indium clear that Such numerical ranges are constrained to add up to trihalide, three moles of trimethyl aluminum must be used. 100%. The resulting byproducts are also difficult to separate from Compounds of the formula RMY (formula 1), wherein the desired reaction product, trimethyl indium. Accordingly, 50 each R is independently a (C-C) organic radical, M is a improved methods of manufacturing Group IIB and IIIA Group IIB or IIIA metal, each Y is independently a (C-C) compounds are needed. carboxylate or halogen, a 1–3, b is the valence of M, c=0–2, and a+c=b are provided by the present invention. In one SUMMARY OF THE INVENTION embodiment, a b. Suitable groups for R include alkyl, 55 alkenyl, alkynyl and aryl. The R groups may optionally be It has been found that Group IIB and Group IIIA orga Substituted with one or more dialkylamino groups of the nometallic compounds can be prepared in high yield and in formula NR'R", wherein R' and R" are independently high purity by reacting a Group IIB or IIIA metal halide selected from (C-C)alkyl. By “substituted, it is meant compound and a Group IIIA metal alkyl compound in the that one or more hydrogens of the organic radical are presence of a tertiary amine. Typically, Such reaction is 60 replaced with a dialkylamino group. Typically, R is a carried out in a hydrocarbon Solvent. Organometallic com (C-C) alkyl group, optionally substituted with one or more pounds produced by this method are extremely pure and dialkylamino groups. Exemplary R groups include, without Substantially free of oxygenated impurities. limitation, methyl, ethyl, n-propyl, iso-propyl. n-butyl, iso The present invention provides a compound of the for butyl, tert-butyl, iso-pentyl and neo-pentyl. Such com mula RMY (formula 1) wherein each R is independently 65 pounds have at least one R group and may have more than a (C-C) organic radical, M is a Group IIB or IIIA metal, one. When a compound contains more than one R group, each Y is independently a (C-C) carboxylate or halogen, such R groups may be the same or different. Y represents a US 7,166,734 B2 3 4 (C-C) carboxylate or halogen. Exemplary carboxylates dently a (C-C) carboxylate or halogen, a'=0–2, b' is the include formate, acetate and propionate.
Recommended publications
  • (12) United States Patent (10) Patent No.: US 9,543,378 B2 Singh (45) Date of Patent: Jan
    USO09543378B2 (12) United States Patent (10) Patent No.: US 9,543,378 B2 Singh (45) Date of Patent: Jan. 10, 2017 (54) SEMICONDUCTOR DEVICES AND USPC ........................................... 257/25, 347, 402 FABRICATION METHODS THEREOF See application file for complete search history. (71) Applicant: GLOBALFOUNDRIES Inc., Grand (56) References Cited Cayman (KY) U.S. PATENT DOCUMENTS (72) Inventor: Jagar Singh, Clifton Park, NY (US) 4,940,671 A * 7/1990 Small ................ HO1L 21,82285 257 (491 (73) Assignee: GLOBALFOUNDRIES INC., Grand 8,610,241 B1* 12/2013 Hu ...................... HOL 270629 Cayman (KY) 257,353 2004/0095698 A1* 5, 2004 Gerrish ............... HOL27/O255 *) Notice: Subject to anyy disclaimer, the term of this 361 (91.1 patent is extended or adjusted under 35 2004/0253779 A1* 12/2004 Hong ............... HOL 21,8249 U.S.C. 154(b) by 10 days. 438,203 (21) Appl. No.: 14/467,420 * cited by examiner Primary Examiner — Kenneth Parker (22) Filed: Aug. 25, 2014 Assistant Examiner — Warren H Kilpatrick (65) Prior Publication Data (74) Attorney, Agent, or Firm — Heslin Rothenberg Farley & Mesiti P.C.; Kristian E. Ziegler US 2016/OO56231 A1 Feb. 25, 2016 (57) ABSTRACT (51) Int. Cl. Semiconductor devices and fabrication methods thereof are HOIL 29/06 (2006.01) provided. The semiconductor devices include: a substrate, HOIL 29/66 (2006.01) the Substrate including a p-type well adjoining an n-type HOIL 29/735 (2006.01) well; a first p-type region and a first n-type region disposed HOIL 29/47 (2006.01) within the n-type well of the substrate, where the first p-type HOIL 29/423 (2006.01) region at least partially encircles the first n-type region; and HOIL 29/08 (2006.01) a second p-type region and a second n-type region disposed HOIL 29/10 (2006.01) in the p-type well of the substrate, where the second n-type (52) U.S.
    [Show full text]
  • TR-499: Indium Phosphide (CASRN 22398-80-7) in F344/N Rats And
    NTP TECHNICAL REPORT ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF INDIUM PHOSPHIDE (CAS NO. 22398-80-7) IN F344/N RATS AND B6C3F1 MICE (INHALATION STUDIES) NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709 July 2001 NTP TR 499 NIH Publication No. 01-4433 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health FOREWORD The National Toxicology Program (NTP) is made up of four charter agencies of the U.S. Department of Health and Human Services (DHHS): the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS. The NTP coordinates the relevant programs, staff, and resources from these Public Health Service agencies relating to basic and applied research and to biological assay development and validation. The NTP develops, evaluates, and disseminates scientific information about potentially toxic and hazardous chemicals. This knowledge is used for protecting the health of the American people and for the primary prevention of disease. The studies described in this Technical Report were performed under the direction of the NIEHS and were conducted in compliance with NTP laboratory health and safety requirements and must meet or exceed all applicable federal, state, and local health and safety regulations. Animal care and use were in accordance with the Public Health Service Policy on Humane Care and Use of Animals.
    [Show full text]
  • Advanced VCSEL Technology: Self-Heating and Intrinsic Modulation Response
    IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 54, NO. 3, JUNE 2018 2400209 Advanced VCSEL Technology: Self-Heating and Intrinsic Modulation Response Dennis G. Deppe, Fellow, IEEE, Mingxin Li, Xu Yang, and Mina Bayat (Invited Paper) Abstract— Experimental data and modeling results are can efficiently conduct heat from the strongly pumped laser presented for a new type of vertical-cavity surface-emitting active volume, and in a laser cavity much smaller than possible laser (VCSEL) that solves numerous problems with oxide before with commercial edge-emitting laser diodes. VCSELs. In addition, the new oxide-free VCSEL can be scaled to small size. Modeling shows that this small size can dramatically This change made it possible to obtain much higher cur- increase the speed of the laser through control of self-heating. rent density, and therefore higher photon density, and higher Modeling compared with both the oxide and the new oxide-free stimulated emission rate than other laser diodes. Continually VCSEL predict intrinsic modulation speed for room temperature reducing the laser active volume and relying on relatively > approaching 80 GHz, indicating the potential for 100-Gb/s data high efficiency VCSEL designs have produced ever-increasing speed from directly modulated VCSELs. The modeling is one of if not the first to include self-heating and spectral detuning between laser diode speed. VCSELs now reign supreme in laboratory the gain and the cavity resonance that results from self-heating. demonstrations of direct modulation data speed due largely to The modeling results accurately accounts for the saturation in their combined small volume, matched cavity and gain region, modulation speed in very high-speed oxide VCSELs operating at and high internal heat flow through high quality epitaxial high temperature and accounts for the temperature of differential mirrors [15]–[23].
    [Show full text]
  • Indium Arsenide/Gallium Arsenide Quantum Dots and Nanomesas: Multimillion-Atom Molecular Dynamics Solutions on Parallel Architectures
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 2001 Indium Arsenide/Gallium Arsenide Quantum Dots and Nanomesas: Multimillion-Atom Molecular Dynamics Solutions on Parallel Architectures. Xiaotao Su Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Su, Xiaotao, "Indium Arsenide/Gallium Arsenide Quantum Dots and Nanomesas: Multimillion-Atom Molecular Dynamics Solutions on Parallel Architectures." (2001). LSU Historical Dissertations and Theses. 319. https://digitalcommons.lsu.edu/gradschool_disstheses/319 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI fiims the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • Measurement and Application of Optical Nonlinearities in Indium Phosphide, Cadmium Mercury Telluride and Photonic Crystal Fibres
    MEASUREMENT AND APPLICATION OF OPTICAL NONLINEARITIES IN INDIUM PHOSPHIDE, CADMIUM MERCURY TELLERIDE AND PHOTONIC CRYSTAL FIBRES Trefor James Sloanes A Thesis Submitted for the Degree of DEng at the University of St. Andrews 2009 Full metadata for this item is available in the St Andrews Digital Research Repository at: https://research-repository.st-andrews.ac.uk/ Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/723 This item is protected by original copyright Measurement and Application of Optical Nonlinearities in Indium Phosphide, Cadmium Mercury Telluride and Photonic Crystal Fibres This thesis is presented in application for the degree of Doctor of Engineering to the University of St. Andrews by Trefor James Sloanes I, Trefor James Sloanes, hereby certify that this thesis, which is approximately 28,500 words in length, has been written by me, that it is the record of work carried out by me and that it has not been submitted in any previous application for a higher degree. I was admitted as a research student in October, 2003 and as a candidate for the degree of Doctor of Engineering in August, 2004; the higher study for which this is a record was carried out in the University of St Andrews between 2003 and 2008. date ……………… signature of candidate ……………… I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations appropriate for the degree of Doctor of Engineering in the University of St Andrews and that the candidate is qualified to submit this thesis in application for that degree.
    [Show full text]
  • Scalable Synthesis of Inas Quantum Dots Mediated Through Indium Redox Chemistry Matthias Ginterseder, Daniel Franke, Collin F
    pubs.acs.org/JACS Communication Scalable Synthesis of InAs Quantum Dots Mediated through Indium Redox Chemistry Matthias Ginterseder, Daniel Franke, Collin F. Perkinson, Lili Wang, Eric C. Hansen, and Moungi G. Bawendi* Cite This: J. Am. Chem. Soc. 2020, 142, 4088−4092 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information ABSTRACT: Next-generation optoelectronic applications centered in the near-infrared (NIR) and short-wave infrared (SWIR) wavelength regimes require high-quality materials. Among these materials, colloidal InAs quantum dots (QDs) stand out as an infrared-active candidate material for biological imaging, lighting, and sensing applications. Despite significant development of their optical properties, the synthesis of InAs QDs still routinely relies on hazardous, commercially unavailable precursors. Herein, we describe a straightforward single hot injection procedure revolving around In(I)Cl as the key precursor. Acting as a simultaneous reducing agent and In source, In(I)Cl smoothly reacts with a tris(amino)arsenic precursor to yield colloidal InAs quantitatively and at gram scale. Tuning the reaction temperature produces InAs cores with a first excitonic absorption feature in the range of 700− 1400 nm. A dynamic disproportionation equilibrium between In(I), In metal, and In(III) opens up additional flexibility in precursor selection. CdSe shell growth on the produced cores enhances their optical properties, furnishing particles with center emission wavelengths between 1000 and 1500 nm and narrow photoluminescence full-width at half-maximum (FWHM) of about 120 meV throughout. The simplicity, scalability, and tunability of the disclosed precursor platform are anticipated to inspire further research on In-based colloidal QDs.
    [Show full text]
  • Vertically Aligned Arrays of Insb Nanostructures for Tuning Light Absorption in the Mid-Infrared
    Vertically Aligned Arrays of InSb Nanostructures for Tuning Light Absorption in the Mid-Infrared The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:37799758 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Vertically Aligned Arrays of InSb Nanostructures for Tuning Light Absorption in the Mid-Infrared Nicholas Collins A Thesis in the Field of Bioengineering and Nanotechnology for the Degree of Master of Liberal Arts Harvard University March 2018 Copyright 2017 Nicholas Collins Abstract Infrared detection is valuable across a diverse range of fields. Military applications have long been the focus of development of infrared detection technology, but as accessibility to infrared detectors grows, industries ranging from waste management to medicine have shown broad uses for the technology. Imaging of biological samples is particularly well suited for near and mid infrared imaging as opaque superficial layers often inhibit the use of visible light to detect underlying structures which may hold diagnostic value. Infrared detecting devices are typically underutilized in a biomedical setting despite there being many potential applications. The primary objective of this research was to provide a proof of concept for a novel transmission filters system in the near and mid infrared range using vertically oriented indium antimonide (InSb) nanostructures. This was achieved by conducting optical simulations of InSb nanowires, developing an ICP-RIE etching process suitable for InSb, and, lastly, by measuring specular reflectance of the InSb nanostructure arrays using FT-IR microscopy.
    [Show full text]
  • United States Patent (19) (11) 4,237,471 Pommerrenig 45) Dec
    United States Patent (19) (11) 4,237,471 Pommerrenig 45) Dec. 2, 1980 54 METHOD OF PRODUCING A 58) Field of Search ........................ 357/30, 16, 61, 63 SEMCONDUCTORPHOTODODE OF NDUM ANTMONDE AND DEVICE 56 References Cited THEREOF U.S. PATENT DOCUMENTS 75 Inventor: Dieter H. Pommerrenig, Burke, Va. 3,558,373 1/1971 Moody ................................. 148/171 73 Assignees: Hamamatsu Corporation, Middlesex, Primary Examiner-Martin H. Edlow N.J.; Hamamatsu TV Co., Ltd., Attorney, Agent, or Firm-Moonray Kojima Hamamatsu, Japan 57 ABSTRACT (21 Appl. No.: 51,245 A method of producing semiconductor photodiodes of indium antimonide, by growing an indium antimonide 22 Filed: Jun. 22, 1979 epitaxial layer of one type conductivity onto a substrate of indium antimonide of another type conductivity, Related U.S. Application Data utilizing conventional vapor phase or liquid phase epi 60 Continuation of Ser. No. 879,640, Feb. 21, 1978, aban taxial techniques, wherein the antimony in the epitaxial doned, which is a division of Ser. No. 739,659, Nov. 8, layer is partially replaced by either arsenic or phospho 1976, abandoned. rus, thus resulting in a high performing photoelectric 51 Int. Cl’............................................. H01L 27/14 device. 52 U.S.C. ........................................ 357/30; 357/16; 357/61 6 Claims, 16 Drawing Figures U.S. Patent Dec. 2, 1980 Sheet 1 of 2 4,237,471 A.27, 7 W/W 727.4c /////////////////// XXXXXXXXXXXXXXXXXXXXXXXX A27.4eXXYYXXYYXXXX U.S. Patent Dec. 2, 1980 Sheet 2 of 2 4,237,471 77.5A O 27 PZZZZZZZZZZZZZZZZZZZZ-53 " V ZZZZZZZZZZZZZZZZZZZZZZZ \ \ 22222XXXXXXXXXXXV N Ny.V 4,237,471 2 thereby, and wherein an indium antimonide epitaxial METHOD OF PRODUCING ASEMECONDUCTOR layer of one type conductivity is epitaxially grown onto PHOTODODE OF NEDUMANTMONDE AND an indium antimonide substrate of another type conduc DEVICE THEREOF tivity, with the antimony in the epitaxial layer partially replaced with arsenic or phosphorus, Photodiodes and This is a continuation of application Ser.
    [Show full text]
  • III-V Material Properties Welcome to This Section on III-V PV Technology. in This Video We Will Discuss the Material
    III-V Material Properties Welcome to this section on III-V PV technology. In this video we will discuss the material properties of the semiconductors used for this technology. In this video, you will learn what the III-V PV technology exactly is and how it is different from other solar cell technologies. We will then discuss the structural properties of III-V semiconductors. In the next video we will look into the electrical and optical properties of III- V materials. The III-V PV technology, as the name implies, utilizes elements of the 3-A group and the 5-A group in the periodic table of elements. As you might recall, group 3 elements have 3 electrons in their outer valence shell, and group 5 elements have 5 valence electrons. One of the most common III-V absorber materials is formed by bonding the group 3 material gallium, with the group 5 material arsenic. Several such combinations are possible however, and many different III-V alloys are used as an absorber material by the PV industry. Examples include Gallium phosphide, Indium phosphide, indium arsenide, Gallium indium arsenide, gallium indium phosphide, aluminium-gallium-indium-arsenide and aluminium- gallium-indium-phosphide. An important question for III-V technology is how abundant are the III- and V- elements. As discussed at the start of this course, of these five elements, only aluminium and phosphorus are relatively abundant in nature. Gallium, arsenide and germanium are not rare or precious metals, but they are much less abundant than silicon. Indium is rare and in high demand.
    [Show full text]
  • Indium Phosphide 22398-80-7
    Indium Phosphide 22398-80-7 DRAFT REPORT SUPPORT FOR CHEMICAL NOMINATION AND SELECTION PROCESS OF THE NATIONAL TOXICOLOGY PROGRAM NIEHS CONTRACT NO. NO1-ES-85218 EXECUTIVE SUMMARY OF DATA INDIUM PHOSPHIDE (22398-80-7) November 7, 1988 Submitted to: National Toxicology Program National Institutes of Health Building 31, Room 2B-55 Bethesda, Maryland 20205 Submitted by: Chemical Hazard Assessment Division Syracuse Research Corporation Merrill Lane Syracuse, New York 13210 Overview for Indium Phosphide Nomination History: Indium phosphide was nominated to the NTP for toxicity and carcinogenicity testing by NIEHS based on its use in the electronics industry, its potential acute toxicity, and lack of toxicity data. Physical and Chemical Properties: Brittle, metallic mass with a melting point of 1070oC. No information was found on its solubility in water or organic solvents. It is slightly soluble in mineral acids. Production, Uses, and Exposure: The TSCA Inventory reported three companies as domestic producers of indium phosphide in 1977. One of these reported less than 1,000 pounds; the other two did not report production. No other information on the domestic production or importation of indium phosphide was available. Indium phosphide is used in semiconductor devices, injector lasers, and solar cells. It has been proposed to replace silicon in microchips. Indium phosphide is not listed in the NOES data base. The ACGIH has not recommended a TLV for indium phosphide but has recommended a TLV of 0.1 mg/m3 for indium and its compounds. Regulatory Status: No information was found on the regulatory status of indium phosphide. Toxicological data: Human - No information on toxicological effects in humans was found.
    [Show full text]
  • Environmental Protection Agency § 712.30
    Environmental Protection Agency § 712.30 (2) As a non-isolated intermediate. ment Information Manufacturer’s Re- (3) As an impurity. port for each chemical substance or [47 FR 26998, June 22, 1982; 47 FR 28382, June mixture that is listed or designated in 30, 1982] this section. (2) Unless a respondent has already § 712.28 Form and instructions. prepared a Manufacturer’s Report in (a) Manufacturers and importers sub- conformity with conditions set forth in ject to this subpart must submit a sin- paragraph (a)(3) of this section, the in- gle EPA Form No. 7710–35, ‘‘Manufac- formation in each Manufacturer’s Re- turer’s Report—Preliminary Assess- port must cover the respondent’s latest ment Information,’’ for each plant site complete corporate fiscal year as of the manufacturing or importing a chem- effective date. The effective date will ical substance listed in § 712.30. be 30 days after the FEDERAL REGISTER (b) Reporting companies may submit publishes a rule amendment making their reports through individual plant the substance or mixture subject to sites or company headquarters as they this subpart B. choose. A separate form must be sub- (3) Persons subject to this subpart B mitted for each plant site manufac- need not comply with the requirements turing the chemical substance. of paragraph (a)(2) of this section if (c) You must submit forms by one of they meet either one of the following the following methods: conditions: (1) Mail, preferably certified, to the (i) The respondent has previously and Document Control Office (DCO) voluntarily provided EPA with a Manu- (7407M), Office of Pollution Prevention facturer’s Report on a chemical sub- and Toxics (OPPT), Environmental stance or mixture subject to this sub- Protection Agency, 1200 Pennsylvania part B, which contains data for a one- Ave., NW., Washington, DC 20460–0001, year period ending no more than three ATTN: 8(a) PAIR Reporting.
    [Show full text]
  • Room-Temperature Indium Antimonide Mid-Infrared Photodiode Potential Applications Include Human Body Detection for Power Savings
    72 Technology focus: Photodetectors Room-temperature indium antimonide mid-infrared photodiode Potential applications include human body detection for power savings. sahi Kasei Microdevices Corporation and Kyushu University in Japan have developed room-tem- Aperature mid-infrared semiconductor detectors based on indium antimonide (InSb) [Koichiro Ueno et al, Jpn. J. Appl. Phys., vol52, p092202, 2013]. The researchers believe such devices could be used to save power in facilities where no people are present through the detection or not of human body heat. The human body gives out detectable thermal radia- tion in the range 3–25µm, peaking around 10µm (essentially a Planck blackbody distribution for 36–37°C). The Asahi Kasei/Kyushu device covers the 2–7µm range. Present methods of detecting humans tend to depend on measuring temperature changes (e.g. pyroelectric devices), so if the people are stationary a false signal to turn off power could be sent. However, mid-infrared semiconductor detectors usually need cooling to operate. To enable room-temperature operation, the researchers worked to reduce the non radiation part of the current (‘the diffusion current’) of the device by increasing the resistance under zero bias (R0). The device also featured improved IR incidence efficiency by gathering radiation through the gallium arsenide (GaAs) substrate rather than through InSb layers. In addition, the GaAs surface was roughened to reduce reflection. The indium antimonide (InSb) photodiode structure (Figure 1b) was grown on a semi-insulating (001) GaAs substrate using Riber MBE-49 molecular beam epitaxy system. The substrate temperature during growth was 410°C. The group V (Sb) to group III (In) flux ratio was 2:1.
    [Show full text]