Dilution Characteristics of Riverine Input Contaminants in the Seto

Total Page:16

File Type:pdf, Size:1020Kb

Dilution Characteristics of Riverine Input Contaminants in the Seto Marine Pollution Bulletin 141 (2019) 91–103 Contents lists available at ScienceDirect Marine Pollution Bulletin journal homepage: www.elsevier.com/locate/marpolbul Dilution characteristics of riverine input contaminants in the Seto Inland Sea T ⁎ Junying Zhua,b,c, Xinyu Guoa,b, , Jie Shia,c, Huiwang Gaoa,c a Key laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, 238 Songling Road, Qingdao 266100, China b Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-Cho, Matsuyama 790-8577, Japan c Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China ARTICLE INFO ABSTRACT Keywords: Riverine input is an important source of contaminants in the marine environments. Based on a hydrodynamic Dilution model, the dilution characteristics of riverine contaminants in the Seto Inland Sea and their controlling factors Riverine pollution were studied. Results showed that contaminant concentration was high in summer and low in winter. The Seto Inland Sea Contaminant concentration decreased with the reduction of its half-life period, and the relationship between Hydrodynamic model them followed power functions. Sensitivity experiments suggested that the horizontal current and vertical Residual currents stratification associated with air-sea heat flux controlled the seasonal cycle of contaminant concentration in the water column; however, surface wind velocity was the dominant factor affecting the surface contaminant concentration. In addition, contaminant concentration in a sub-region was likely controlled by the variations in river discharges close to the sub-region. These results are helpful for predicting contaminant concentrations in the sea and are expected to contribute to assessing the potential ecological risks to aquatic organisms. 1. Introduction populations, increasing the emergence of antibiotic resistant strains (Boon and Cattanach, 1999; Vivekanandhan et al., 2002; Baquero et al., With the rapid development of human life, more and more terres- 2008) and severely damaging fisheries production (Karunasagar et al., trial chemical substances, such as pharmaceuticals (Hirsch et al., 1999; 1994; Majtán et al., 2012). Previous studies have concluded that most Managaki et al., 2007), polychlorinated biphenyls (Burreau et al., antibiotics pose a relatively high ecological risk to relevant aquatic 2006), polycyclic aromatic hydrocarbons (Montuori and Triassi, 2012) organisms in marine environments (Lee et al., 2008; Zhao et al., 2010; and organochlorine pesticides (Hu et al., 2009), enter the natural water Zhang et al., 2012). Moreover, the degree of the effect of these con- environment and are detected in coastal seas around the world. The taminants on aquatic organisms mainly depends on their concentration adverse ecological risks of these contaminants to aquatic organisms are in the water. a major concern due to their potential toxic effects and biomagnifica- Riverine input is a major source of contaminants in marine en- tion in marine mammals (Halling-Sørensen et al., 1998; Burreau et al., vironment and a high concentration of contaminants in rivers has been 2006). observed in many countries (Xu et al., 2007; Minh et al., 2009; Zhao Among these contaminants, persistent organic pollutants (POPs) et al., 2010; da Silva et al., 2011; Zou et al., 2011; Zhang et al., 2012; have been of concern over the last decade (Iwata et al., 1993; Lohmann Grill et al., 2016). However, the contaminant concentrations in rivers et al., 2006) because they have a long half-life period and remain in and sea water are extremely different due to different hydrodynamic water environments for years. On the other hand, some contaminants, environments. When contaminants enter coastal seas from rivers, two such as antibiotics, have a short half-life period of a few days and are major questions are raised. The first is whether the ocean dilutes the relatively easy to remove from water environments. However, due to contaminant levels to a lower concentration (i.e., to a nontoxic degree) the potential threat to ecosystem balance and risk to health of humans without considerable consequences to aquatic organisms. The second is and animals, antibiotics in aquatic environments have generated what are the key factors controlling contaminant concentration in the growing interest among researchers in recent years (Marti et al., 2014; sea. Chow et al., 2015; Grill et al., 2016; Liu et al., 2017; Liu et al., 2018). To answer these questions, many fixed-point observations of the Antibiotics that enter water environments exert constant selection contaminant concentrations and risk assessments based on contaminant pressure on both bacterial fish pathogens and marine microbial concentrations have been conducted in some coastal seas (Gómez- ⁎ Corresponding author at: Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-Cho, Matsuyama 790-8577, Japan. E-mail address: [email protected] (X. Guo). https://doi.org/10.1016/j.marpolbul.2019.02.029 Received 14 November 2018; Received in revised form 13 February 2019; Accepted 13 February 2019 0025-326X/ © 2019 Elsevier Ltd. All rights reserved. J. Zhu, et al. Marine Pollution Bulletin 141 (2019) 91–103 Fig. 1. (a) Location of the Seto Inland Sea (SIS). (b) Bathymetry (m) of the SIS and model domain. The solid black lines in (b) indicate the Bungo Channel and Kii Channel, which are the southern boundaries of the hydrodynamic model. The red solid line running in a northwest direction in (b) is the Kanmon Strait, which is closed in the model. The blue solid circles with lower case letters a to u along the coast in (b) are the locations of 21 major rivers (Table 1), and the green solid circles are the locations of the five secondary rivers. (c) Monthly observation stations in the SIS. The hollow blue circles and solid red circles in (c) are the monthly sampling stations. The solid red circles and lines with numbers from 1 to 50 denote selected stations to validate the model results in the vertical direction usedinFig. 4. The dashed black rectangles in (c) represent selected sub-regions for the purpose to show the seasonal variation of mean contaminant concentration in the sub-region. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) Gutiérrez et al., 2007; Zhao et al., 2010). Two related factors were of riverine contaminants in the entire SIS and their influencing factors proposed. Dilution factors, defined as the concentration ratio of con- by using a hydrodynamic model. We first explored the spatial and taminants in a river (or effluent) and sea water near the outfalls, have temporal variations of concentrations of conservative contaminant and been used to represent the dilution levels of sea water (Minh et al., non-conservative contaminants (using antibiotics as an example), and 2009; Zhang et al., 2012). The other is the contaminant flux from rivers, then investigated the mechanisms controlling contaminant concentra- which is the product of contaminant concentrations and river dis- tion in the SIS. charge, and it is often used to estimate the contribution of rivers to contaminant concentration in sea water (Wolschke et al., 2011; Zou et al., 2011; Montuori and Triassi, 2012). However, the key factors 2. Model configuration and validation responsible for contaminant concentration in the ocean were still un- clear, and it should be explored in a specific estuary or coastal sea. 2.1. Simulation and validation of temperature and salinity Due to limitation in observation, there is insufficient data to show continuous spatio-temporal variation of contaminant concentration in The SIS is a shallow semi-enclosed shelf sea located in western 2 sea water. In addition, previous dilution studies about contaminants Japan, with a surface area of 23,000 km and an average depth of 38 m have mostly focused on the areas around the mouths of rivers; there- (Fig. 1a). It opens to the Pacific Ocean via the Bungo Channel and Kii fore, there is a lack of information on dilution characteristics in offshore Channel, through which tidal waves enter the SIS. It is surrounded by and shelf areas. Modeling is a powerful tool for coupling processes the islands of Honshu, Shikoku, and Kyushu, which are rapidly devel- under different disciplines and spatio-temporal scales. To address these oping, urbanized regions in Japan. There are 21 first-order rivers and issues, a hydrodynamic model is required. 643 secondary order rivers emptying into the SIS. It has a complicated The Seto Inland Sea (SIS) region (Fig. 1) is one of the most in- geographical character, including a series of broad basins (called dustrialized areas in Japan. Murata et al. (2011) reported the results of “nada” in Japanese), such as Suo-Nada, Iyo-Nada, Hiuchi-Nada, and a nationwide survey of commonly used human and veterinary anti- Harima-Nada, which are connected to each other through narrow biotics in 37 Japanese rivers. They found that concentrations of the sum straits. The predominant tidal constituent in the SIS is the lunar semi- of 12 target antibiotics in 8 rivers, which directly emptied into the SIS, diurnal M2 (Yanagi, 1981). Tidal currents are strong in the narrow ranged from low ng/L to 60 ng/L. The SIS is a major fishing ground straits (> 1 m/s) and weak in the broad basins (approximately 0.1 m/s) (Nagai, 2003) that includes aquacultures sites for fish, bivalves, and (Takeoka, 2002). seaweed; therefore, it is necessary to evaluate the dilution levels of Appendix A describes the details of hydrodynamic model. Model antibiotics in the whole SIS. domain ranges from 130.98°E to 135.5°E and from 32.8°N to 34.8°N The aim of this study was to investigate the dilution characteristics (Fig. 1b). The model includes 21 major rivers and 5 secondary rivers whose locations along the coastline are shown in Fig.
Recommended publications
  • Estimation of Flood Risk Management in 17Th Century on Okayama Alluvial Plain, Japan, by Numerical Flow Simulation
    T. Ishikawa, et al., Int. J. of Safety and Security Eng., Vol. 6, No. 3 (2016) 455–465 ESTIMATION OF FLOOD RISK MANAGEMENT IN 17TH CENTURY ON OKAYAMA ALLUVIAL PLAIN, JAPAN, BY NUMERICAL FLOW SIMULATION TADAHARU ISHIKAWA1 & RYOSUKE AKOH2 1Dept. of Civil and Environmental Engineering, Hosei University, Japan. 2Graduate School of Environmental and Life Science, Okayama University, Japan. ABSTRACT In this study, the hydraulic function of the Hyakken-gawa Floodway, which was constructed in the 17th century to reduce the flood risk to Okayama Castle City, was evaluated by numerical flow simula- tion. The calculation conditions were determined by referring to the records about the floodway in old documents as well as from the numerical data based on the present conditions. The alluvial plain topog- raphy used for the inundation calculation was obtained from recent GIS data. The computation results showed that the flood control function of the floodway was composed of two stages: (1) Just before inundation occurred in the castle city, river water flowed into the floodway by collapsing the earthen dike located at the floodway head; this limited the increase in the river flow rate in the city area. (2) Just before the floodway capacity was exhausted, the backwater generated by the transverse masonry dikes in the floodway induced inundation to the paddy field region, which was on the side opposite to the castle city; this reduced the flood damage in the city area. The results also suggested that the civil engi- neers in the 17th century, who had neither the knowledge of modern hydraulics (including the concept of river flow rates) nor the advantage of using machinery for construction, presumably developed flood risk management strategies by combining the measures possible in those days.
    [Show full text]
  • Japan Geoscience Union Meeting 2009 Presentation List
    Japan Geoscience Union Meeting 2009 Presentation List A002: (Advances in Earth & Planetary Science) oral 201A 5/17, 9:45–10:20, *A002-001, Science of small bodies opened by Hayabusa Akira Fujiwara 5/17, 10:20–10:55, *A002-002, What has the lunar explorer ''Kaguya'' seen ? Junichi Haruyama 5/17, 10:55–11:30, *A002-003, Planetary Explorations of Japan: Past, current, and future Takehiko Satoh A003: (Geoscience Education and Outreach) oral 301A 5/17, 9:00–9:02, Introductory talk -outreach activity for primary school students 5/17, 9:02–9:14, A003-001, Learning of geological formation for pupils by Geological Museum: Part (3) Explanation of geological formation Shiro Tamanyu, Rie Morijiri, Yuki Sawada 5/17, 9:14-9:26, A003-002 YUREO: an analog experiment equipment for earthquake induced landslide Youhei Suzuki, Shintaro Hayashi, Shuichi Sasaki 5/17, 9:26-9:38, A003-003 Learning of 'geological formation' for elementary schoolchildren by the Geological Museum, AIST: Overview and Drawing worksheets Rie Morijiri, Yuki Sawada, Shiro Tamanyu 5/17, 9:38-9:50, A003-004 Collaborative educational activities with schools in the Geological Museum and Geological Survey of Japan Yuki Sawada, Rie Morijiri, Shiro Tamanyu, other 5/17, 9:50-10:02, A003-005 What did the Schoolchildren's Summer Course in Seismology and Volcanology left 400 participants something? Kazuyuki Nakagawa 5/17, 10:02-10:14, A003-006 The seacret of Kyoto : The 9th Schoolchildren's Summer Course inSeismology and Volcanology Akiko Sato, Akira Sangawa, Kazuyuki Nakagawa Working group for
    [Show full text]
  • Flood Loss Model Model
    GIROJ FloodGIROJ Loss Flood Loss Model Model General Insurance Rating Organization of Japan 2 Overview of Our Flood Loss Model GIROJ flood loss model includes three sub-models. Floods Modelling Estimate the loss using a flood simulation for calculating Riverine flooding*1 flooded areas and flood levels Less frequent (River Flood Engineering Model) and large- scale disasters Estimate the loss using a storm surge flood simulation for Storm surge*2 calculating flooded areas and flood levels (Storm Surge Flood Engineering Model) Estimate the loss using a statistical method for estimating the Ordinarily Other precipitation probability distribution of the number of affected buildings and occurring disasters related events loss ratio (Statistical Flood Model) *1 Floods that occur when water overflows a river bank or a river bank is breached. *2 Floods that occur when water overflows a bank or a bank is breached due to an approaching typhoon or large low-pressure system and a resulting rise in sea level in coastal region. 3 Overview of River Flood Engineering Model 1. Estimate Flooded Areas and Flood Levels Set rainfall data Flood simulation Calculate flooded areas and flood levels 2. Estimate Losses Calculate the loss ratio for each district per town Estimate losses 4 River Flood Engineering Model: Estimate targets Estimate targets are 109 Class A rivers. 【Hokkaido region】 Teshio River, Shokotsu River, Yubetsu River, Tokoro River, 【Hokuriku region】 Abashiri River, Rumoi River, Arakawa River, Agano River, Ishikari River, Shiribetsu River, Shinano
    [Show full text]
  • Keys to the Flesh Flies of Japan, with the Description of a New Genus And
    〔Med. Entomol. Zool. Vol. 66 No. 4 p. 167‒200 2015〕 167 reference DOI: 10.7601/mez.66.167 Keys to the esh ies of Japan, with the description of a new genus and species from Honshu (Diptera: Sarcophagidae) Hiromu Kurahashi*, 1) and Susumu Kakinuma2) * Corresponding author: [email protected] 1) Department of Medical Entomology, National Institute of Infectious Diseases, Toyama 1‒23‒1, Shinjuku-ku, Tokyo 162‒8640 Japan 2) IDD Yamaguchi Lab., Aobadai 11‒22, Yamaguchi-shi, Yamaguchi 753‒0012 Japan (Received: 9 June 2015; Accepted: 2 October 2015) Abstract: A new genus and species of the Japanese Sarcophagidae, Papesarcophaga kisarazuensis gen. & sp. nov. is described and illustrated from Honshu, Japan. Practical keys to the Japanese 43 genera and 122 species are provided including this new species. A check list and data of specimens examined are also provided. Key words: Diptera, flesh flies, new species, new genus, Sarcophagidae, Japan INTRODUCTION The collection of Sarcophagidae made by the first author was studied during the course of the taxonomical studies on the calypterate muscoid flies from Japan since 1970 (Kurahashi, 1970). This was a revision of the subfamily Miltogramatinae dealing with seven genera and 14 species. Before this, Takano (1950) recorded seven genera and nine species of Japanese Sarcophagidae. Many investigation on the Japanese flesh flies made by Drs. K. Hori, R. Kano and S. Shinonaga beside the present authors. The results of these authors were published in the part of Sacophagidae, Fauna Japanica (Insecta: Diptera) and treated 23 genera and 65 species of the subfamilies of Sarcophaginae and Agriinae (=Paramacronychiinae), but the subfamily Miltogrammatinae was not included (Kano et al., 1967).
    [Show full text]
  • Geographical Variations in Morphological Characters of the Fluvial Eight-Barbel Loach, Nagare-Hotoke-Dojo (Cobitidae: Nemacheilinae)
    Biogeography 17. 43–52. Sep. 20, 2015 Geographical variations in morphological characters of the fluvial eight-barbel loach, Nagare-hotoke-dojo (Cobitidae: Nemacheilinae) Taiki Ito*, Kazuhiro Tanaka and Kazumi Hosoya Program in Environmental Management, Graduate School of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan Abstract. The morphological and color variations of Lefua sp. 1 Nagare-hotoke-dojo individuals from 13 river systems were examined. Analysis of variance revealed highly significant variations in Lefua sp. 1 mor- phology and coloration among the 13 populations examined, across all 19 measurements and counts. The 13 populations of Lefua sp. 1 were classified into two major clusters (I and II) by using UPGMA cluster analy- sis. Cluster I comprised fish from the Maruyama, Yura, Muko, Mihara, Yoshino, Hidaka, Kumano, Yoshii, Chikusa, and Ibo river systems. Cluster II comprised fish from the Yoshida, Saita, and Sumoto river systems. Cluster I was further subdivided into sub-clusters: I-i (the Maruyama, Yura, Muko, Mihara, Yoshino, Hidaka, Kumano, and Yoshii river systems) and I-ii (the Chikusa and Ibo river systems). Principal component analysis revealed that populations within cluster II clearly possessed longer caudal peduncles, while populations within cluster I possessed a longer anterior body on average and a deeper body. Populations within sub-cluster I-ii possessed a higher average dorsal fin and a longer average dorsal fin base than those of populations within sub-cluster I-i. A strong correlation was noted between the PC3 score and population latitude (r = 0.621). Observations of body color patterns revealed that individuals from the Yoshino, Mihara, Sumoto, and Hidaka river systems had dark brown mottling on both sides and the dorsal regions of their bodies and many small dark brown spots on the dorsal and caudal fins, while those from the Yura, Muko, and Kumano river systems possessed neither.
    [Show full text]
  • PHYLOGENY and ZOOGEOGRAPHY of the SUPERFAMILY COBITOIDEA (CYPRINOIDEI, Title CYPRINIFORMES)
    PHYLOGENY AND ZOOGEOGRAPHY OF THE SUPERFAMILY COBITOIDEA (CYPRINOIDEI, Title CYPRINIFORMES) Author(s) SAWADA, Yukio Citation MEMOIRS OF THE FACULTY OF FISHERIES HOKKAIDO UNIVERSITY, 28(2), 65-223 Issue Date 1982-03 Doc URL http://hdl.handle.net/2115/21871 Type bulletin (article) File Information 28(2)_P65-223.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP PHYLOGENY AND ZOOGEOGRAPHY OF THE SUPERFAMILY COBITOIDEA (CYPRINOIDEI, CYPRINIFORMES) By Yukio SAWADA Laboratory of Marine Zoology, Faculty of Fisheries, Bokkaido University Contents page I. Introduction .......................................................... 65 II. Materials and Methods ............... • • . • . • . • • . • . 67 m. Acknowledgements...................................................... 70 IV. Methodology ....................................•....•.........•••.... 71 1. Systematic methodology . • • . • • . • • • . 71 1) The determinlttion of polarity in the morphocline . • . 72 2) The elimination of convergence and parallelism from phylogeny ........ 76 2. Zoogeographical methodology . 76 V. Comparative Osteology and Discussion 1. Cranium.............................................................. 78 2. Mandibular arch ...................................................... 101 3. Hyoid arch .......................................................... 108 4. Branchial apparatus ...................................•..••......••.. 113 5. Suspensorium.......................................................... 120 6. Pectoral
    [Show full text]
  • A Synopsis of the Parasites from Cyprinid Fishes of the Genus Tribolodon in Japan (1908-2013)
    生物圏科学 Biosphere Sci. 52:87-115 (2013) A synopsis of the parasites from cyprinid fishes of the genus Tribolodon in Japan (1908-2013) Kazuya Nagasawa and Hirotaka Katahira Graduate School of Biosphere Science, Hiroshima University Published by The Graduate School of Biosphere Science Hiroshima University Higashi-Hiroshima 739-8528, Japan December 2013 生物圏科学 Biosphere Sci. 52:87-115 (2013) REVIEW A synopsis of the parasites from cyprinid fishes of the genus Tribolodon in Japan (1908-2013) Kazuya Nagasawa1)* and Hirotaka Katahira1,2) 1) Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan 2) Present address: Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido 060-0810, Japan Abstract Four species of the cyprinid genus Tribolodon occur in Japan: big-scaled redfin T. hakonensis, Sakhalin redfin T. sachalinensis, Pacific redfin T. brandtii, and long-jawed redfin T. nakamuraii. Of these species, T. hakonensis is widely distributed in Japan and is important in commercial and recreational fisheries. Two species, T. hakonensis and T. brandtii, exhibit anadromy. In this paper, information on the protistan and metazoan parasites of the four species of Tribolodon in Japan is compiled based on the literature published for 106 years between 1908 and 2013, and the parasites, including 44 named species and those not identified to species level, are listed by higher taxon as follows: Ciliophora (2 named species), Myxozoa (1), Trematoda (18), Monogenea (0), Cestoda (3), Nematoda (9), Acanthocephala (2), Hirudinida (1), Mollusca (1), Branchiura (0), Copepoda (6 ), and Isopoda (1). For each taxon of parasite, the following information is given: its currently recognized scientific name, previous identification used for the parasite occurring in or on Tribolodon spp.; habitat (freshwater, brackish, or marine); site(s) of infection within or on the host; known geographical distribution in Japan; and the published source of each locality record.
    [Show full text]
  • Study of River Flow Based on Finite Element Analysis and GPS-Echo
    ANZIAM J. 52 (CTAC2010) pp.C1102{C1125, 2012 C1102 Study of river flow based on finite element analysis and GPS-echo-sounder measurement Hashentuya1 Yoji Otani2 Kazuhiro Yamamoto3 Masaji Watanabe4 (Received 31 January 2011; revised 15 February 2012) Abstract Currents of a river are analyzed numerically by introducing data concerning the water depth into a finite element analysis of the partial differential equations of the flow. Techniques to simulate currents generated in the river are described. The region is divided in the vertical direction into layers, and a finite element discretization in the horizontal direction is applied. Results of the simulation of flow generated in the Yoshii River in Okayama Prefecture of Japan are shown. We also introduce our techniques to measure the river bed topography using a hardware system consisting of a global positioning system and an echo sounder. Data obtained by using the system are introduced into the analysis of flow and corresponding numerical results are generated. http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/3966 gives this article, c Austral. Mathematical Soc. 2012. Published March 7, 2012. issn 1446-8735. (Print two pages per sheet of paper.) Copies of this article must not be made otherwise available on the internet; instead link directly to this url for this article. Contents C1103 Contents 1 Introduction C1103 2 Numerical solution by the finite element method C1105 2.1 Shallow water equations................... C1106 2.2 Initial condition........................ C1107 2.3 Application to the multi-layer finite element method.... C1109 2.4 Time-step approximation................... C1115 3 Flow simulation downstream of the Kamogoshi Dam C1118 4 Conclusion C1118 References C1123 1 Introduction Seto Inland Sea divides the main island and the Shikoku Island of Japan.
    [Show full text]
  • Impact Analysis of the Decline of Agricultural Land-Use on Flood Risk
    Changes in Flood Risk and Perception in Catchments and Cities (HS01 – IUGG2015) Proc. IAHS, 370, 39–44, 2015 proc-iahs.net/370/39/2015/ Open Access doi:10.5194/piahs-370-39-2015 © Author(s) 2015. CC Attribution 3.0 License. Impact analysis of the decline of agricultural land-use on flood risk and material flux in hilly and mountainous watersheds Y. Shimizu1, S. Onodera2, H. Takahashi3, and K. Matsumori3 1JSPS Research Fellow, Western Region Agricultural Research Centre, National Agriculture and Food Research Organization, Fukuyama, Japan 2Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan 3Western Region Agricultural Research Centre, National Agriculture and Food Research Organization, Fukuyama, Japan Correspondence to: Y. Shimizu ([email protected]) Received: 11 March 2015 – Accepted: 11 March 2015 – Published: 11 June 2015 Abstract. Agricultural land-use has been reduced by mainly urbanization and devastation in Japan. The objec- tive of this study is to evaluate the impact of the decline of agricultural land-use on flood risk and material flux in hilly and mountainous watersheds using Soil Water Assessment Tool. The results indicated that increase of flood risk due to abandonment of agricultural land-use. Furthermore, the abandonment of rice paddy field on steep slope areas may have larger impacts on sediment discharges than cultivated field. Therefore, it is suggested that prevention of expansion of abandonment of rice paddy field is an important factor in the decrease of yields of sediment and nutrients. 1 Introduction ing of the most of farmers. Even though the aged farmers have will to continue to cultivate crops, they no longer can do The changes in increasing of magnitude of flood events it on the agricultural land-use with a steep slope such as hilly which have been observed all over the world could be af- and mountainous area.
    [Show full text]
  • Topographic Mapping Using Satellite Images • Total: 4,355 Sheets
    1:25,000 scale topographic maps • Largest scale base maps that cover whole land of Japan Topographic mapping using satellite images • Total: 4,355 sheets • 1 sheet covers: longitude 7.5 min. latitude 5 min. (about 100km2) Geospatial Information Authority of Japan 3 Fundamental maps in Japan Photogrammetry Paper-based maps - Scale: 1:10,000 ~ 1:5,000,000 - Mainly: 1:25,000 scale topographic map Digital maps “Kunikaze III” - Digital Japan Basic Maps (Map Information) - Map image - Spatial data framework (2500, 25000) - Etc. Providing - Publishing (paper, CD-ROM, etc.) - Browse via the Internet - Download through the Internet (Map Image) 2 Aerial photographs (with 60% overwrapping) 4 1 2 Flight course Advanced Land Observing Satellite(ALOS) 㻢㻜㻑㻌㼛㼢㼑㼞㼣㼞㼍㼜㻌㼎㼑㼠㼣㼑㼑㼚㻌㼚㼑㼕㼓㼔㼎㼛㼞㼕㼚㼓㻌㼜㼔㼛㼠㼛 PRISM 2.5m-spatial resolution 㻟㻜㻑㻌㼛㼢㼑㼞㼣㼞㼍㼜㻌㼎㼑㼠㼣㼑㼑㼚㻌㼚㼑㼕㼓㼔㼎㼛㼞㼕㼚㼓㻌㼏㼛㼡㼞㼟㼑 three optical system 㻢㻜㻑 Panchromatic sensor Launch : January 24th in 2006 AVNIR-2 Missions 10m-spatial resolution •cartography Multi-band(BGRNIR䠅sensor 㻟㻜㻑 •regional observation •disaster monitoring •resource surveying PALSAR 10m-spatial resolution L-band SAR From JAXA HP 5 7 Photogrammetry -Principle- Comparison of aerial photo & satellite image Using Aerial Photograph ALOS PRISM plotter Resolution 40cm 2.5m Interval of 1-5 year (GSI) 46 days Images Shooting Shooting 5km㽢5km 35km X 35km Area 䠄Scale 1:20,000䠅 35km X 70km Others Hard to take at Hard to interpret isolated islands, small structures & volcanoes etc. point features 3D model (lighthouses, towers, road dividers etc.) 6 8 3 4 Example
    [Show full text]
  • A Checklist and Bibliography of Parasites of Salmonids of Japan
    ;r c j . 3 $JJ#~,Sci. Rep. Hokkaido Salmon Hatchery, (41) : 1-75 (1987) A Checklist and Bibliography of Parasites of Salmonids of Japan Kazuya NAGASAWA*',Shigehiko URAWA", and Teruhiko AWAKURA*~ Abstract Information on the parasites of salmonids in Japanese waters that was published during the years 1889-1986 is assembled in the form of Parasite-Host and Host- Parasite lists with accompanying bibliography. Ninety-four named species of parasites (18 Protozoa, 5 Monogenea, 21 Trematoda, 7 Cestoidea, 19 Nematoda, 15 Acanthocephala, 1 Hirudinoidea, 1 Mollusca, 1 Branchiura, 5 Copepoda, 1 Isopoda) have been reported, and numerous other parasites not identified to species level are also included. The Parasite-Host list, arranged on a taxonomic basis, includes for each parasite species its currently recognized scientific name, and synonyms oc- curring in the literature, habitat (freshwater or marine), location of infection (site) within the host, species of host(s), known geographical distribution in Japanese waters, and the published source for each host and locality record. Where neces- sary, remarks and footnotes dealing with such topics as taxonomy, nomenclature, and misidentifications are included. The Host-Parasite list summarizes the species of parasites from each species of salmonid and their geographical distributions. Although taxonomic revision is not the aim of the checklist, the following three new combinations and one new synonym are proposed : Microsporidium takedai (Awa- kura, 1974) n. comb. for Nosemu tukedui ; Sterliudochonu ephemeridurum (Linstow, 1872) n. comb. for Cystidicoloides ephemeridurum ; and Salvelinema ishii (Fujita, 1941) new synonym of S. salvelini (Fujita, 1939) n. comb. for Metabronemu salvelini. Con tents Introduction ................................................................................................ 2 Parasite-Host List ......................................................................................
    [Show full text]
  • Social and Environmental Report 2004 [3.79MB]
    Social and Environmental Report 1 Profile of the NSK Group Bearings, the mainstay product of NSK, are one of the most basic components essential to the smooth and efficient operation of machinery. NSK has come a long way since its founding in 1916 and the manufacture of Japan’s first domestically produced ball bearing. Over the years, NSK has developed not only bearings, but also automotive components, precision machinery and parts, and a variety of other products, working side by side with customers in the automotive industry and a spectrum of other machinery manufacturers. As a comprehensive bearing manufacturer, NSK is committed to continuously delivering products that meet the diverse requirements of its customers, supporting the development of industry through progress in machinery in Japan and the lifestyles of people everywhere. “Motion & Control” is the core concept driving NSK’s businesses. Today, NSK is in the midst of developing its businesses globally, establishing bases in Japan, the Americas, Europe and Asia and linking them via a global network. This enables NSK to provide products in every corner of the world, helping to support people everywhere in their daily lives and contributing to the development of industry. ■ Corporate Overview ■ Breakdown of Net Bearings Sales by Product Company Others NSK Ltd. 2.5% Name 9.0% Head Office 1-6-3 Ohsaki, Shinagawa-ku, 63.7% Tokyo 141-8560, Japan 24.8% Automotive Components Establishment November 8, 1916 Capital ¥67.2 billion (As of March 31, 2004) Net Sales Consolidated: ¥522.2 billion
    [Show full text]