Generation of Unstructured Hexahedron-Dominated Conforming Mesh Using Two-Boundary Marching Method
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Compression and Streaming of Polygon Meshes
Compression and Streaming of Polygon Meshes by Martin Isenburg A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Computer Science. Chapel Hill 2005 Approved by: Jack Snoeyink, Advisor Craig Gotsman, Reader Peter Lindstrom, Reader Dinesh Manocha, Committee Member Ming Lin, Committee Member ii iii ABSTRACT MARTIN ISENBURG: Compression and Streaming of Polygon Meshes (Under the direction of Jack Snoeyink) Polygon meshes provide a simple way to represent three-dimensional surfaces and are the de-facto standard for interactive visualization of geometric models. Storing large polygon meshes in standard indexed formats results in files of substantial size. Such formats allow listing vertices and polygons in any order so that not only the mesh is stored but also the particular ordering of its elements. Mesh compression rearranges vertices and polygons into an order that allows more compact coding of the incidence between vertices and predictive compression of their positions. Previous schemes were designed for triangle meshes and polygonal faces were triangulated prior to compression. I show that polygon models can be encoded more compactly by avoiding the initial triangulation step. I describe two compression schemes that achieve better compression by encoding meshes directly in their polygonal representation. I demonstrate that the same holds true for volume meshes by extending one scheme to hexahedral meshes. Nowadays scientists create polygonal meshes of incredible size. Ironically, com- pression schemes are not capable|at least not on common desktop PCs|to deal with giga-byte size meshes that need compression the most. -
Mesh Compression
Mesh Compression Dissertation der Fakult¨at f¨ur Informatik der Eberhard-Karls-Universit¨at zu T¨ubingen zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) vorgelegt von Dipl.-Inform. Stefan Gumhold aus Tubingen¨ Tubingen¨ 2000 Tag der m¨undlichen Qualifikation: 19.Juli 2000 Dekan: Prof. Dr. Klaus-J¨orn Lange 1. Berichterstatter: Prof. Dr.-Ing. Wolfgang Straßer 2. Berichterstatter: Prof. Jarek Rossignac iii Zusammenfassung Die Kompression von Netzen ist eine weitgef¨acherte Forschungsrichtung mit Anwen- dungen in den verschiedensten Bereichen, wie zum Beispiel im Bereich der Hand- habung extrem großer Modelle, beim Austausch von dreidimensionalem Inhaltuber ¨ das Internet, im elektronischen Handel, als anpassungsf¨ahige Repr¨asentation f¨ur Vo- lumendatens¨atze usw. In dieser Arbeit wird das Verfahren der Cut-Border Machine beschrieben. Die Cut-Border Machine kodiert Netze, indem ein Teilbereich durch das Netz w¨achst (region growing). Kodiert wird die Art und Weise, wie neue Netzele- mente dem wachsenden Teilbereich einverleibt werden. Das Verfahren der Cut-Border Machine kann sowohl auf Dreiecksnetze als auch auf Tetraedernetze angewendet wer- den. Trotz der einfachen Struktur des Verfahrens kann eine sehr hohe Kompression- srate erzielt werden. Im Falle von Tetraedernetzen erreicht die Cut-Border Machine die beste Kompressionsrate von allen bekannten Verfahren. Die einfache Struktur der Cut-Border Machine erm¨oglicht einerseits die Realisierung direkt in Hardware und ist auch als Implementierung in Software extrem schnell. Auf der anderen Seite erlaubt die Einfachheit eine theoretische Analyse des Algorithmus. Gezeigt werden konnte, dass f¨ur ebene Triangulierungen eine leicht modifizierte Version der Cut-Border Machine lineare Laufzeiten in der Zahl der Knoten erzielt und dass die komprimierte Darstellung nur linearen Speicherbedarf ben¨otigt, d.h. -
A Congruence Problem for Polyhedra
A congruence problem for polyhedra Alexander Borisov, Mark Dickinson, Stuart Hastings April 18, 2007 Abstract It is well known that to determine a triangle up to congruence requires 3 measurements: three sides, two sides and the included angle, or one side and two angles. We consider various generalizations of this fact to two and three dimensions. In particular we consider the following question: given a convex polyhedron P , how many measurements are required to determine P up to congruence? We show that in general the answer is that the number of measurements required is equal to the number of edges of the polyhedron. However, for many polyhedra fewer measurements suffice; in the case of the cube we show that nine carefully chosen measurements are enough. We also prove a number of analogous results for planar polygons. In particular we describe a variety of quadrilaterals, including all rhombi and all rectangles, that can be determined up to congruence with only four measurements, and we prove the existence of n-gons requiring only n measurements. Finally, we show that one cannot do better: for any ordered set of n distinct points in the plane one needs at least n measurements to determine this set up to congruence. An appendix by David Allwright shows that the set of twelve face-diagonals of the cube fails to determine the cube up to conjugacy. Allwright gives a classification of all hexahedra with all face- diagonals of equal length. 1 Introduction We discuss a class of problems about the congruence or similarity of three dimensional polyhedra. -
Fundamental Principles Governing the Patterning of Polyhedra
FUNDAMENTAL PRINCIPLES GOVERNING THE PATTERNING OF POLYHEDRA B.G. Thomas and M.A. Hann School of Design, University of Leeds, Leeds LS2 9JT, UK. [email protected] ABSTRACT: This paper is concerned with the regular patterning (or tiling) of the five regular polyhedra (known as the Platonic solids). The symmetries of the seventeen classes of regularly repeating patterns are considered, and those pattern classes that are capable of tiling each solid are identified. Based largely on considering the symmetry characteristics of both the pattern and the solid, a first step is made towards generating a series of rules governing the regular tiling of three-dimensional objects. Key words: symmetry, tilings, polyhedra 1. INTRODUCTION A polyhedron has been defined by Coxeter as “a finite, connected set of plane polygons, such that every side of each polygon belongs also to just one other polygon, with the provision that the polygons surrounding each vertex form a single circuit” (Coxeter, 1948, p.4). The polygons that join to form polyhedra are called faces, 1 these faces meet at edges, and edges come together at vertices. The polyhedron forms a single closed surface, dissecting space into two regions, the interior, which is finite, and the exterior that is infinite (Coxeter, 1948, p.5). The regularity of polyhedra involves regular faces, equally surrounded vertices and equal solid angles (Coxeter, 1948, p.16). Under these conditions, there are nine regular polyhedra, five being the convex Platonic solids and four being the concave Kepler-Poinsot solids. The term regular polyhedron is often used to refer only to the Platonic solids (Cromwell, 1997, p.53). -
The Crystal Forms of Diamond and Their Significance
THE CRYSTAL FORMS OF DIAMOND AND THEIR SIGNIFICANCE BY SIR C. V. RAMAN AND S. RAMASESHAN (From the Department of Physics, Indian Institute of Science, Bangalore) Received for publication, June 4, 1946 CONTENTS 1. Introductory Statement. 2. General Descriptive Characters. 3~ Some Theoretical Considerations. 4. Geometric Preliminaries. 5. The Configuration of the Edges. 6. The Crystal Symmetry of Diamond. 7. Classification of the Crystal Forros. 8. The Haidinger Diamond. 9. The Triangular Twins. 10. Some Descriptive Notes. 11. The Allo- tropic Modifications of Diamond. 12. Summary. References. Plates. 1. ~NTRODUCTORY STATEMENT THE" crystallography of diamond presents problems of peculiar interest and difficulty. The material as found is usually in the form of complete crystals bounded on all sides by their natural faces, but strangely enough, these faces generally exhibit a marked curvature. The diamonds found in the State of Panna in Central India, for example, are invariably of this kind. Other diamondsJas for example a group of specimens recently acquired for our studies ffom Hyderabad (Deccan)--show both plane and curved faces in combination. Even those diamonds which at first sight seem to resemble the standard forms of geometric crystallography, such as the rhombic dodeca- hedron or the octahedron, are found on scrutiny to exhibit features which preclude such an identification. This is the case, for example, witb. the South African diamonds presented to us for the purpose of these studŸ by the De Beers Mining Corporation of Kimberley. From these facts it is evident that the crystallography of diamond stands in a class by itself apart from that of other substances and needs to be approached from a distinctive stand- point. -
Tetrahedral Decompositions of Hexahedral Meshes
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Europ. J. Combinatorics (1989) 10, 435-443 Tetrahedral Decompositions of Hexahedral Meshes DEREK HACON AND CARLOS TOMEI A hexahedral mesh is a partition of a region in 3-space 1R3 into (not necessarily regular) hexahedra which fit together face to face. We are concerned here with the question of how the hexahedra may be decomposed into tetrahedra without introducing any new vertices. We consider two possible decompositions, in which each hexahedron breaks into five or six tetrahedra in a prescribed fashion. In both cases, we obtain simple verifiable criteria for the existence of a decomposition, by making use of elementary facts of graph theory and algebraic. topology. 1. INTRODUcnON A hexahedral mesh is a partition of a region in 3-space ~3 into (not necessarily regular) hexahedra which fit together face to face. We are concerned here with the question of how the hexahedra may be decomposed into tetrahedra without introduc ing any new vertices. There is one well known [1] way of decomposing a hexahedral mesh into non-overlapping tetrahedra which always works. Start by labelling the vertices 1,2,3, .... Then divide each face into two triangles by the diagonal containing the first vertex of the face. Next consider a hexahedron H with first vertex V. The three faces of H not containing V have already been divided up into a total of six triangles, so take each of these to be the base of a tetrahedron with apex V. -
Topological Issues in Hexahedral Meshing
Topological Issues in Hexahedral Meshing David Eppstein Univ. of California, Irvine Dept. of Information and Computer Science Topological issues in hexahedral meshing D. Eppstein, UC Irvine, ATMCS 2001 Outline I. What is meshing? Problem statement — Types of mesh — Quality issues — Duality II. What can we mesh? Necessary conditions — Sufficient conditions for topological mesh — Geometric existence problem — bicuboid III. How well can we mesh? Mesh complexity — Provable quality IV. How can we make our meshes better? Point placement — topological changes — flipping — flip graph connectivity — bicuboid revisited Topological issues in hexahedral meshing D. Eppstein, UC Irvine, ATMCS 2001 I. What is Meshing? Given an input domain (manifold with boundary or possibly non-manifold geometry) Partition it into simple cells (triangles, quadrilaterals, tetrahedra, cuboids) Essential preprocessing step for finite element method (numerical solution of differential equations e.g. airflow) Other applications e.g. computer graphics Topological issues in hexahedral meshing D. Eppstein, UC Irvine, ATMCS 2001 Triangle mesh of Lake Superior [Ruppert] Topological issues in hexahedral meshing D. Eppstein, UC Irvine, ATMCS 2001 Quadrilateral mesh of an irregular polygon (all quadrilaterals kite-shaped) Topological issues in hexahedral meshing D. Eppstein, UC Irvine, ATMCS 2001 Triangle mesh on three-dimensional surface [Chew] Topological issues in hexahedral meshing D. Eppstein, UC Irvine, ATMCS 2001 Tetrahedral mesh of a cube Topological issues in hexahedral -
41 Three Dimensional Shapes
41 Three Dimensional Shapes Space figures are the first shapes children perceive in their environment. In elementary school, children learn about the most basic classes of space fig- ures such as prisms, pyramids, cylinders, cones and spheres. This section concerns the definitions of these space figures and their properties. Planes and Lines in Space As a basis for studying space figures, first consider relationships among lines and planes in space. These relationships are helpful in analyzing and defining space figures. Two planes in space are either parallel as in Figure 41.1(a) or intersect as in Figure 41.1(b). Figure 41.1 The angle formed by two intersecting planes is called the dihedral angle. It is measured by measuring an angle whose sides line in the planes and are perpendicular to the line of intersection of the planes as shown in Figure 41.2. Figure 41.2 Some examples of dihedral angles and their measures are shown in Figure 41.3. 1 Figure 41.3 Two nonintersecting lines in space are parallel if they belong to a common plane. Two nonintersecting lines that do not belong to the same plane are called skew lines. If a line does not intersect a plane then it is said to be parallel to the plane. A line is said to be perpendicular to a plane at a point A if every line in the plane through A intersects the line at a right angle. Figures illustrating these terms are shown in Figure 41.4. Figure 41.4 Polyhedra To define a polyhedron, we need the terms ”simple closed surface” and ”polygonal region.” By a simple closed surface we mean any surface with- out holes and that encloses a hollow region-its interior. -
Computational Meshing for CFD Simulations
Chapter 6 Computational Meshing for CFD Simulations Andreas Lintermann1 The original article is available under https://10.1007/978-981-15-6716-2_6 Abstract In computational fluid dynamics modelling, small cells or elements are created to fill the volume to simulate the flow in. They constitute a mesh where each cell represents a discrete space that represents the flow locally. Mathematical equations that represent the flow physics are then applied to each cell of the mesh. Generating a high quality mesh is extremely important to obtain reliable solutions and to guarantee numerical stability. This chapter begins with a basic introduction to a typical workflow and guidelines for generating high quality meshes, and concludes with some more advanced topics, i.e., how to generate meshes in parallel, a discussion on mesh quality, and examples on the application of lattice-Boltzmann methods to simulate flow without any turbulence modelling on highly-resolved meshes. 6.1 Introduction The segmented airway region from CT/MRI scans provides surface boundary informa- tion (see Chapter 5). The internal space, where inhaled air or particles pass through, is an enclosed volume formed by the surface boundaries. In computational fluid dynamics CFD modelling, small cells or elements are created to fill this volume. They constitute a mesh and thereby discretise the space. The mathematical equations that represent the flow physics (Chapter 6, and 7) are then applied to each cell of the mesh. The end result is the ability to store time-dependent flow properties such as pressure, velocity, or temperature in each individual cell. 1A. Lintermann Forschungszentrum Jülich GmbH email:[email protected] 85 86 CHAPTER 6. -
7 Dee's Decad of Shapes and Plato's Number.Pdf
Dee’s Decad of Shapes and Plato’s Number i © 2010 by Jim Egan. All Rights reserved. ISBN_10: ISBN-13: LCCN: Published by Cosmopolite Press 153 Mill Street Newport, Rhode Island 02840 Visit johndeetower.com for more information. Printed in the United States of America ii Dee’s Decad of Shapes and Plato’s Number by Jim Egan Cosmopolite Press Newport, Rhode Island C S O S S E M R O P POLITE “Citizen of the World” (Cosmopolite, is a word coined by John Dee, from the Greek words cosmos meaning “world” and politês meaning ”citizen”) iii Dedication To Plato for his pursuit of “Truth, Goodness, and Beauty” and for writing a mathematical riddle for Dee and me to figure out. iv Table of Contents page 1 “Intertransformability” of the 5 Platonic Solids 15 The hidden geometric solids on the Title page of the Monas Hieroglyphica 65 Renewed enthusiasm for the Platonic and Archimedean solids in the Renaissance 87 Brief Biography of Plato 91 Plato’s Number(s) in Republic 8:546 101 An even closer look at Plato’s Number(s) in Republic 8:546 129 Plato shows his love of 360, 2520, and 12-ness in the Ideal City of “The Laws” 153 Dee plants more clues about Plato’s Number v vi “Intertransformability” of the 5 Platonic Solids Of all the polyhedra, only 5 have the stuff required to be considered “regular polyhedra” or Platonic solids: Rule 1. The faces must be all the same shape and be “regular” polygons (all the polygon’s angles must be identical). -
One Shape to Make Them All
Bridges Finland Conference Proceedings Dual Models: One Shape to Make Them All Mircea Draghicescu ITSPHUN LLC [email protected] Abstract We show how a potentially infinite number of 3D decorative objects can be built by connecting copies of a single geometric element made of a flexible material. Each object is an approximate model of a compound of some polyhe- dron and its dual. We present the underlying geometry and show a few such constructs. The geometric element used in the constructions can be made from a variety of materials and can have many shapes that give different artistic effects. In the workshop, we will build a few models that the participants can take home. Introduction Wireframe models of polyhedra can be built by connecting linear elements that represent polyhedral edges. We describe here a different modeling method where each atomic construction element represents not an edge, but a pair of edges, one belonging to some polyhedron P and the other one to P 0, the dual of P ; the resulting object is a model of the compound of P and P 0. Using the same number of construction elements as the number of edges of P and P 0, the model of the compound exhibits a richer structure and, due to the additional connections, is stronger than the models of P and P 0 alone. The model has at least the symmetry of P and P 0, and can have a higher symmetry if P is self-dual. The construction process challenges the maker to think simultaneously of both P and P 0 and can be used as a teaching aid in the study of polyhedra and duality. -
Efficiently Hex-Meshing Things with Topology
Efficiently Hex-Meshing Things with Topology∗ Jeff Erickson Department of Computer Science University of Illinois, Urbana-Champaign ABSTRACT of decomposition is a hexahedral mesh. In this context, a hex- ahedron is a convex polyhedron that is combinatorially equiva- A topological quadrilateral mesh Q of a connected surface in 3 R lent to a cube: six quadrilateral facets, each in its own plane; can be extended to a topological hexahedral mesh of the interior twelve edges; and eight distinct vertices of degree 3. A hexahe- domain if and only if Q has an even number of quadrilaterals Ω dral mesh is a set of hexahedra that cover a specified domain, and no odd cycle in Q bounds a surface inside . Moreover, if Ω such that any two hexahedra intersect in either the empty set, a such a mesh exists, the required number of hexahedra is within vertex of both, an edge of both, or a facet of both. a constant factor of the minimum number of tetrahedra in a tri- angulation of Ω that respects Q. Finally, if Q is given as a poly- Now suppose we are given a (not necessarily convex) poly- 3 hedron in R with quadrilateral facets, a topological hexahedral hedron with convex quadrilateral faces. When can we construct mesh of the polyhedron can be constructed in polynomial time a hexahedral mesh of the interior of the polyhedron, such that if such a mesh exists. All our results extend to domains with dis- the boundary facets of the mesh are precisely the facets of the connected boundaries.