Journal of Nanoparticle Research 5: 529–537, 2003. © 2003 Kluwer Academic Publishers. Printed in the Netherlands. Cryochemistry of metal nanoparticles Gleb B. Sergeev Laboratory of Low Temperature Chemistry, Chemistry Department, Moscow State University, 119899, Moscow, Russia (Tel.: +7(095)939 5442; Fax: +7(095)939 0283; E-mail:
[email protected]) Received 20 March 2003; accepted in revised form 23 May 2003 Key words: metal nanoparticles, low temperature, solid state, encapsulation, sensor materials, spectroscopy, explosive reactions Abstract The interaction of metal atoms, clusters and nanoparticles with different organic and inorganic substances were studied at low temperature (10–40 K). Combination of matrix isolation technique and preparative cryochemistry was applied for the investigation of activity and selectivity of metal particles of different size. Encapsulation of metal nanoparticles in polymers was studied. The metal–polymer films thus obtained exhibited satisfactory sensitivity to ammonia. Introduction isolation technique and preparative cryochemistry. The interaction of metal particles with different organic The last decade of the 20th century was marked by the and inorganic substances will be presented in the first increased attention of scientists in the fields of physics, part of this article. In the second part we will consider chemistry, material science, etc., devoted to nanoparti- the encapsulation of metal nanoparticles in polymer cles, their synthesis, properties and different reactions. films and thus obtaining the nanosystems, exhibited The reason for this lies in the fact that particles of sensor activity. nanometer size exhibit peculiar properties. At present time the most interesting subject is the connection of chemical properties of metallic particles Reactions in low temperature with their size.