Topographic Mapping Using Satellite Images • Total: 4,355 Sheets

Total Page:16

File Type:pdf, Size:1020Kb

Topographic Mapping Using Satellite Images • Total: 4,355 Sheets 1:25,000 scale topographic maps • Largest scale base maps that cover whole land of Japan Topographic mapping using satellite images • Total: 4,355 sheets • 1 sheet covers: longitude 7.5 min. latitude 5 min. (about 100km2) Geospatial Information Authority of Japan 3 Fundamental maps in Japan Photogrammetry Paper-based maps - Scale: 1:10,000 ~ 1:5,000,000 - Mainly: 1:25,000 scale topographic map Digital maps “Kunikaze III” - Digital Japan Basic Maps (Map Information) - Map image - Spatial data framework (2500, 25000) - Etc. Providing - Publishing (paper, CD-ROM, etc.) - Browse via the Internet - Download through the Internet (Map Image) 2 Aerial photographs (with 60% overwrapping) 4 1 2 Flight course Advanced Land Observing Satellite(ALOS) 㻢㻜㻑㻌㼛㼢㼑㼞㼣㼞㼍㼜㻌㼎㼑㼠㼣㼑㼑㼚㻌㼚㼑㼕㼓㼔㼎㼛㼞㼕㼚㼓㻌㼜㼔㼛㼠㼛 PRISM 2.5m-spatial resolution 㻟㻜㻑㻌㼛㼢㼑㼞㼣㼞㼍㼜㻌㼎㼑㼠㼣㼑㼑㼚㻌㼚㼑㼕㼓㼔㼎㼛㼞㼕㼚㼓㻌㼏㼛㼡㼞㼟㼑 three optical system 㻢㻜㻑 Panchromatic sensor Launch : January 24th in 2006 AVNIR-2 Missions 10m-spatial resolution •cartography Multi-band(BGRNIR䠅sensor 㻟㻜㻑 •regional observation •disaster monitoring •resource surveying PALSAR 10m-spatial resolution L-band SAR From JAXA HP 5 7 Photogrammetry -Principle- Comparison of aerial photo & satellite image Using Aerial Photograph ALOS PRISM plotter Resolution 40cm 2.5m Interval of 1-5 year (GSI) 46 days Images Shooting Shooting 5km㽢5km 35km X 35km Area 䠄Scale 1:20,000䠅 35km X 70km Others Hard to take at Hard to interpret isolated islands, small structures & volcanoes etc. point features 3D model (lighthouses, towers, road dividers etc.) 6 8 3 4 Example of update: road ALOS/PRISM 䠄35km㽢35km䠅 Areal Photograph (1:30,000) Overwrap 1:25,000 Map Sheet ©JAXA ©JAXA 9 11 Comparison of cost Example of update: large buildings Cost (US Dollar) Size (km) Cost / km2 Resolution (m) Aerial photo 7 29.00 0.6 QuickBird 2,304 8 36.00 0.6 IKONOS 1,375 5 55.00 0.8 SPOT 10,290 60 2.86 2.5 ALOS 500500 3535 0.410.41 2.5 ͤAerial photo’s scale is 1/30,000, scanning pitch is 21μm ©JAXA 10 12 5 6 Example of update: large buildings Coastline changes GCP Collecting ©JA XA ©JAXA 13 15 PRISM 60-6100 Sep-2007 Mapping / Compilation Isolate island located 1,200 km south of Tokyo Difficult to reach the photogrammetric aircraft Tokyo Many landform changes caused by Tsukuba volcanic activity ©JAXA Topographic map has not updated since 1982 Can take full advantage of Io To PRISM image 14 Published 1982 Revised 2007 16 7 8 Accuracy improvement of Antarctic map Showa Base ©JAXA ©JAXA 17 References • Bulletin of the GSI Vol.56 (PDF file can be downloaded at: http://www.gsi.go.jp/ENGLISH/Bulletin56.html) – Revising 1:25,000-Scale Topographic Maps Using ALOS/PRISM Imagery Yuichi UCHIYAMA, Misuzu HONDA, Yoshiyuki MIZUTA, Koji OTSUKA, Takayuki ISHIZEKI, Takaki OKATANI and Eiichi TAMURA – Verification of Topographic Road Centerline Data Using ALOS/PRISM Images: Implementation Hidenori FUJIMURA, Hidekazu MINAMI, Takenori SATO and Takahiro SHIMONO 18 9 Outline of Musashi Canal Reconstruction Project Musashi Canal Project outline Niigata Fukushima The Musashi Canal is an open channel of about 14.5 km connecting the Tone River and the Prefecture Prefecture Watershed Ara River. Shinano boundary River { Location: Gyoda City and Konosu City, Saitama Prefecture (Musashi Nagano The water to be used as city and industrial water in Tokyo and Saitama Prefecture is Canal connecting the Tone River and the Ara River) Prefecture Lake Chuzenji withdrawn through the Tone Weir, and conveyed to the Arakawa River. The water to be used Naka River to improve the quality of the water of the Sumida River is also conveyed. { Objectives: • Restoration of the function of steady flow Agatsuma Gunma Utsunomiya River Prefecture Tochigi Supply of water for urban areas through the Musashi Canal Prefecture • Securement and reinforcement of the function of inner drainage Maebashi W a tar Mito Karasu as e R River iv • Improvement of the water quality of the Ara River System Tone River er r Population of e v Tone Weir Omoi River i Ibaraki Supplied areas R a Kinu River d the supplied areas a Prefecture a nn n a Musashi Canal a m 20 cities and 8 towns { Numerical data (on reconstruction) K Ara River i Saitama Pref. Tsuchiura h Saitama Pref. Kasumigaura s a About 13 million people K Main canal: A portion of 14.5 m in length reconstructed Chichibu 3 18 wards and 18 cities Saitama ver Tap water: 3.498 m /s Tokyo e Ri 3 Prefecture Ton 3 Sections: 43.2 m /s from the diversion works Saitama Industrial water: 1.100 m /s * The number of supplied areas is as of the end of March 2008. (starting point) to Motoarakawa Akigase Intake Weir * The population of the supplied areas indicates the total population of Tokyo the administrative areas where water is supplied, as of the end of Tokyo Edo River 3 Ta a Tone River ma Naka River m March 2008. 50.0 m /s from Motoarakawa to Arakawa Kofu Ri a v Chiba h Yamanashi er ri u Tokyo Bay k Prefecture ju (terminating point) Tone Weir u K Weir Tone Ara River Pacific Ocean Sagami River r Siphons: Six Yokohama SumidaRiver e Tokyo v i Kanagawa R Mt. Fuji u Flood gates: Three (including one new flood gate) s Prefecture t 3 i b Tap water: 24.855 m /s Fuji River Fuji Tsurumi River Outlets: Six (including two new outlets) O Yoro River 3 Chiba Industrial water: 0.980 m /s Drainage pumping station: Up to 50 m3/s Prefecture Diversion works Other facilities: Drainage sluice pipes (1 natural drainage pipe and 1 forced drainage pipe), administrative facilities, etc. The percentage of water conveyed by the Musashi Canal to the { Project cost: About ¥70 billion total amount ofof waterwater suppliedsupplied inin thethe waterwater supplysupply areaarea Saitama Pref. Water provided by Tokyo Water provided by { Construction period: From 1992 to 2015 the Musashi Canal: the Musashi Canal: GyodaCanal GyodaCanal Saitama Canal About 25% About 47% { Current status: Project not required to be verified 20 cities and 18 wards and 8 towns: 18 cities: About 14 m3/s About 53 m3/s Minumadai Minumadai Musashi Canal Musashi Musashi Canal Musashi 1 2 Prepared by the Musashi Canal Reconstruction Office, the Incorporated Administrative Agency Japan Water Agency 1 based on the Water Supply Statistics 2007 (Health Service Bureau, Ministry of Health, Labour and Welfare) 2 Current Musashi Canal Current Musashi Canal (dilapidated facilities, etc) Dilapidation has caused damage to water channels, suspended water conveyance, Typical cross section of the current Musashi Canal Typical cross section of the current Musashi Canal and increased chances for the occurrence of accidents caused by third parties. ϹЂ 4,000 8,000 Administrative road Administrative road 16,700 400 Design water level Embankment Embankment 1:1.5 1:1.5 2,500 Current ground line Weep hole 8,000 Ballasting at the Lateral drain bottom slab 150 6,000 Damaged lining panels Leakage through the joints of lining panels Left side underdrain pipe Right side underdrain pipe (point of 8,885 m, below the left band of the Namiki Bridge) (near the point of 2,500 m, left bank side) Transverse drain Center underdrain at the bottom slab Relation with nearby * Design section at the time of Relation with nearby constructing the Musashi Canal facilities Joetsu Shinkansen Line Kawazura JR Takasaki Line Water Gate Tone Weir Adachi North Drain Sama Water Gate Nukata Drainage Minumadai National Hoshi Chichibu Oshi Pumping Station Tone River Canal Highway Motoara River River Railway River Ara River Route 125 3 4 14.5 km Raised bottom slab due to uneven settlement Deformation caused by sinkage 3 (point of 13,250 m, under the Sanmai Bridge) (near the point of 13,200 m, left bank side) 4 Current Musashi Canal (lowered passing water capacity due to sinkage) Current Musashi Canal: Insufficient quake resistance A survey conducted in 1999 confirmed that the passing water capacity has lowered from 50 m3/s to The existing Musashi Canal was completed in 1967 but recent seismic design in about 37 m3/s since the time of the construction. preparation for a major earthquake has not been incorporated. Under the Musashi Canal Reconstruction Project, the canal will be reconstructed so that it will withstand the possible largest earthquake ground motions (Level 2 earthquake ground motions) in the future, and that the flowing and inner drainage capacities of the canal will be secured Crown height in 1967 even when a large earthquake occurs. (at the time of the completion of the construction) Araki Siphon Crown height in 2003 Tone River Tone Kamihoshikawa Siphon [Factors for lowered passing water capacity] [Factors[Factors forfor lowered paspassinsingg water capacity]capacity] Musashi Hakuchoda Siphon •• Reduced Reduced flow fflowlowareas, areas, and and uneven uneven longitudinal lonlongitudinalgitudinal grades ggradesrades due due tottoo uneven uunevenneven settlement sesettlementttlement Asahi Shimbun, March 31, 2012 Canal Nagano Siphon •• Incapability IncapabilityIncapability in in passing passinpassingg waterwater duedue to to localized localized deformation dedeformationformation •• Dilapidated Dilapidated concrete concrete lining lininglining surface surfacesurface Yomiuri Shimbun, March 31, 2012 Musashi Canal Sama Water Gate Motoarakawa Siphon Kawazura Water Gate Mida Siphon Nagano district Sta.: 44 + 00 Nukata Sluiceway Sinkage: 28.7 cm Ara River Nukata district Sta.: 132 + 50 Seismic intensity Sinkage: 76.4 cm 3 or less 4 5 lower 5 upper 6 lower 6 upper 7 Road condition near Tsutsumine, Gyoda City (STA90) Case 1: Seismic intensity of the Tokyo-wan Hokubu Earthquake with shallow plate borders incorporated 5 6 The predicted distribution of seismic intensity of an inland earthquake that may occur in the future was released by a research team with the Ministry of Education, Culture, Sports, Science and Technology, 5 and the Earthquake Research Institute, University of Tokyo on March 30, 2012.
Recommended publications
  • Three Large Historical Landslide Dams and Outburst Disasters in the North Fossa Magna Area, Central Japan
    International Journal of Erosion Control Engineering Vol.5, No.2, 2012 Disaster Report Three Large Historical Landslide Dams and Outburst Disasters in the North Fossa Magna Area, Central Japan Kimio INOUE1, Toshio MORI2 and Takahisa MIZUYAMA3 1Sabo Frontier Foundation (Sabo-Kaikan, Hirakawa-cho 2-7-4, Chiyoda-ku, Tokyo 102-0093, Japan) Email: [email protected]) 2Sabo Frontier Foundation (Sabo-Kaikan, Hirakawa-cho 2-7-4, Chiyoda-ku, Tokyo 102-0093, Japan) 3Division of Forest Science, Graduate School of Agriculture, Kyoto University (Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan) Large landslides or debris flows caused by heavy rainfall or earthquakes often block rivers in mountainous areas and form landslide dams. The area upstream of the landslide dam is submerged under water and the downstream area is flooded when the landslide dam breaks. In recorded history, as many as 22 landslide dams have formed upstream of the Shinano River and the Hime River, in the northern part of Nagano Prefecture in central Japan, and all except three have subsequently broken. This abundance of landslide dams is probably caused by the geotectonic background of this area, which is located at the western end of the “Fossa Magna” major tectonic line. In this study, we examined three large historical landslide dams and outburst disasters in the north Fossa Magna area. Keywords: Landslide Dam, Debris Avalanche, Tobata Landslide, Zenkoji Earthquake, Mt. Iwakura Landslide 1. INTRODUCTION Table 1 List of landslide dams documented in northern Nagano Prefecture (Mizuyama et al, 2011) No. Landslide Dam Date Formed Cause Failure Timing River We have studied the history, formation, and 1 Aoki Lake 30,000 years ago Unknown Continuing today Takase R.
    [Show full text]
  • Vol2 Case History English(1-206)
    Renewal & Upgrading of Hydropower Plants IEA Hydro Technical Report _______________________________________ Volume 2: Case Histories Report March 2016 IEA Hydropower Agreement: Annex XI AUSTRALIA USA Table of contents㸦Volume 2㸧 ࠙Japanࠚ Jp. 1 : Houri #2 (Miyazaki Prefecture) P 1 㹼 P 5ۑ Jp. 2 : Kikka (Kumamoto Prefecture) P 6 㹼 P 10ۑ Jp. 3 : Hidaka River System (Hokkaido Electric Power Company) P 11 㹼 P 19ۑ Jp. 4 : Kurobe River System (Kansai Electric Power Company) P 20 㹼 P 28ۑ Jp. 5 : Kiso River System (Kansai Electric Power Company) P 29 㹼 P 37ۑ Jp. 6 : Ontake (Kansai Electric Power Company) P 38 㹼 P 46ۑ Jp. 7 : Shin-Kuronagi (Kansai Electric Power Company) P 47 㹼 P 52ۑ Jp. 8 : Okutataragi (Kansai Electric Power Company) P 53 㹼 P 63ۑ Jp. 9 : Okuyoshino / Asahi Dam (Kansai Electric Power Company) P 64 㹼 P 72ۑ Jp.10 : Shin-Takatsuo (Kansai Electric Power Company) P 73 㹼 P 78ۑ Jp.11 : Yamasubaru , Saigo (Kyushu Electric Power Company) P 79 㹼 P 86ۑ Jp.12 : Nishiyoshino #1,#2(Electric Power Development Company) P 87 㹼 P 99ۑ Jp.13 : Shin-Nogawa (Yamagata Prefecture) P100 㹼 P108ۑ Jp.14 : Shiroyama (Kanagawa Prefecture) P109 㹼 P114ۑ Jp.15 : Toyomi (Tohoku Electric Power Company) P115 㹼 P123ۑ Jp.16 : Tsuchimurokawa (Tokyo Electric Power Company) P124㹼 P129ۑ Jp.17 : Nishikinugawa (Tokyo Electric Power Company) P130 㹼 P138ۑ Jp.18 : Minakata (Chubu Electric Power Company) P139 㹼 P145ۑ Jp.19 : Himekawa #2 (Chubu Electric Power Company) P146 㹼 P154ۑ Jp.20 : Oguchi (Hokuriku Electric Power Company) P155 㹼 P164ۑ Jp.21 : Doi (Chugoku Electric Power Company)
    [Show full text]
  • Estimation of Flood Risk Management in 17Th Century on Okayama Alluvial Plain, Japan, by Numerical Flow Simulation
    T. Ishikawa, et al., Int. J. of Safety and Security Eng., Vol. 6, No. 3 (2016) 455–465 ESTIMATION OF FLOOD RISK MANAGEMENT IN 17TH CENTURY ON OKAYAMA ALLUVIAL PLAIN, JAPAN, BY NUMERICAL FLOW SIMULATION TADAHARU ISHIKAWA1 & RYOSUKE AKOH2 1Dept. of Civil and Environmental Engineering, Hosei University, Japan. 2Graduate School of Environmental and Life Science, Okayama University, Japan. ABSTRACT In this study, the hydraulic function of the Hyakken-gawa Floodway, which was constructed in the 17th century to reduce the flood risk to Okayama Castle City, was evaluated by numerical flow simula- tion. The calculation conditions were determined by referring to the records about the floodway in old documents as well as from the numerical data based on the present conditions. The alluvial plain topog- raphy used for the inundation calculation was obtained from recent GIS data. The computation results showed that the flood control function of the floodway was composed of two stages: (1) Just before inundation occurred in the castle city, river water flowed into the floodway by collapsing the earthen dike located at the floodway head; this limited the increase in the river flow rate in the city area. (2) Just before the floodway capacity was exhausted, the backwater generated by the transverse masonry dikes in the floodway induced inundation to the paddy field region, which was on the side opposite to the castle city; this reduced the flood damage in the city area. The results also suggested that the civil engi- neers in the 17th century, who had neither the knowledge of modern hydraulics (including the concept of river flow rates) nor the advantage of using machinery for construction, presumably developed flood risk management strategies by combining the measures possible in those days.
    [Show full text]
  • Chapter 1. Relationships Between Japanese Economy and Land
    Part I Developments in Land, Infrastructure, Transport and Tourism Administration that Underpin Japan’s Economic Growth ~ Strategic infrastructure management that brings about productivity revolution ~ Section 1 Japanese Economy and Its Surrounding Conditions I Relationships between Japanese Economy and Land, Chapter 1 Chapter 1 Infrastructure, Transport and Tourism Administration Relationships between Japanese Economy and Land, Infrastructure, Transport and Tourism Administration and Tourism Transport Relationships between Japanese Economy and Land, Infrastructure, Chapter 1, Relationships between Japanese Economy and Land, Infrastructure, Transport and Tourism Administration, on the assumption of discussions described in chapter 2 and following sections, looks at the significance of the effects infrastructure development has on economic growth with awareness of severe circumstances surrounding the Japanese economy from the perspective of history and statistical data. Section 1, Japanese Economy and Its Surrounding Conditions, provides an overview of an increasingly declining population, especially that of a productive-age population, to become a super aging society with an estimated aging rate of close to 40% in 2050, and a severe fiscal position due to rapidly growing, long-term outstanding debts and other circumstances. Section 2, Economic Trends and Infrastructure Development, looks at how infrastructure has supported peoples’ lives and the economy of the time by exploring economic growth and the history of infrastructure development (Edo period and post-war economic growth period). In international comparisons of the level of public investment, we describe the need to consider Japan’s poor land and severe natural environment, provide an overview of the stock effect of the infrastructure, and examine its impact on the infrastructure, productivity, and economic growth.
    [Show full text]
  • Life History and Stable Regeneration of the Endangered Saltmarsh
    Plankton Benthos Res 9(2): 114–121, 2014 Plankton & Benthos Research © The Japanese Association of Benthology Life history and stable regeneration of the endangered saltmarsh sesarmid crab Clistocoeloma sinense in small populations of the isolated metapopulation of Tokyo Bay, Japan 1, 2 TAKESHI YUHARA * & TOSHIO FUROTA 1 Department of Environmental Science, Graduate School of Science, Toho University, Funabashi, Chiba 274–8510, Japan 2 Faculty of Sciences, Tokyo Bay Ecosystem Research Center, Toho University, Funabashi, Chiba 274–8510, Japan Received 2 October 2013; Accepted 17 March 2014 Abstract: The saltmarsh sesarmid crab, Clistocoeloma sinense, inhabits the muddy substrata in upper intertidal saltmarshes, and is designated as endangered in Japan. Seasonal changes were investigated in population characters, including abundance, time to sexual maturity, reproductive season, and recruitment of juveniles in a regional meta- population in Tokyo Bay. Crab samples were collected monthly at five small isolated habitats along the coast of the bay from July, 2011, to March, 2013. Ovigerous females were found during summer in a single peak, and a peak of ju- venile recruitment occurred in autumn. Size distribution analysis indicates that growth is slower than for other salt- marsh crab species and life span is at least 4 years. Females reach maturity when they enter the second breeding sea- son following recruitment. The slow growth and reclusive behavior of C. sinense may be closely related to the charac- teristics of its habitat which is under buried stones or wood in the uppermost part of intertidal muddy substrata. Re- cruitment of juveniles and the presence of breeding females were observed at all five study sites located along the Tokyo Bay coastline, suggesting that each population stably regenerates by larval settlement following larval disper- sal and growth in the water column in Tokyo Bay.
    [Show full text]
  • Geography & Climate
    Web Japan http://web-japan.org/ GEOGRAPHY AND CLIMATE A country of diverse topography and climate characterized by peninsulas and inlets and Geography offshore islands (like the Goto archipelago and the islands of Tsushima and Iki, which are part of that prefecture). There are also A Pacific Island Country accidented areas of the coast with many Japan is an island country forming an arc in inlets and steep cliffs caused by the the Pacific Ocean to the east of the Asian submersion of part of the former coastline due continent. The land comprises four large to changes in the Earth’s crust. islands named (in decreasing order of size) A warm ocean current known as the Honshu, Hokkaido, Kyushu, and Shikoku, Kuroshio (or Japan Current) flows together with many smaller islands. The northeastward along the southern part of the Pacific Ocean lies to the east while the Sea of Japanese archipelago, and a branch of it, Japan and the East China Sea separate known as the Tsushima Current, flows into Japan from the Asian continent. the Sea of Japan along the west side of the In terms of latitude, Japan coincides country. From the north, a cold current known approximately with the Mediterranean Sea as the Oyashio (or Chishima Current) flows and with the city of Los Angeles in North south along Japan’s east coast, and a branch America. Paris and London have latitudes of it, called the Liman Current, enters the Sea somewhat to the north of the northern tip of of Japan from the north. The mixing of these Hokkaido.
    [Show full text]
  • Report on Rebuilding Flood-Conscious Societies in Small
    Report on Rebuilding Flood-Conscious Societies in Small and Medium River Basins January 2017 Council for Social Infrastructure Development 1 Contents 1. Introduction - Accelerate Rebuilding Flood-Conscious Societies ............................... 3 2. Typhoons in the Hokkaido and Tohoku regions in August 2016 .................................. 5 2.1 Outline of Torrential Rains ........................................................................................ 5 2.2 Outline of Disaster Damage ....................................................................................... 6 2.3 Features of the Disasters ............................................................................................ 7 3. Small and Medium River Basins under Changing Climate and Declining Populations ................................................................................................................................................ 9 4. Key Activities Based on the Report of December 2015 ................................................ 11 5. Key Challenges to be addressed..................................................................................... 13 6. Measures Needed in Small and Medium River Basins ................................................ 15 6.1 Basic Policy ................................................................................................................ 15 6.2 Measures to be taken ................................................................................................ 17 7. Conclusion ......................................................................................................................
    [Show full text]
  • Dilution Characteristics of Riverine Input Contaminants in the Seto
    Marine Pollution Bulletin 141 (2019) 91–103 Contents lists available at ScienceDirect Marine Pollution Bulletin journal homepage: www.elsevier.com/locate/marpolbul Dilution characteristics of riverine input contaminants in the Seto Inland Sea T ⁎ Junying Zhua,b,c, Xinyu Guoa,b, , Jie Shia,c, Huiwang Gaoa,c a Key laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, 238 Songling Road, Qingdao 266100, China b Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-Cho, Matsuyama 790-8577, Japan c Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China ARTICLE INFO ABSTRACT Keywords: Riverine input is an important source of contaminants in the marine environments. Based on a hydrodynamic Dilution model, the dilution characteristics of riverine contaminants in the Seto Inland Sea and their controlling factors Riverine pollution were studied. Results showed that contaminant concentration was high in summer and low in winter. The Seto Inland Sea Contaminant concentration decreased with the reduction of its half-life period, and the relationship between Hydrodynamic model them followed power functions. Sensitivity experiments suggested that the horizontal current and vertical Residual currents stratification associated with air-sea heat flux controlled the seasonal cycle of contaminant concentration in the water column; however, surface wind velocity was the dominant factor affecting the surface contaminant concentration. In addition, contaminant concentration in a sub-region was likely controlled by the variations in river discharges close to the sub-region. These results are helpful for predicting contaminant concentrations in the sea and are expected to contribute to assessing the potential ecological risks to aquatic organisms.
    [Show full text]
  • (News Release) the Results of Radioactive Material Monitoring of the Surface Water Bodies Within Tokyo, Saitama, and Chiba Prefectures (September-November Samples)
    (News Release) The Results of Radioactive Material Monitoring of the Surface Water Bodies within Tokyo, Saitama, and Chiba Prefectures (September-November Samples) Thursday, January 10, 2013 Water Environment Division, Environment Management Bureau, Ministry of the Environment Direct line: 03-5521-8316 Switchboard: 03-3581-3351 Director: Tadashi Kitamura (ext. 6610) Deputy Director: Tetsuo Furuta (ext. 6614) Coordinator: Katsuhiko Sato (ext. 6628) In accordance with the Comprehensive Radiation Monitoring Plan determined by the Monitoring Coordination Meeting, the Ministry of the Environment (MOE) is continuing to monitor radioactive materials in water environments (surface water bodies (rivers, lakes and headwaters, and coasts), etc.). Samples taken from the surface water bodies of Tokyo, Saitama, and Chiba Prefectures during the period of September 18-November 16, 2012 have been measured as part of MOE’s efforts to monitor radioactive materials; the results have recently been compiled and are released here. The monitoring results of radioactive materials in surface water bodies carried out to date can be found at the following web page: http://www.env.go.jp/jishin/rmp.html#monitoring 1. Survey Overview (1) Survey Locations 59 environmental reference points, etc. in the surface water bodies within Tokyo, Saitama, and Chiba Prefectures (Rivers: 51 locations, Coasts: 8 locations) Note: Starting with this survey, there is one new location (coast). (2) Survey Method ・ Measurement of concentrations of radioactive materials (radioactive cesium (Cs-134 and Cs-137), etc.) in water and sediment ・ Measurement of concentrations of radioactive materials and spatial dose-rate in soil in the surrounding environment of water and sediment sample collection points (river terraces, etc.) 2.
    [Show full text]
  • Hydrological Services in Japan and LESSONS for DEVELOPING COUNTRIES
    MODERNIZATION OF Hydrological Services In Japan AND LESSONS FOR DEVELOPING COUNTRIES Foundation of River & Basin Integrated Communications, Japan (FRICS) ABBREVIATIONS ADCP acoustic Doppler current profilers CCTV closed-circuit television DRM disaster risk management FRICS Foundation of River & Basin Integrated Communications, Japan GFDRR Global Facility for Disaster Reduction and Recovery ICT Information and Communications Technology JICA Japan International Cooperation Agency JMA Japan Meteorological Agency GISTDA Geo-Informatics and Space Technology Development Agency MLIT Ministry of Land, Infrastructure, Transport and Tourism MP multi parameter NHK Japan Broadcasting Corporation SAR synthetic aperture radar UNESCO United Nations Educational, Scientific and Cultural Organization Table of Contents 1. Summary......................................................................3 2. Overview of Hydrological Services in Japan ........................................7 2.1 Hydrological services and river management............................................7 2.2 Flow of hydrological information ......................................................7 3. Japan’s Hydrological Service Development Process and Related Knowledge, Experiences, and Lessons ......................................................11 3.1 Relationships between disaster management development and hydrometeorological service changes....................................................................11 3.2 Changes in water-related disaster management in Japan and reQuired
    [Show full text]
  • Japanese Electric Utilities' Efforts for Global Warming Issues
    9:00 on April 18, 2011 Concerning the Fukushima Daiichi NPP Accident Caused by the Great East Japan Earthquake Disaster The Federation of Electric Power Companies 電気事業連合会 The Federation of Electric Power Companies 1 We offer our sincerest condolences to all the people who were caught up in the Eastern Japan Earthquake Disaster on March 11. We are extremely aware of the serious concerns and difficulties caused by the accident at TEPCO’s Fukushima Daiichi Nuclear Power Plant and the consequent release of radioactive material, both for those living nearby and the wider public. We most deeply apologize for this situation. Working with the support of the Japanese Government and related agencies, TEPCO is making the utmost effort to prevent the situation from deteriorating, and the electricity industry as a whole is committing all its resources, including vehicles, equipment and manpower, toward resolving the situation. 電気事業連合会 The Federation of Electric Power Companies 2 Outline of the Tohoku-Pacific Ocean Earthquake Date of occurrence: 14:46 on Friday, March 11, 2011 Epicenter: Offshore Sanriku (38ºN, 142.9ºE), Depth of hypocenter: 24 km (tentative value), Magnitude: 9.0 (The largest in recorded history (130 years) in Japan. The U.S. Geological Survey Office placed the quake as the 4th largest in the world since 1900. ) Hypocenter and seismic intensity Seismic intensity Press release at 14:53 on March 11, 2011 7: Kurihara city, Miyagi prefecture Upper 6: Hitachi city, Ibaraki prefecture, Naraha- cho, Nuclear reprocessing Tomioka-cho, Okuma-machi, Futaba-cho, Fukushima facilities prefecture, Natori city, Miyagi prefecture, etc. Lower 6: Ofunato city, Ishinomaki city, Onagawa-cho, Miyagi prefecture, Tokai village, Ibaraki prefecture, etc.
    [Show full text]
  • Japan Geoscience Union Meeting 2009 Presentation List
    Japan Geoscience Union Meeting 2009 Presentation List A002: (Advances in Earth & Planetary Science) oral 201A 5/17, 9:45–10:20, *A002-001, Science of small bodies opened by Hayabusa Akira Fujiwara 5/17, 10:20–10:55, *A002-002, What has the lunar explorer ''Kaguya'' seen ? Junichi Haruyama 5/17, 10:55–11:30, *A002-003, Planetary Explorations of Japan: Past, current, and future Takehiko Satoh A003: (Geoscience Education and Outreach) oral 301A 5/17, 9:00–9:02, Introductory talk -outreach activity for primary school students 5/17, 9:02–9:14, A003-001, Learning of geological formation for pupils by Geological Museum: Part (3) Explanation of geological formation Shiro Tamanyu, Rie Morijiri, Yuki Sawada 5/17, 9:14-9:26, A003-002 YUREO: an analog experiment equipment for earthquake induced landslide Youhei Suzuki, Shintaro Hayashi, Shuichi Sasaki 5/17, 9:26-9:38, A003-003 Learning of 'geological formation' for elementary schoolchildren by the Geological Museum, AIST: Overview and Drawing worksheets Rie Morijiri, Yuki Sawada, Shiro Tamanyu 5/17, 9:38-9:50, A003-004 Collaborative educational activities with schools in the Geological Museum and Geological Survey of Japan Yuki Sawada, Rie Morijiri, Shiro Tamanyu, other 5/17, 9:50-10:02, A003-005 What did the Schoolchildren's Summer Course in Seismology and Volcanology left 400 participants something? Kazuyuki Nakagawa 5/17, 10:02-10:14, A003-006 The seacret of Kyoto : The 9th Schoolchildren's Summer Course inSeismology and Volcanology Akiko Sato, Akira Sangawa, Kazuyuki Nakagawa Working group for
    [Show full text]