Iflbi Restoration of Once-Lost Urban River
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 1. Relationships Between Japanese Economy and Land
Part I Developments in Land, Infrastructure, Transport and Tourism Administration that Underpin Japan’s Economic Growth ~ Strategic infrastructure management that brings about productivity revolution ~ Section 1 Japanese Economy and Its Surrounding Conditions I Relationships between Japanese Economy and Land, Chapter 1 Chapter 1 Infrastructure, Transport and Tourism Administration Relationships between Japanese Economy and Land, Infrastructure, Transport and Tourism Administration and Tourism Transport Relationships between Japanese Economy and Land, Infrastructure, Chapter 1, Relationships between Japanese Economy and Land, Infrastructure, Transport and Tourism Administration, on the assumption of discussions described in chapter 2 and following sections, looks at the significance of the effects infrastructure development has on economic growth with awareness of severe circumstances surrounding the Japanese economy from the perspective of history and statistical data. Section 1, Japanese Economy and Its Surrounding Conditions, provides an overview of an increasingly declining population, especially that of a productive-age population, to become a super aging society with an estimated aging rate of close to 40% in 2050, and a severe fiscal position due to rapidly growing, long-term outstanding debts and other circumstances. Section 2, Economic Trends and Infrastructure Development, looks at how infrastructure has supported peoples’ lives and the economy of the time by exploring economic growth and the history of infrastructure development (Edo period and post-war economic growth period). In international comparisons of the level of public investment, we describe the need to consider Japan’s poor land and severe natural environment, provide an overview of the stock effect of the infrastructure, and examine its impact on the infrastructure, productivity, and economic growth. -
(News Release) the Results of Radioactive Material Monitoring of the Surface Water Bodies Within Tokyo, Saitama, and Chiba Prefectures (September-November Samples)
(News Release) The Results of Radioactive Material Monitoring of the Surface Water Bodies within Tokyo, Saitama, and Chiba Prefectures (September-November Samples) Thursday, January 10, 2013 Water Environment Division, Environment Management Bureau, Ministry of the Environment Direct line: 03-5521-8316 Switchboard: 03-3581-3351 Director: Tadashi Kitamura (ext. 6610) Deputy Director: Tetsuo Furuta (ext. 6614) Coordinator: Katsuhiko Sato (ext. 6628) In accordance with the Comprehensive Radiation Monitoring Plan determined by the Monitoring Coordination Meeting, the Ministry of the Environment (MOE) is continuing to monitor radioactive materials in water environments (surface water bodies (rivers, lakes and headwaters, and coasts), etc.). Samples taken from the surface water bodies of Tokyo, Saitama, and Chiba Prefectures during the period of September 18-November 16, 2012 have been measured as part of MOE’s efforts to monitor radioactive materials; the results have recently been compiled and are released here. The monitoring results of radioactive materials in surface water bodies carried out to date can be found at the following web page: http://www.env.go.jp/jishin/rmp.html#monitoring 1. Survey Overview (1) Survey Locations 59 environmental reference points, etc. in the surface water bodies within Tokyo, Saitama, and Chiba Prefectures (Rivers: 51 locations, Coasts: 8 locations) Note: Starting with this survey, there is one new location (coast). (2) Survey Method ・ Measurement of concentrations of radioactive materials (radioactive cesium (Cs-134 and Cs-137), etc.) in water and sediment ・ Measurement of concentrations of radioactive materials and spatial dose-rate in soil in the surrounding environment of water and sediment sample collection points (river terraces, etc.) 2. -
Hydrological Services in Japan and LESSONS for DEVELOPING COUNTRIES
MODERNIZATION OF Hydrological Services In Japan AND LESSONS FOR DEVELOPING COUNTRIES Foundation of River & Basin Integrated Communications, Japan (FRICS) ABBREVIATIONS ADCP acoustic Doppler current profilers CCTV closed-circuit television DRM disaster risk management FRICS Foundation of River & Basin Integrated Communications, Japan GFDRR Global Facility for Disaster Reduction and Recovery ICT Information and Communications Technology JICA Japan International Cooperation Agency JMA Japan Meteorological Agency GISTDA Geo-Informatics and Space Technology Development Agency MLIT Ministry of Land, Infrastructure, Transport and Tourism MP multi parameter NHK Japan Broadcasting Corporation SAR synthetic aperture radar UNESCO United Nations Educational, Scientific and Cultural Organization Table of Contents 1. Summary......................................................................3 2. Overview of Hydrological Services in Japan ........................................7 2.1 Hydrological services and river management............................................7 2.2 Flow of hydrological information ......................................................7 3. Japan’s Hydrological Service Development Process and Related Knowledge, Experiences, and Lessons ......................................................11 3.1 Relationships between disaster management development and hydrometeorological service changes....................................................................11 3.2 Changes in water-related disaster management in Japan and reQuired -
Approach for International Exchange of River Restoration Technology
Approach for International Exchange of River Restoration Technology Ito, Kazumasa Head of planning office, Research Center for Sustainable Communities, CTI Engineering Co., Ltd, Tokyo, Japan Senior Councilor, Technical Coordination and Cooperation Division, Foundation for River Improvement and Restoration Tokyo, Japan Lecturer Musashi Institute of Technology Dept. of Civil Engineering Faculty of Engineering, Tokyo, Japan Abstract : About 50% of the population and 75% of the properties concentrate on the flood plain in Japan. The rivers have intimate relationship with our lives. Those conditions have been seen after modern river improvement projects that began about a century ago. The technology which was introduced from foreign countries was improved in conformity with geographical features and the climate condition of our nation, and has redeveloped as a Japanese original technology. In 1940's, Japan had serious natural disasters that were caused by large- scale typhoons. Those typhoons wiped out everything completely. Even though the government realized the importance of flood control and management after those natural disasters, civil work still aimed to economic development. Those construction works have become the one of factors for concentrating population and degrading natural environment in urban areas. Deterioration of river environment has become serious issue in urban development and main cause of pollution. The approaches for environmental restorations which were started about 30 years ago aimed to harmonize with nature environment and cities and human lives. There have been going on many projects called “river environmental improvement projects”, the “nature friendly river works” and “natural restoration projects.” The society has tried to find a way to live in harmony with nature. -
Message Board for Disaster (Web 171, Etc.) Disaster Messaging
Information transmission path and collection of information The relationship among the type of evacuation information, your evacuation behavior, the type of flood forecasting of the Arakawa River, and the water level Area where the water will stay for a long time Type and mechanism of flood Urgency Types of evacuation Types of Indication of water levels In the inundation forecast Toda City There are two major types of flood: “river water flood” and Flood forecasting, etc. Evacuation behaviors of the Arakawa River Inland water flood information, etc. Arakawa River Iwabuchi Floodgate (upper) (maximum scale) predicted by “inland water flood.” to be taken by citizens River water ・ Rainwater accumulates issued by the city flood forecasting Gauging Station the MLIT based on the Kawaguchi City River water floodflood at the spot. MLIT/Japan Meteorological Agency (JMA)/ High When the risk of human damage ●If you have not evacuated yet, simulation, it is assumed that N This hazard map is Information Kita City, Tokyo Evacuation order becomes extremely high due to evacuate immediately. for ・ There is a rainfall that Tokyo Metropolitan Government Weather, Precipitation, Water level, Arakawa River Flood risk many inundated areas in Kita Burst Video images of rivers, Flood forecasting, Evacuation information, etc. (emergency) a worsened situation such as the ●When conditions outside are dangerous, immediately exceeds sewerage Flood forecasting, etc. Warnings for flood protection, evacuate to a higher place in the building. flood risk water level City will be flooded for not less Sediment disaster alert occurrence of disaster River water flood drainage capacity. information A.P.+7.70m than two weeks. -
Inazawa City Tour Guide Booklet Inazawa Harmony of Five So
Inazawa City Tour Guide Booklet Inazawa Harmony of Five So All you want to know about sightseeing in Inazawa is in this booklet with handy maps!! Map to Inazawa City HOKURIKU EXPWAY Oyabetonami JCT Kanazawa Takayama Nagano Main Line NAGANO EXPWY Hokuriku TOKAI-HOKURIKU EXPWY Main Line Chuo Main Line Okaya JCT CHUO EXPWY Tokyo Ichinomiya- TOKAI-KANJO EXPWY Nishi IC TOMEI EXPWY Ichinomiya IC MEISHIN EXPWY SHIN-TOMEI EXPWY Inazawa Komaki JCT Suita JCT Nagoya Shizuoka City Toyota JCT Yokkaichi JCT ISE-WANGAN Tokaido Main Line Kameyama JCT EXPWY SHIN-MEISHIN EXPWY Osaka Tokaido Shinkansen HIGASHI-MEIHAN EXPWY Chubu Centrair International Airport Fukuoka / Okinawa Sendai / Sapporo By train Tokyo Nagoya Inazawa Tokaido Shinkansen Tokaido Main Line 1 hr. and 40 min. by "NOZOMI" 10 min. by Local Shin-Osaka Konomiya Tokaido Shinkansen Meitetsu Nagoya Main Line 52 min. by "NOZOMI" 12 min. by Limited Express Kanazawa Gifu Inazawa Hokuriku Main Line / Tokaido Main Line Tokaido Main Line 2 hr. and 36 min. 15 min. by Local by Limited Express "SHIRASAGI" By car Ichinomiya Ichinomiya- Suita JCT JCT Nishi IC Inazawa City Komaki JCT Okaya JCT MEISHIN TOKAI-HOKURIKU 15 min. CHUO EXPWY EXPWY EXPWY 135 min. 120 min. 1 min. Kameyama Ichinomiya Suita JCT JCT Kanie IC IC SHIN-MEISHIN HIGASHI-MEIHAN 20 min. 20 min. MEISHIN EXPWY EXPWY EXPWY 10 min. 70 min. 35 min. Oyabetonami Shizuoka JCT Bisai IC IC TOKAI-HOKURIKU EXPWY 20 min. TOMEI EXPWY 150 min. 140 min. By air Sapporo Chubu Centrair International Airport 1 hr. and 55 min. Sendai Express Konomiya 1 hr. -
Newsletter Volume 5 No
Newsletter Volume 5 No. 2 July 2010 Issue No. 17 2 ▼ Special Topics & Events 5 ▼ Capacity Development Contents 6 ▼ Research 8 ▼ Other Topics Message from Director The eruption of Mt. Eyjafjallajökull of Iceland in mid-April was a major disaster fatally disrupting 今年 4 月中旬、アイスランド・エイ European air traffic and affecting several millions of people. Among the affected were the ヤフィヤトラヨークトル火山が噴火、 members of the 3rd IRDR Scientific Committee held in Paris on 14-16 April. I was lucky to be 欧州では航空業務に大混乱が生じ、 何百万もの人々に影響がありました。 able to move to Delft by train on the 18th and after seeing many friends at UNESCO-IHE, I 第 3 回 IRDR* 科 学 委 員 会 は 4 月 14 could fly back to Japan on the 20th from the Amsterdam Airport via Dubai. It was a real disaster ~ 16 日にパリで開催されたため、私 experience for all the IRDR Science Committee members. During the committee meeting, the を含め参加者は一様に噴火の影響を members congratulated Dr. Jane E. Rovins for her appointment to the executive coordinator of 受け、奇しくも災害を実体験するこ IRDR International Project Office at the Center for Earth Observation and Digital Earth, Chinese とになりました。一方、会議では、 Academy of Sciences, Beijing. We at ICHARM, too, are looking forward to working with her. Jane E. Rovins 博士 が、北京・中国科 学院の対地観測・数字地球科学中心 On 24-26 May, a delegate from HidroEX visited ICHARM. HidroEX is a new UNESCO Category Ⅱ (CEODE)内に設立された IRDR 国際 Center established in Minas Gerais, Brazil. The delegate was headed by Congressman Narcio プロジェクトオフィスの事務局長に Rodrigues and accompanied by four others including the former Rector of UNESCO-IHE 就任された旨報告がありました。 Richard Meganck. It was a great pleasure to receive such respectable visitors, and we are 5 月 24 ~ 26 日には、ブラジルに新 excited to start collaboration with a sister institute on the other side of the globe in the IFAS 設された UNESCO カテゴリー 2 セ early warning system and education program. -
Flood Loss Model Model
GIROJ FloodGIROJ Loss Flood Loss Model Model General Insurance Rating Organization of Japan 2 Overview of Our Flood Loss Model GIROJ flood loss model includes three sub-models. Floods Modelling Estimate the loss using a flood simulation for calculating Riverine flooding*1 flooded areas and flood levels Less frequent (River Flood Engineering Model) and large- scale disasters Estimate the loss using a storm surge flood simulation for Storm surge*2 calculating flooded areas and flood levels (Storm Surge Flood Engineering Model) Estimate the loss using a statistical method for estimating the Ordinarily Other precipitation probability distribution of the number of affected buildings and occurring disasters related events loss ratio (Statistical Flood Model) *1 Floods that occur when water overflows a river bank or a river bank is breached. *2 Floods that occur when water overflows a bank or a bank is breached due to an approaching typhoon or large low-pressure system and a resulting rise in sea level in coastal region. 3 Overview of River Flood Engineering Model 1. Estimate Flooded Areas and Flood Levels Set rainfall data Flood simulation Calculate flooded areas and flood levels 2. Estimate Losses Calculate the loss ratio for each district per town Estimate losses 4 River Flood Engineering Model: Estimate targets Estimate targets are 109 Class A rivers. 【Hokkaido region】 Teshio River, Shokotsu River, Yubetsu River, Tokoro River, 【Hokuriku region】 Abashiri River, Rumoi River, Arakawa River, Agano River, Ishikari River, Shiribetsu River, Shinano -
FY2017 Results of the Radioactive Material Monitoring in the Water Environment
FY2017 Results of the Radioactive Material Monitoring in the Water Environment March 2019 Ministry of the Environment Contents Outline .......................................................................................................................................................... 5 1) Radioactive cesium ................................................................................................................... 6 (2) Radionuclides other than radioactive cesium .......................................................................... 6 Part 1: National Radioactive Material Monitoring Water Environments throughout Japan (FY2017) ....... 10 1 Objective and Details ........................................................................................................................... 10 1.1 Objective .................................................................................................................................. 10 1.2 Details ...................................................................................................................................... 10 (1) Monitoring locations ............................................................................................................... 10 1) Public water areas ................................................................................................................ 10 2) Groundwater ......................................................................................................................... 10 (2) Targets .................................................................................................................................... -
Long-Term Estimation on Nitrogen Flux in the Yamato River Basin Influenced by the Construction of Sewerage Treatment Systems
AHW32-P08 JpGU-AGU Joint Meeting 2020 Long-term Estimation on Nitrogen flux in the Yamato River Basin Influenced by the Construction of Sewerage Treatment Systems *Kunyang Wang1, Shin-ichi Onodera1, Mitsuyo Saito2, Yuta Shimizu3 1. Graduate School of Integrated Arts and Science, Hiroshima University, 2. Faculty of Environmental Science and Technology, Okayama University, 3. National Agriculture and Food Research Organization The quantification of the nitrogen discharge in water were most important indicators of the water environment in coastal area because these processes are related to the transport of large nutrient loads. The nitrogen pollution sources of the surface water environment are divided into point source pollution and non-point source pollution according to the different spatial distribution (Niraula et al. 2013; Lee et al. 2010). Nonpoint source nitrogen pollution is a leading contributor to world water quality impairments. (Steffen et al 2015). Sewage treatment system can significantly reducing pollutant emissions by multiple methods. The construction of sewage treatment systems does not happen overnight, it is divided into two parts: construction of sewage treatment plant and laying of underground pipelines into buildings. Especially for plumbing system, it is a long process. During this period, non-point source pollution from urban areas will be gradually transformed into point sources. Yamato river is a very important river in west Japan. It has a watershed area of 1067 square kilometers, covering almost half area of Nara prefecture. These have 5 sewage treatment plant in the watershed, 3 of them are located in Osaka Prefecture and others are in Nara Prefecture. These sewage treatment plants were successively constructed and put into use between 1974 and 1985. -
Japan: Tokai Heavy Rain (September 2000)
WORLD METEOROLOGICAL ORGANIZATION THE ASSOCIATED PROGRAMME ON FLOOD MANAGEMENT INTEGRATED FLOOD MANAGEMENT CASE STUDY1 JAPAN: TOKAI HEAVY RAIN (SEPTEMBER 2000) January 2004 Edited by TECHNICAL SUPPORT UNIT Note: Opinions expressed in the case study are those of author(s) and do not necessarily reflect those of the WMO/GWP Associated Programme on Flood Management (APFM). Designations employed and presentations of material in the case study do not imply the expression of any opinion whatever on the part of the Technical Support Unit (TSU), APFM concerning the legal status of any country, territory, city or area of its authorities, or concerning the delimitation of its frontiers or boundaries. WMO/GWP Associated Programme on Flood Management JAPAN: TOKAI HEAVY RAIN (SEPTEMBER 2000) Ministry of Land, Infrastructure and Transport, Japan 1. Place 1.1 Location Positions in the flood inundation area caused by the Tokai heavy rain: Nagoya City, Aichi Prefecture is located at 35° – 35° 15’ north latitude, 136° 45’ - 137° east longitude. The studied area is Shonai and Shin river basin- hereinafter referred to as the Shonai river system. It locates about the center of Japan including Nagoya city area, 5th largest city in Japan with the population about 3millions. Therefore, two rivers flow through densely populated area and into the Pacific Ocean and are typical city-type rivers in Japan. Shin Riv. Border of basin Shonai Riv. Flooding area Point of breach ●Peak flow rate in major points on Sept. 12 (app. m3/s) ← Nagoya City, ← ← ino ino Aichi Prefecture j Ku ← 1,100 Shin Riv. ← 720 ← → ← ima Detention j Basin Shinkawa Araizeki Shidami Biwa (Fixed dam) Shin Riv. -
PORTS of OSAKA PREFECTURE
Port and Harbor Bureau, Osaka Prefectural Government PORTS of OSAKA PREFECTURE Department of General Affairs / Department of Project Management 6-1 Nagisa-cho, Izumiotsu City 595-0055 (Sakai-Semboku Port Service Center Bldg. 10F) TEL: 0725-21-1411 FAX: 0725-21-7259 Department of Planning 3-2-12 Otemae, Chuo-ku, Osaka 540-8570(Annex 7th floor) TEL: 06-6941-0351 (Osaka Prefectural Government) FAX: 06-6941-0609 Produced in cooperation with: Osaka Prefecture Port and Harbor Association, Sakai-Semboku Port Promotion Council, Hannan Port Promotion Council Osaka Prefectural Port Promotion Website: http://www.osakaprefports.jp/english/ Port of Sakai-Semboku Japan’s Gateway to the World. With the tremendous potential and vitality that befit the truly international city of Osaka, Port of Hannan Seeking to become a new hub for the international exchange of people, From the World to Osaka, from Osaka to the Future goods and information. Starting from The sea is our gateway to the world – The sea teaches us that we are part of the world. Port of Nishiki Port of Izumisano Osaka Bay – Japan’s marine gateway to the world – is now undergoing numerous leading projects that Osaka Bay, will contribute to the future development of Japan, including Kansai International Airport Expansion and the Phoenix Project. Exchange for Eight prefectural ports of various sizes, including the Port of Sakai-Semboku (specially designated Port of Ozaki Port of Tannowa major port) and the Port of Hannan (major port), are located along the 70 kilometers of coastline the 21st Century extending from the Yamato River in the north to the Osaka-Wakayama prefectural border in the south.