Scenario Analysis for Evacuation Strategies for Residents in Big Cities During Large-Scale Flooding

Total Page:16

File Type:pdf, Size:1020Kb

Scenario Analysis for Evacuation Strategies for Residents in Big Cities During Large-Scale Flooding Journal of JSCE, Vol. 3, 209-223, 2015 (Originally published in Journal of Japan Society of Civil Engineers, Ser. B1, Vol. 69, No. 1, 71-82, 2013 in Japanese) SCENARIO ANALYSIS FOR EVACUATION STRATEGIES FOR RESIDENTS IN BIG CITIES DURING LARGE-SCALE FLOODING Toshitaka KATADA1, Noriyuki KUWASAWA2, Satoru SHIDA3 and Masaru KOJIMA4 1Member of JSCE, Professor, Research Center for Disaster Prevention in the Extended Tokyo Metropolitan Area, Gunma University (1-5-1 Tenjin-cho, Kiryu-shi, Gunma 376-8515, Japan) E-mail: [email protected] 2Member of JSCE, Research Center for Disaster Prevention in the Extended Tokyo Metropolitan Area, Gunma University (IDA Co., Ltd.) (1-5-1 Tenjin-cho, Kiryu-shi, Gunma 376-8515, Japan) E-mail: [email protected] 3Member of JSCE, River Planning Division, Water and Disaster Management Bureau, Ministry of Land, Infrastructure, Transport and Tourism (1F, Joint Government Building (Chuo Godo Chosha) No. 3, 2-1-3 Kasumigaseki, Chiyoda-ku, Tokyo 100-8918, Japan) E-mail: [email protected] 4Member of JSCE, River Department, Kanto Regional Development Bureau, Ministry of Land, Infrastructure, Transport and Tourism (16F, Saitama New Urban Center Joint Government Building No. 2, 2-1 Shintoshin, Chuo-ku, Saitama-shi, Saitama 330-9724, Japan) E-mail: [email protected] In major cities, large populations can hinder evacuation efforts in the event of a large-scale flooding. Therefore, for investigating evacuation strategies during large-scale flooding in such cities, population size and its impact must be considered. This study aims to examine the evacuation problems that arise when big cities are subjected to large-scale flood damage. In addition, it attempts to examine strategies that can over- come the evacuation problems. In this study, we developed a scenario simulator to elaborately simulate the flooding, evacuation of residents, and status of damage due to water exposure in the Edogawa Ward, which has a population of approximately 650,000. In addition, using a simulation that reflected the intended evacu- ation behaviors of the residents for a scenario in which the banks of the Arakawa River overflowed, we were able to identify the inherent evacuation problems of the city, including the damage caused by the presence of a large number of evacuees. Furthermore, we analyzed scenarios including measures to reduce the extent of damage. From this information, it became clear that countermeasures such as spatial and temporal disper- sion of evacuees and a reduction in evacuation demand are necessary. Key Words: scenario analysis, evacuation strategies, big cities, large-scale flooding, simulation 1. INTRODUCTION tion and industries in such cities has also accelerated. Consequently, extensive damage by large-scale In recent years, the risk of flooding has grown be- flooding is now a real concern. Hence, development cause of the increased frequency of torrential down- of disaster-prevention measures targeting large-scale pours and stronger typhoons as a result of climate flood damage in big cities has become an urgent change associated with global warming. Therefore, concern. In particular, demand has risen for promot- the need for disaster-prevention measures targeting ing software-based countermeasures, including flood damage has also grown. In large cities, in par- evacuation strategies. ticular, the frequency of exposure to water has re- In April 2010, the Expert Panel on Large-Scale duced as a result of aggressive flood control Flood Disaster Countermeasures of the Central Dis- measures and facilities implemented in recent years. aster Prevention Council of the Cabinet Office made However, at the same time, concentration of popula- recommendations to reduce damage from large- 209 scale flooding in the Tokyo metropolitan area1). Ac- in some areas, the river banks did not experience cording to estimations by this Expert Panel, in the washout, and fortunately, large-scale external flood- case of flooding of the Tone River, which would ing did not occur. During the largest recorded flood- cause maximum damage to the Tokyo metropolitan ing of the Shonai River, the city of Nagoya issued area, an area of approximately 500 km2 would be an evacuation advisory that targeted over a million submerged in water and 2.3 million people would be residents living in 181 school districts within the exposed to flooding. The Expert Panel also indicat- city 25 minutes after the river had exceeded the wa- ed that evacuation policies must be examined based ter level, which was the standard for announcing an on the characteristics of the city to reduce the extent evacuation advisory. However, the number of resi- of damage. As highlighted in these recommenda- dents who evacuated to facilities specified by the tions and in a case involving the city of Nagoya, city was limited to approximately 5,000 people. presented in the next chapter, evacuation strategies Hence, based on the evacuation percentage, only a in large cities pose a difficult set of problems be- very limited evacuation could be performed2). If we cause a large population is affected. also consider the evacuees who fled to locations Based on an awareness of the abovementioned other than those that were designated as evacuation problems, the aim of this study is to understand the shelters, the actual number of evacuees was a little evacuation problems that arise with large-scale higher. However, if the Shonai River had burst its flooding in large cities, as well as to examine appro- banks at that time, it is not hard to imagine the priate countermeasures for such problems. First, to large-scale damage that would have occurred. How- specifically identify the problems associated with a ever, on the other hand, if most residents who were large number of evacuees present in cities with large warned to evacuate had actually evacuated, an un- populations, we developed a scenario simulator to precedented large-scale flood evacuation would simulate the evacuation of local residents necessitated have unfolded. In such a scenario, it is easy to imag- by flooding in the Edogawa Ward of Tokyo, which ine that the evacuation would have resulted in seri- has a population of over 650,000 people. We then ous confusion. Furthermore, if large-scale external used the developed simulator to analyze a scenario flooding had occurred, we cannot deny the possibil- that assumed a washout of the banks of the Arakawa ity that there would have been numerous casualties River. This information was then used to understand among the evacuees. the status of damage based on the behaviors of the As can be imagined from this case, the problem residents to examine measures to reduce damage, as of evacuating residents from large cities is a compli- well as to verify the effectiveness of such measures. cated concern, which, depending on the presence of Consequently, we were able to clarify the evacua- a large population to be evacuated, cannot be re- tion problems inherent to large cities where stereo- solved by merely promoting evacuation. Therefore, typical evacuations cannot be promoted or derived, to examine appropriate evacuation strategies for as well as the directionality of the strategies that large cities, rather than statically considering the should be adopted. regional population as the scale for a maintenance target or an evacuation target, we must also address problems that occur during evacuation, including 2. POLICY FOR EXAMINING FLOOD- evacuation behaviors using the way people think ING EVACUATION MEASURES FOR and act as dynamic elements that depend on the LARGE CITIES progression of the situation and the acquisition of information. (1) Evacuation problems during flooding of large cities (2) Policy for examining the evacuation of resi- When Typhoon No. 15 was located in the south- dents in the event of large-scale flooding of a ern ocean waters of Kyushu the day before it made large city landfall in eastern Japan and caused extensive dam- In this study, based on an awareness of the prob- age in September 2011, it fed damp air to the stag- lems described in the previous section, we devel- nated front line on Honshu and caused intermittent, oped a scenario simulator (hereinafter, simulator) to heavy downpours in the Gifu and Aichi prefectures. specifically determine the status of flood damage in At the Shonai River, the watershed for this region, a specific region to examine the problem of evacua- the torrential downpour caused the water level to tion in the event of large-scale flooding in a metro- rise rapidly, reaching a height of 6.23 m, thereby politan area. exceeding the previous peak caused by the Tokai Much of our nation’s simulation research target- torrential downpour in 2000 by approximately 50 ing the evacuation of residents focuses on confined cm. However, while excessive water was observed spaces such as underground complexes3) or targets 210 only a portion of the given region4). There are only teristics of the targeted region, the simulator few simulations that assume the evacuation of a elaborately models the elements that express the large population in a large city5), 6). However, local affected region such as its topography, road net- municipalities are examining the evacuation of resi- work, distribution of residents, and establishment dents. In studies that target large-scale flood damage and layout of disaster prevention facilities. in which an extensive area is submerged in water, at ● The response behavior of residents is an element the very least, the evacuation conditions of the entire that has a major impact on the extent of damage, area of each municipality must be considered. Fur- and therefore, the simulator reflects and models thermore, when a large city is affected, an examina- the residents’ level of awareness to examine ac- tion specifically considering the impact of popula- tual issues and strategies. tion size on the evacuation and devastation condi- ● To examine strategies that aim toward reducing tions is required.
Recommended publications
  • Chapter 1. Relationships Between Japanese Economy and Land
    Part I Developments in Land, Infrastructure, Transport and Tourism Administration that Underpin Japan’s Economic Growth ~ Strategic infrastructure management that brings about productivity revolution ~ Section 1 Japanese Economy and Its Surrounding Conditions I Relationships between Japanese Economy and Land, Chapter 1 Chapter 1 Infrastructure, Transport and Tourism Administration Relationships between Japanese Economy and Land, Infrastructure, Transport and Tourism Administration and Tourism Transport Relationships between Japanese Economy and Land, Infrastructure, Chapter 1, Relationships between Japanese Economy and Land, Infrastructure, Transport and Tourism Administration, on the assumption of discussions described in chapter 2 and following sections, looks at the significance of the effects infrastructure development has on economic growth with awareness of severe circumstances surrounding the Japanese economy from the perspective of history and statistical data. Section 1, Japanese Economy and Its Surrounding Conditions, provides an overview of an increasingly declining population, especially that of a productive-age population, to become a super aging society with an estimated aging rate of close to 40% in 2050, and a severe fiscal position due to rapidly growing, long-term outstanding debts and other circumstances. Section 2, Economic Trends and Infrastructure Development, looks at how infrastructure has supported peoples’ lives and the economy of the time by exploring economic growth and the history of infrastructure development (Edo period and post-war economic growth period). In international comparisons of the level of public investment, we describe the need to consider Japan’s poor land and severe natural environment, provide an overview of the stock effect of the infrastructure, and examine its impact on the infrastructure, productivity, and economic growth.
    [Show full text]
  • (News Release) the Results of Radioactive Material Monitoring of the Surface Water Bodies Within Tokyo, Saitama, and Chiba Prefectures (September-November Samples)
    (News Release) The Results of Radioactive Material Monitoring of the Surface Water Bodies within Tokyo, Saitama, and Chiba Prefectures (September-November Samples) Thursday, January 10, 2013 Water Environment Division, Environment Management Bureau, Ministry of the Environment Direct line: 03-5521-8316 Switchboard: 03-3581-3351 Director: Tadashi Kitamura (ext. 6610) Deputy Director: Tetsuo Furuta (ext. 6614) Coordinator: Katsuhiko Sato (ext. 6628) In accordance with the Comprehensive Radiation Monitoring Plan determined by the Monitoring Coordination Meeting, the Ministry of the Environment (MOE) is continuing to monitor radioactive materials in water environments (surface water bodies (rivers, lakes and headwaters, and coasts), etc.). Samples taken from the surface water bodies of Tokyo, Saitama, and Chiba Prefectures during the period of September 18-November 16, 2012 have been measured as part of MOE’s efforts to monitor radioactive materials; the results have recently been compiled and are released here. The monitoring results of radioactive materials in surface water bodies carried out to date can be found at the following web page: http://www.env.go.jp/jishin/rmp.html#monitoring 1. Survey Overview (1) Survey Locations 59 environmental reference points, etc. in the surface water bodies within Tokyo, Saitama, and Chiba Prefectures (Rivers: 51 locations, Coasts: 8 locations) Note: Starting with this survey, there is one new location (coast). (2) Survey Method ・ Measurement of concentrations of radioactive materials (radioactive cesium (Cs-134 and Cs-137), etc.) in water and sediment ・ Measurement of concentrations of radioactive materials and spatial dose-rate in soil in the surrounding environment of water and sediment sample collection points (river terraces, etc.) 2.
    [Show full text]
  • Hydrological Services in Japan and LESSONS for DEVELOPING COUNTRIES
    MODERNIZATION OF Hydrological Services In Japan AND LESSONS FOR DEVELOPING COUNTRIES Foundation of River & Basin Integrated Communications, Japan (FRICS) ABBREVIATIONS ADCP acoustic Doppler current profilers CCTV closed-circuit television DRM disaster risk management FRICS Foundation of River & Basin Integrated Communications, Japan GFDRR Global Facility for Disaster Reduction and Recovery ICT Information and Communications Technology JICA Japan International Cooperation Agency JMA Japan Meteorological Agency GISTDA Geo-Informatics and Space Technology Development Agency MLIT Ministry of Land, Infrastructure, Transport and Tourism MP multi parameter NHK Japan Broadcasting Corporation SAR synthetic aperture radar UNESCO United Nations Educational, Scientific and Cultural Organization Table of Contents 1. Summary......................................................................3 2. Overview of Hydrological Services in Japan ........................................7 2.1 Hydrological services and river management............................................7 2.2 Flow of hydrological information ......................................................7 3. Japan’s Hydrological Service Development Process and Related Knowledge, Experiences, and Lessons ......................................................11 3.1 Relationships between disaster management development and hydrometeorological service changes....................................................................11 3.2 Changes in water-related disaster management in Japan and reQuired
    [Show full text]
  • Message Board for Disaster (Web 171, Etc.) Disaster Messaging
    Information transmission path and collection of information The relationship among the type of evacuation information, your evacuation behavior, the type of flood forecasting of the Arakawa River, and the water level Area where the water will stay for a long time Type and mechanism of flood Urgency Types of evacuation Types of Indication of water levels In the inundation forecast Toda City There are two major types of flood: “river water flood” and Flood forecasting, etc. Evacuation behaviors of the Arakawa River Inland water flood information, etc. Arakawa River Iwabuchi Floodgate (upper) (maximum scale) predicted by “inland water flood.” to be taken by citizens River water ・ Rainwater accumulates issued by the city flood forecasting Gauging Station the MLIT based on the Kawaguchi City River water floodflood at the spot. MLIT/Japan Meteorological Agency (JMA)/ High When the risk of human damage ●If you have not evacuated yet, simulation, it is assumed that N This hazard map is Information Kita City, Tokyo Evacuation order becomes extremely high due to evacuate immediately. for ・ There is a rainfall that Tokyo Metropolitan Government Weather, Precipitation, Water level, Arakawa River Flood risk many inundated areas in Kita Burst Video images of rivers, Flood forecasting, Evacuation information, etc. (emergency) a worsened situation such as the ●When conditions outside are dangerous, immediately exceeds sewerage Flood forecasting, etc. Warnings for flood protection, evacuate to a higher place in the building. flood risk water level City will be flooded for not less Sediment disaster alert occurrence of disaster River water flood drainage capacity. information A.P.+7.70m than two weeks.
    [Show full text]
  • Flood Loss Model Model
    GIROJ FloodGIROJ Loss Flood Loss Model Model General Insurance Rating Organization of Japan 2 Overview of Our Flood Loss Model GIROJ flood loss model includes three sub-models. Floods Modelling Estimate the loss using a flood simulation for calculating Riverine flooding*1 flooded areas and flood levels Less frequent (River Flood Engineering Model) and large- scale disasters Estimate the loss using a storm surge flood simulation for Storm surge*2 calculating flooded areas and flood levels (Storm Surge Flood Engineering Model) Estimate the loss using a statistical method for estimating the Ordinarily Other precipitation probability distribution of the number of affected buildings and occurring disasters related events loss ratio (Statistical Flood Model) *1 Floods that occur when water overflows a river bank or a river bank is breached. *2 Floods that occur when water overflows a bank or a bank is breached due to an approaching typhoon or large low-pressure system and a resulting rise in sea level in coastal region. 3 Overview of River Flood Engineering Model 1. Estimate Flooded Areas and Flood Levels Set rainfall data Flood simulation Calculate flooded areas and flood levels 2. Estimate Losses Calculate the loss ratio for each district per town Estimate losses 4 River Flood Engineering Model: Estimate targets Estimate targets are 109 Class A rivers. 【Hokkaido region】 Teshio River, Shokotsu River, Yubetsu River, Tokoro River, 【Hokuriku region】 Abashiri River, Rumoi River, Arakawa River, Agano River, Ishikari River, Shiribetsu River, Shinano
    [Show full text]
  • (News Release) the Results of Radioactive Material Monitoring of the Surface Water Bodies Within Tokyo, Saitama, and Chiba Prefectures (May-June Samples)
    (News Release) The Results of Radioactive Material Monitoring of the Surface Water Bodies within Tokyo, Saitama, and Chiba Prefectures (May-June Samples) Tuesday, July 31, 2012 Water Environment Division, Environment Management Bureau, Ministry of the Environment Direct line: 03-5521-8316 Switchboard: 03-3581-3351 Director: Nobuo Yoshida (ext. 6610) Deputy Director: Tetsuo Furuta (ext. 6614) Coordinator: Katsuhiko Sato (ext. 6628) In accordance with the Comprehensive Radiation Monitoring Plan determined by the Monitoring Coordination Meeting, the Ministry of the Environment (MOE) is continuing to monitor radioactive materials in water environments (surface water bodies (rivers, lakes and headwaters, and coasts), etc.). Samples taken from the surface water bodies of Tokyo, Saitama, and Chiba Prefectures during the period of May 22-June 29, 2012 have been measured as part of MOE’s efforts to monitor radioactive materials; the results have recently been compiled and are released here. The monitoring results of radioactive materials in surface water bodies carried out to date can be found at the following web page: http://www.env.go.jp/jishin/rmp.html#monitoring 1. Survey Overview (1) Survey Locations 66 environmental reference points, etc. in the surface water bodies within Tokyo, Saitama, and Chiba Prefectures (Rivers: 51 locations, Lakes: 8 locations, Sea areas: 7 locations) (2) Survey Method ・ Measurement of concentrations of radioactive materials (radioactive cesium (Cs-134 and Cs-137) etc.) in water and sediment ・ Measurement of concentrations
    [Show full text]
  • Iflbi Restoration of Once-Lost Urban River
    1p Restoration o f once‐lost ur ban ri ver ‐ Focused on the case in Edogawa city, Tokyo Japan Japan Riverfront Research Center Director NOBUYUKI TSUCHIYA JRRN Chairperson 1 2p Location of Edogawa City ● Tokyo Metropolis 2 Edogawa City viewed from the air 3p Edogawa River Shin‐Nakagawa River Kyu‐Nakagawa River Nakagawa River Shinkawa River Chiba Pref. Araaakawa River Kyu‐Edogawa River Kasai Rinkai Park Artificial shore 3 Tokyo Bay 4p Historical details From “Flood Control” to “Water Utilization” and "Hyypdrophilicity " 洪水→利水→親水 5p 洪水 TkTokyo Floo d Disaster in 1910 5 6p 台風、Typhoon Kathleen in 1947 6 7p 台風、Typhoon Kathleen in 1947 7 8p 台風、Typhoon Kitty in 1949 8 9p 台風、 Typhoon Kanogawa in 1958 9 10p 10 11p Agricultural waterway in 1945 11 12p Rivers and Waterways in Edogawa City 1900´s Water and Greenery 13p NtNetwork SlScale Parks and Playgrounds, etc. 436 Parks (Area: 3,437,049 sq. m) Shinsui Parks 5 Routes (Total length: 9,610 m) Shinsui Green PPhaths 18 Routes Shinsui Park (Total llhength: 17,680 m) Shinsui Green Path 13 Furukawa Shinsui river Park 14p ‐ the first Shinsui river Park in Japan ‐ 古川親水河川公園 14 Komatsugawa Sakaigawa Shinsui river Park 15p 古川親水河川公園 15 Ichinoe Sakaigawa Shinsui river Park 16p 16 Shinodabori Shinsui Green Path 17p 17 Cleanup Activities by “Group of Lovers” 18p 18 19p Shinsui River Improvement 親水河川 20p 20 21p 1960's 21 22p 23p Furukawa before Construction 24p 24 25p 25 26p 26 27p Furukawa Shinsui Park after Construction 27 28p 28 Komatsugawa Sakaigawa Shinsui Park 29p before Construction 29 30p 30 Komatsugawa
    [Show full text]
  • Selected Papers
    Selected Papers No.2 Institute for Ocean Policy,SOF D irector's Message As mankind moves into the 21st century, integrated policies of ocean governance are necessary for the sustainable development and use of our oceans and their resources and the protection of the marine environment. Towards this end, the Ship & Ocean Foundation has launched an "Institute for Ocean Policy", with the mission statement "Living in Harmony with the Oceans". The Institute for Ocean Policy aims to conduct cross-sectoral research in ocean related issues in order to initiate debate on marine topics and formulate both domestic and international policy proposals. We publish a Japanese-language newsletter called the "Ship & Ocean Newsletter" twice a month. The "Ship & Ocean Newsletter" seeks to provide people of diverse viewpoints and backgrounds with a forum for discussion and to contribute to the for- mulation of maritime policies to achieve coexistence between mankind and the ocean. Our Institute believes that the Newsletter can expand effective communication on these issues through its function as editor, publishing timely research and welcoming responses from readers, which might then be published in turn. "Ship & Ocean Newsletter Selected Papers No.2" is an English-language version of papers from the Japanese Newsletter edition, published from No.17(2001.4.20) to No.28(2001.10.5). It is our sincere hope that these Selected Papers will provide useful insights on policy debate in Japan and help to foster global policy dialogue on various issues. Hiroshi TERASHIMA
    [Show full text]
  • Damage Patterns of River Embankments Due to the 2011 Off
    Soils and Foundations 2012;52(5):890–909 The Japanese Geotechnical Society Soils and Foundations www.sciencedirect.com journal homepage: www.elsevier.com/locate/sandf Damage patterns of river embankments due to the 2011 off the Pacific Coast of Tohoku Earthquake and a numerical modeling of the deformation of river embankments with a clayey subsoil layer F. Okaa,n, P. Tsaia, S. Kimotoa, R. Katob aDepartment of Civil & Earth Resources Engineering, Kyoto University, Japan bNikken Sekkei Civil Engineering Ltd., Osaka, Japan Received 3 February 2012; received in revised form 25 July 2012; accepted 1 September 2012 Available online 11 December 2012 Abstract Due to the 2011 off the Pacific Coast of Tohoku Earthquake, which had a magnitude of 9.0, many soil-made infrastructures, such as river dikes, road embankments, railway foundations and coastal dikes, were damaged. The river dikes and their related structures were damaged at 2115 sites throughout the Tohoku and Kanto areas, including Iwate, Miyagi, Fukushima, Ibaraki and Saitama Prefectures, as well as the Tokyo Metropolitan District. In the first part of the present paper, the main patterns of the damaged river embankments are presented and reviewed based on the in situ research by the authors, MLIT (Ministry of Land, Infrastructure, Transport and Tourism) and JICE (Japan Institute of Construction Engineering). The main causes of the damage were (1) liquefaction of the foundation ground, (2) liquefaction of the soil in the river embankments due to the water-saturated region above the ground level, and (3) the long duration of the earthquake, the enormity of fault zone and the magnitude of the quake.
    [Show full text]
  • A Synopsis of the Parasites from Cyprinid Fishes of the Genus Tribolodon in Japan (1908-2013)
    生物圏科学 Biosphere Sci. 52:87-115 (2013) A synopsis of the parasites from cyprinid fishes of the genus Tribolodon in Japan (1908-2013) Kazuya Nagasawa and Hirotaka Katahira Graduate School of Biosphere Science, Hiroshima University Published by The Graduate School of Biosphere Science Hiroshima University Higashi-Hiroshima 739-8528, Japan December 2013 生物圏科学 Biosphere Sci. 52:87-115 (2013) REVIEW A synopsis of the parasites from cyprinid fishes of the genus Tribolodon in Japan (1908-2013) Kazuya Nagasawa1)* and Hirotaka Katahira1,2) 1) Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan 2) Present address: Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido 060-0810, Japan Abstract Four species of the cyprinid genus Tribolodon occur in Japan: big-scaled redfin T. hakonensis, Sakhalin redfin T. sachalinensis, Pacific redfin T. brandtii, and long-jawed redfin T. nakamuraii. Of these species, T. hakonensis is widely distributed in Japan and is important in commercial and recreational fisheries. Two species, T. hakonensis and T. brandtii, exhibit anadromy. In this paper, information on the protistan and metazoan parasites of the four species of Tribolodon in Japan is compiled based on the literature published for 106 years between 1908 and 2013, and the parasites, including 44 named species and those not identified to species level, are listed by higher taxon as follows: Ciliophora (2 named species), Myxozoa (1), Trematoda (18), Monogenea (0), Cestoda (3), Nematoda (9), Acanthocephala (2), Hirudinida (1), Mollusca (1), Branchiura (0), Copepoda (6 ), and Isopoda (1). For each taxon of parasite, the following information is given: its currently recognized scientific name, previous identification used for the parasite occurring in or on Tribolodon spp.; habitat (freshwater, brackish, or marine); site(s) of infection within or on the host; known geographical distribution in Japan; and the published source of each locality record.
    [Show full text]
  • Chapter 8. Creating and Preserving a Beautiful and Healthy Environment
    Section 1 Promoting Global Warming Countermeasures Creating and Preserving a Beautiful II Chapter 8 Chapter 8 and Healthy Environment Section 1 Promoting Global Warming Countermeasures a Beautiful and Healthy Environment and Preserving Creating 1 Implementing Global Warming Countermeasures At the 21st session of the Conference of the Parties to the Framework Convention on Climate Change (COP21) held in 2015, the Paris Agreement was adopted as a new international framework for reducing greenhouse gas emissions be- ginning in 2020, with participation by all countries. The agreement went into effect in November 2016, and Japan is a signatory nation. Based on the Paris Agreement, Japan adopted the Plan for Global Warming Countermeasures by a Cabinet decision in May 2016, and has committed to efforts toward the achievement of the mid-term objective to achieve a 26.0% decrease in the FY2013 level of greenhouse gases by FY2030, and as a long-term objective aims to reduce emissions 80% by 2050. The MLIT has committed to a wide array of policy development initiatives for achieving the mid-term objective based on this plan, including making housing and buildings more energy efficient, measures for individual vehicles, and the promotion of low-carbon urban development. In addition, we partially amended our Environmental Action Plan in March 2017, and set out long-term roles for the MLIT in mitigation policies and other environmental policies. In March 2018, the Bill to Partially Amend the Act Concerning the Rational Use of Energy, which includes provisions for certifying energy-saving efforts through the collaboration of multiple transportation operators and allowing corpo- rations to allocate energy-saving credits amongst one another and report regularly, was submitted to the National Diet.
    [Show full text]
  • Geomorphological Environment for Inundation Attacks: a Comparative Research
    立命館地理学 第 30 号(2018)61-75 Geomorphological Environment for Inundation Attacks: A Comparative Research NUKATA Masahiro* The author compares different inundation I. Introduction attacks selected through geomorphological con- There were various tactics to assault castles siderations of them. The research started from and forts in Medieval Japan, including frontal, making landform classification maps of the fire, inundation, hole, starvation and surprise plains concerned based on the observation attacks. Usually multiple modes of attacks were using 1/10,000 areal photos. Archives, old pic- combined. For inundation attacks, the army torial maps and old geomorphological maps started with frontal attack, closing in on an were also surveyed. Geomorphology of inunda- enemy castle from all sides and then built an tion related remains were studied by observing embankment around the castle and introduced ruins and geological formations at the excava- water from the river to flood or isolate the tion sites as much as possible and by reviewing castle. the past excavation reports. There are four well-known inundation attacks in Japan: Bicchu Takamatsu Castle where II. Inundation attack of Bicchu Hideyoshi Toyotomi was involved, Owari Takamatsu Castle Takegahana Castle, Musashi Oshi Castle and Kii Ohda Castle (Figure 1). The author has a 1. Chugoku-no-eki (war) and inundation different idea from common view that Kii Ohda attack of Takamatsu Castle Castle was attacked with 5 km-long embank- The attack against Takamatsu Castle 2) took ment built around the castle located on the place in May and June 1582 during the last Holocene river terrace and therefore reviewed period of Chugoku-no-eki.
    [Show full text]