Proceedings of the Geologists’ Association 126 (2015) 426–437

Contents lists available at ScienceDirect

Proceedings of the Geologists’ Association

jo urnal homepage: www.elsevier.com/locate/pgeola

Geodiversity, geoconservation and geotourism in

Global Geopark of China

Lulin Wang *, Mingzhong Tian, Lei Wang

School of Earth Science and Resources, China University of Geosciences, Beijing 100083, China

A R T I C L E I N F O A B S T R A C T

Article history: In addition to being an international financial center, Hong Kong has rich geodiversity, in terms of a

Received 22 November 2014

representative and comprehensive system of coastal landscapes, with scientific value in the study of

Received in revised form 20 February 2015

Quaternary global sea-level changes, and esthetic, recreational and cultural value for tourism. The value

Accepted 26 February 2015

of the coastal landscapes in Hong Kong was globally recognized when Hong Kong Global Geopark

Available online 14 April 2015

(HKGG), which was developed under the well-established framework of Hong Kong Country Parks and

Marine Parks, was accepted in the Global Geoparks Network (GGN) in 2011. With over 30 years of

Keywords:

experience gained from managing protected areas and a concerted effort to develop geoconservation and

Coastal landscape

geotourism, HKGG has reached a mature stage of development and can provide a well-developed

Hong Kong Global Geopark

Geodiversity example of successful geoconservation and geotourism in China. This paper analyzes the geodiversity,

Geoconservation geoconservation and geotourism of HKGG. The main accomplishments summarized in this paper are

Geotourism efficient conservation management, an optimized tourism infrastructure, a strong scientific

interpretation system, mass promotion and materials, active exchange with other geoparks,

continuous training, and effective collaboration with local communities. This useful information for

preserving geoheritage and developing geotourism can help geoparks in the primary stage of

development in China and other countries.

ß 2015 The Geologists’ Association. Published by Elsevier Ltd. All rights reserved.

1. Introduction the geodiversity will be sustained. Furthermore, the geosite

concept, defining a geoheritage site as a place with scientific,

The concepts of geodiversity, geoheritage, geosites, geoconser- historical and cultural heritage interest, accessible for visits and

vation, geotourism and geoparks are closely related and have studies, is well acknowledged internationally (ProGEO, 1998; Cleal

significantly evolved in the last decade. The term ‘‘geodiversity’’ et al., 1999; Todorov and Wimbledon, 2004; Ruban, 2010; Ruban

was first used in 1993 as the geological equivalent of biodiversity and Kuo, 2010). Geodiversity, therefore, comprises a diversity of

(Sharples, 1993). A commonly used definition of geodiversity by geoheritage and can be quantified with an account of geosite types,

Gray (2013) is ‘‘the natural range (diversity) of geological (rocks, type counterparts, and their ranks.

minerals, ), geomorphological (landforms, topography, Geoconservation, now a growing activity, is defined by Prosser

physical processes), soil and hydrological features. It includes (2013) as ‘‘action taken with the intent of conserving and

their assemblages, structures, systems and contributions to enhancing geological, geomorphological and soil features, pro-

landscapes’’. Despite some initial resistance and concerns about cesses, sites and specimens, including associated promotional and

the validity of implied parallels with biodiversity, the term has awareness-raising activities, and the recording and rescue of data

gained international acceptance and its use has rapidly expanded or specimens from features and sites threatened with loss or

worldwide in recent years (Gray, 2008; Gordon et al., 2012; damage’’. In practice, it is thought to be a more concise way of

Erikstad, 2013; Gray et al., 2013). referring to geological, geomorphological and soil conservation

Geoheritage refers only to the components of geodiversity in a and relates to activities aiming to conserve various geosites for

given place (Dixon, 1996; Gray, 2004; Bruno et al., 2014) with the future generations (Prosser et al., 2013).

understanding that as long as the geoheritage sites are preserved, Among geodiversity settings, the most prominent examples of

geoconservation are geoparks (Yeung, 2008; Erikstad, 2013; Wang

et al., 2014; Dong et al., 2014). The organization of geoparks as a

tool for dissemination of the value for protected geosites can be

* Corresponding author. Tel.: +86 1082320640.

linked to the 1st International Conference on Geological Heritage

E-mail address: [email protected] (L. Wang).

http://dx.doi.org/10.1016/j.pgeola.2015.02.006

0016-7878/ß 2015 The Geologists’ Association. Published by Elsevier Ltd. All rights reserved.

L. Wang et al. / Proceedings of the Geologists’ Association 126 (2015) 426–437 427

in Digne, France in 1991 (Patzack and Eder, 1998). Reflecting the With numerous islands and a long coastline, the coastal

desire to strengthen both international recognition and local landscape is well developed. The region has a sub-tropical monsoon

appreciation of geodiversity, the European Geoparks Network was climate, characterized by high humidity, high temperatures, ample

established in 2000 (Zouros, 2002; Zouros and Martini, 2003). The rainfall, and frequent typhoons during the summer and autumn

year 2004 marked a further important step in cooperation and months (Davis, 1999; Yim, 2001). The average annual temperature,

geoconservation with the establishment of the UNESCO-endorsed rainfall and relative humidity are 23.1 8C, 2382.7 mm, and 78%,

Global Network of National Geoparks, known as the GGN, which respectively. Rivers in this area are mostly small, short waterways,

defines a geopark as a well-defined area that contains one or more the longest only about 8000 m in length. The headwaters are short

geoheritage sites selected on the basis of scientific importance, and the flow rapid, manifesting seasonal characteristics.

rarity, scenic quality, or relation to geological history, events and This area lies to the southeast of the Lianhuashan Zone of

processes (Eder and Patzak, 2004; UNESCO, 2014). As of November the Cathaysian block (Fig. 1a) and displays the same dominant

2014, 111 geoparks, including 31 in China, were current members structural trend (Campbell and Sewell, 1997; Sewell et al., 2000).

of the GGN, facilitated by UNESCO. The other 80 global geoparks This defines the linear nature of the coastline. The southeast

are distributed in 31 countries around the world. structural trend has controlled the geometry of the present river

With the rapid development of geoparks attheglobal, national and valleys, ridges, as well as the morphometry of the coastal estuaries,

regional levels, geotourism, which is tourism and recreation based on channels, bays and headlands (Fyfe et al., 2000).

geology and landscapes, has evolved into an important industry The terrain of this region is composed mainly of and

(Hose, 2000; Hose and Wickens, 2004; Dowling and Newsome, 2010; sedimentary rocks cropping out mainly in the Northeast

Zouros, 2010a,b; Jin and Ruban, 2011; Bruno and Perrotta, 2012; Region and the Late to

Farsani et al., 2012; Gordon, 2012; Hose and Vasiljevic, 2012) and is Early volcanic rocks with hexagonal columnar joints in

regarded as a vehicle for geoconservation (Hose, 2011). the Sai Kung Region (Lee et al., 1997; Sewell et al.,

As the current part of the geological record, Quaternary 2012). The details of the present landscape of Hong Kong were

geoheritage is widespread, with a cover of superficial (drift) formed mainly during the Quaternary, evolving slowly as the

deposits of this age in many lowland regions and preserved crustal plates migrated, tectonic forces raised and depressed the

landforms related to Quaternary processes in uplands (Bridgland, land, the climate changed, and the sea level fluctuated. From the

2013). Thus, in accordance with geodiversity (Gray et al., 2013), Paleocene to the Quaternary, the area experienced crustal uplift

Quaternary geoheritage is of great value because of the wide range affected by the Himalayan Orogeny. Persistent weathering and

of environmental changes and processes represented in this strong wave further sculpted the landscapes of Hong Kong.

period, many of which record the glacial-interglacial climatic As the last glacial period came to an end, the sea level rose. Peaks

fluctuations that have been the over-arching characteristic of this created by crustal uplift were partially submerged and became

geological era (Brown and Gordon, 2011). However, Quaternary islands. A new coastline was established, with typical coastal

geoheritage tends to be ‘‘high-maintenance’’ (Burek, 2012; Bridg- depositional landforms forming in sheltered locations and diverse

land, 2013), since the conservation objects are generally Quater- coastal erosional landforms developing in the steeper, more

nary sediments of superficial and unconsolidated nature, such as exposed eastern area (Li and Yan, 1999).

loess, and landforms that are constantly developing and changing,

such as karst and coastal landforms (Tian and Cheng, 2009). These 3. Geodiversity and geosites

factors confirm that Quaternary geoheritage represents an

important element of geoheritage, and is worth protecting from The HKGG has well preserved geodiversity due to minimal

possible threats, and promoting as a significant and attractive exposure to humans. The main geoheritage is the coastal land-

component of geodiversity. Quaternary geology is an important scapes (see Table 1 and Fig. 2). Hong Kong is blessed with a long

focus of geoparks such as HKGG (Tian, 2012). The HKGG, approved indented coast. The shorelines within the geopark boundary

by the GGN Bureau in 2011, has an extensive coastal landscape of extend for over 150 km, showcasing a representative and

scientific, esthetic, recreational and cultural value, with geocon- comprehensive system of coastal features. Of particular note are

servation sites which provide a detailed record of climatic and the large-scale hexagonal columnar jointed volcanic rocks, a

environment changes throughout the Quaternary (Fyfe et al., 2000) world-class geological attraction (Fig. 2a and e–i). The coastal

and is the important site for studying global sea-level changes landscapes are controlled primarily by the orientation or aspect of

(Yim, 1999; et al., 2003; Zhang and Ge, 2013). The the coastal sections and the characteristics of the rocks. Coastal

establishment of HKGG has not only opened up new opportunities processes have shaped the outline of Hong Kong, controlling the

and created enthusiasm for geoconservation, but has also provided base level of streams, and determining the fate of fluvial sediments

a major geotourism destination and attraction (Wu et al., 2011). In (Fyfe et al., 2000). Tide, wind and waves are the main driving forces

this paper the coastal geoheritage of HKGG is described in terms of of the coastal processes, resulting in an abundant geoheritage of

its characteristics and landform-forming processes. Geoconserva- coastal landscapes, including diverse coastal types, coastal

tion and geotourism in HKGG are analyzed, and HKGG’s successful erosional landforms and coastal depositional landforms. This has

experience in preserving geoheritage and developing geotourism created a rugged, often cliffed coastline with an intricate pattern of

are discussed, as it provides useful information for the future headlands and bays, and a number of small islands in the east areas

development of geoparks in China. of the geopark (Morton, 1996), where coastal erosion predomi-

nates. In contrast, due to less dynamic formation conditions, the

2. Study area west area of HKGG has a more subbed, depositional coastline of

beaches and muddy tidal inlets. In the south part of the geopark,

The HKGG is situated in the northeast part of Hong Kong, the erosion of volcanic rocks has resulted in the development of

bordering in the north and facing the South China steep cliffs, which are normally fronted by rocky wave-cut

Sea in the south (Fig. 1a). The geopark covers two regions – the platforms.

Northeast New Territories Sedimentary Rock Region and the Sai The coastal geoheritage features in the study area are classified

0 00 0 00 0 00

Kung Volcanic Rock Region (22815 11 to 22833 11 N; 114812 59 on the basis of their characteristics and the processes that formed

0 00

to 114826 32 E), which are divided into eight geo-areas, them (Table 1), and the geosites are determined as geomorphologic

2

distributed over a total area of 49.85 km (Fig. 1b). sites (geomorphosite) (Panizza, 2001).

428 L. Wang et al. / Proceedings of the Geologists’ Association 126 (2015) 426–437

Fig. 1. Study area. (a) Simplified tectonic map of Southeast China. The bold black dashed line denotes the Lianhuashan Fault Zone. The red box shows the present study area.

(b) Distribution of coastal landscapes in HKGG with location of cultural and ecological sites (revised by Yeung and Chan, 2010). (1) Beach (Cheung Sha Wan); (2) Abrasion

Canyon; (3) Corals and Seaweed Beds; (4) Tin Hau Temple; (5) Marine Terrace; (6) Sea Cave; (7) Wave-cut Platform; (8) Sea Stacks; (9) Tin Hau Temple; (10) Hakka Fishing

Village; (11) Sand Spit (Pak Sha Tau Tsui); (12) Biogenic Coast (); (13) Hakka Fishing Village; (14) Muddy Coast; (15) Wave-cut Platform (Yan Chau); (16) Muddy

Coast; (17) Corals; (18) Corals; (19) Muddy Coast; (20) Sandy Coast; (21) Sandy Coast; (22) Sandy Coast; (23) Shell Bank; (24) Fish-culture Zone; (25) Fish-culture Zone; (26)

Beach(Tai Long Wan); (27) Beach(Ham Tin Wan); (28) Beach(Sai Wan); (29) Rocky Coast; (30) Beach(Long Ke Wan); (31) Sea Cave; (32) Sea (Po Pin Chau); (33) Beach

(Pak Sha Chau); (34) Beach; (35) Tombolo; (36) Tin Hau Temple; (37) Sea Arch( Kok); (38) Corals; (39) Rocky Coast; (40) Sea Arch(Lam Wan Kok); (41) Sea

Cliff(); (42) Sea Arch(Sha Tong Hau); (43) Rocky Coast; (44) Sea Cave; (45) Tin Hau Temple. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

L. Wang et al. / Proceedings of the Geologists’ Association 126 (2015) 426–437 429

Table 1

Summary of coastal landscapes in HKGG.

Class Type Distribution

Coast Rocky coast Along the southern coast of HKGG

Sandy coast In and

Muddy coast North of HKGG

Biogenic coast Mangroves along the coast of Lai Chi Wo and northeastern deep bay of HKGG

form the most typical biogenic coast

Coastal erosional landform Sea cave The northeastern and southern coast of HKGG

Sea cliff Southeast of HKGG, the tallest around Bluff Island

Sea arch Along the southeastern coast of HKGG

Sea stack Po Pin Chau, eastern

Wave-cut shore platform South of Tung Ping Chau, Yan Chau in

Abrasion canyon Northwest of Tung Ping Chau

Marine terrace Southwest of Tung Ping Chau

Coastal depositional landform Beach Cheung Sha Wan on Tung Ping Chau, Tai Long Wan, Pak Sha Chau, Kiu Tau,

Sai Wan, Long Ke Wan, Ham Tin Wan

Sand spit Pak Sha Tau Tsui at the northwestern corner of HKGG

Tombolo at southeastern HKGG

Shell bank The southern coast of

3.1. Coastal types the 30-m-high Tiu Chung Arch and the 24-m-high Sha Tong Hau

Arch (Yeung and Ng, 2008).

The coastal types in HKGG are classified according to material

composition as the coasts of rock (Fig. 2a), sand (Fig. 2b), mud 3.2.4. Sea stack

(Fig. 2c) or biogenic material (Fig. 2d). The distinctive morphology Sea stacks in HKGG are well developed and some have a

of the coastal types is chiefly determined by their position relative spectacular shape, making them a popular destination for both locals

to the main fluvial influences, in particular those from the Pearl and tourists. Po Pin Chau, in the south part of HKGG is a sea stack

River, and the main oceanic regimes (Huang, 1984). (Fig. 2i). It was once a headland, part of Fa Shan, but cracks between

the vertical volcanic rock columns expanded gradually under the

3.2. Coastal erosional landforms relentless impact of waves and erosion, forming first a sea cave and

then a sea arch. The top of the sea arch eventually collapsed,

A great many steep, rocky coasts in HKGG have been visibly separating what is now Po Pin Chau from the main island, forming an

changed by wave erosion. Soluble rock in the north part of the isolated sea stack. Another two huge sea stacks are about 7–8 m

geopark, such as and dolomite, dissolves as waves wash high, situated on a wave cut platform on Tung Ping Chau, at the

against it (Nau, 1979; Taylor et al., 1990; Lai, 1991), and the more northeast tip of HKGG. The sea stacks are well known as watchtower

durable rock in the south part of the geopark, such as rhyolitic , stones after their shapes, which is like the ‘‘watchtower’’ of an

has been fractured by the enormous pressures caused by waves ancient village. The perspective views on the top of sea stacks

slamming into it (Davis et al., 1997). generate a feeling of the mystery of nature (Fig. 2j).

3.2.1. Sea cave 3.2.5. Wave-cut platform

In the northeast part of HKGG, sea caves, 1–2 m high and 0.5– Rocky wave-cut platforms are distributed along the north coast

1 m wide, are linearly distributed along the bottom of the of HKGG. The width and morphology of these wave-cut platforms

sedimentary rock beds, which are easily eroded by seawater. depend on wave energy, lithology, position of the surf zone, and

The south part of HKGG has well developed sea caves 5–7 m high, tidal range (Trenhaile, 2000, 2001; Dickson, 2006; Waele et al.,

1–2 m wide and 3–5 m long (Fig. 2e). The caves are developed both 2009). Owen (1995) described two types of platforms, sub-tidal

above and below sea level. Several shallow underwater sea caves and supra-tidal, both of which generally slope gently seawards.

exist off the coast and on the islands, providing important evidence Sub-tidal platforms are present around Tung Ping Chau in the east

of sea-level change. part of Mirs Bay, which is open to direct wave action from the

South China Sea (Fig. 2k). The platforms were formed by erosion

3.2.2. Sea cliff from high-energy wave action. There are supra-tidal platforms in

The coastlines in the southeast part of HKGG are made up of sheltered areas of Double Haven, where the impact of wind and

volcanic rocks, some of which have almost vertical columnar waves is minimal, but erosion caused by salinity and weathering is

joints. These characteristic columnar joints, along with strong common. Yan Chau is a supra-tidal platform with an interesting

wave action, have led to the formation of high, steep cliffs, shape, like that of a stone seal (Fig. 2l). It is one of the famous

spectacular formations of high scientific value (Xing et al., 2011). geosites called ‘‘Six Treasures of Double Haven’’.

The tallest sea cliffs in HKGG, around 140 m high, are around

Bluff Island (Fig. 2f). Sea caves have developed in some of the 3.2.6. Abrasion canyon

cliffs. In the northeast part of the geopark there is an abrasion canyon.

The north-south interlinked canyon, 5 m wide, 10 m high and 20 m

3.2.3. Sea arch long, was originally part of the main island of Tung Ping Chau,

When two sides of a sea cave sustain continuous, violent wave but was penetrated and then separated by wave erosion along a

erosion, the water eventually breaks through, forming a sea arch. north-south trending fault (Zhang et al., 2009) (Fig. 2m).

Along the southeast coast of HKGG, the collapse of some of the

volcanic rock columns has resulted in fascinating tall sea arches. 3.2.7. Marine terrace

The top four sea arches in HKGG are the 45-m-high Lam Wan Marine terraces along rocky coastlines in northeast HKGG are

Kok Arch (Fig. 2g), the 40-m-high Wang Chau Kok Arch (Fig. 2h), controlled by changes in environmental conditions and by tectonic

430 L. Wang et al. / Proceedings of the Geologists’ Association 126 (2015) 426–437

activity in recent geological times. Southwest of Tung Ping Chau is foundation has provided an important framework for geocon-

a well-defined sequence of uplifted marine terraces from the servation in HKGG. At present, HKGG is protected by the Country

Holocene (Zhang et al., 2009), featuring a well preserved lower Parks Ordinance and Marine Parks Ordinance, which forbid all

terrace, a widely eroded higher terrace and another still higher activities that may destroy the biological, geological or cultural

terrace, which rises over 20 m above sea level (Fig. 2n). environment in the geopark. The Agriculture, Fisheries and

Conservation Department (AFCD) is charged with the legal

3.3. Coastal depositional landforms responsibility of developing and managing the protected areas

(Wong, 2013). This legal framework not only has ensured the

The coasts along the west part of HKGG were primarily shaped formal protection of the geosites in HKGG, but is the foundation

by sediment deposition, particularly by longshore drift of sand. for planning and managing HKGG.

3.3.1. Beach 4.2. Zoning for geoconservation

The beaches in Pak Sha Chau, Sai Wan, Long Ke Wan, Kiu Tau

and Tai Long Wan (Fig. 2o) are the most significant depositional Gray (2005) stated that geodiversity should be conserved for

features (Yu et al., 2013). Like most of the beaches in and around two main reasons – its value and threats against it. Geodiversity

HKGG, they are formed on coasts with a southerly aspect, facing should be protected not only for its fragility or potential

the prevailing wind and waves. The beach sediment is sand, irreversible loss, but for its enormous value to mankind, from its

typically quartz-rich. The beach at Ham Tin Wan is noted for large cultural, esthetic and economic value to its functional and

waves with very long wavelengths that are associated with educational benefits. In 2009, public deliberations in Hong Kong

collapsing or surging breakers. Consequently, they build a steep indicated a clear consensus to place geodiversity at the top of the

beach profile. agenda, particularly in view of its value for geotourism and

education. The three-tier protection zoning system HKGG subse-

quently introduced was based on this consensus (see Table 2 and

3.3.2. Sand spit

Fig. 3).

The sharp sand spit at Pak Sha Tau Tsui, in the northwest corner

Core Protection Areas in HKGG are places which have been

of HKGG resembles an ink brush (Fig. 2p). Vast amounts of sand

preserved in their natural state and are very sensitive to human

were moved by longshore transport and built up off a point of land,

impact. These places have, therefore, been designated mainly for

forming a sand spit, a fingerlike ridge of sediment that extends out

conservation purposes. No infrastructure is permitted, including

into the open water.

pier or trails, as they have low carrying capacity and are often

dangerous for casual visitors. In order to protect important

3.3.3. Tombolo

geoheritage and prevent accidents due to strong waves and steep

There is special tombolo in the southeast part of the geopark,

cliffs, visitors are not encouraged to land in these areas. Sightseeing

which is a striking but rare feature formed by longshore drift.

is suitable only on boat tours on calm summer days.

At low tide, the 700-m-long gravel tombolo emerges, linking

Special Protection Areas are places which already have basic

Sharp Island with Kiu Tau, a much smaller island, allowing

visitor facilities, such as trails, and thus have medium carrying

visitors to walk from Sharp Island to Kiu Tau along the tombolo

capacity and sensitivity. Apart from conservation purposes, these

(Fig. 2q). The unique tombolo and picturesque beauty and

places are ideal for education and science popularization.

views have made Sharp Island one of most popular geosites in

Integrated Protection Areas have high carrying capacity. Most

recent years.

visitor facilities, such as kiosks, barbeque sites, and camping sites,

are already in place in these geopark areas. Thus, in addition to

3.3.4. Shell bank conservation and education, these places can serve recreational

On the south coast of Ma Shi Chau is a layered shell bank, about purposes (Yeung and Chan, 2010).

5 m wide and 80 m long (Fig. 2r), consisting mainly of mollusk

shells and shell fragments. The shell bank indicates a relocation of 4.3. Local communities and young people – the main force of

the ancient coastline, and is a good resource for studying the geoconservation

history of the coast development.

As ignorance is thought to be one of the greatest threats to

4. Geoconservation in HKGG geodiversity (Gray, 2004, 2008; Hose, 2005), one of the best ways

to raise the public awareness of the value of the geoheritage is

4.1. Conservation legal framework through education and promotion (Dunbar, 2007; Loon, 2008). In

the early stage of the geopark project in Hong Kong, when the

Hong Kong, like many big cities, faces strong pressure for geopark concept was new to the local community, the AFCD

development with its high population density, so there is always started consulting and liaising with local organizations. As trust

a temptation to encroach on sensitive sites for various social uses, and confidence developed, a number of local engagement projects

such as roads, utilities or housing. Other potential pressure on the were initiated as a way to enhance public awareness of

geopark comes from natural hazards and visitor impact. The geoheritage, such as setting up local geoheritage centers, organiz-

subtropical climate with high precipitation in summer accel- ing geological tours and events, and developing and promoting

erates the weathering and erosion of the geoheritage and cultural geopark cuisine. Over time, they have created a respectful and

relics in the geopark. For example, falling hexagonal columns on mutually beneficial relationship with the local communities,

the sea cliffs pose a potential danger to visitors. Human factors which is a valuable and integral asset to the geopark. The

also present a threat, as visitors who do not follow the economic benefits gained through sustainable tourism and

geoconservation code, for example, may cause damage to the revitalization of traditional culture provide incentives for local

rocks and landforms by digging, defacing, littering, and so forth. people to support conservation in their area. Furthermore, formal

Thus, legislation protecting the geodiversity is important for the school groups are the most typical and easiest group to engage

sustainability of the geopark. Since the designation of first with local geodiversity (Worton and Gillard, 2013). HKGG

Hong Kong Country Parks in the 1970s (Yeung, 2007), the legal organizes activities and provides logistical support to convey

L. Wang et al. / Proceedings of the Geologists’ Association 126 (2015) 426–437 431

432 L. Wang et al. / Proceedings of the Geologists’ Association 126 (2015) 426–437

Table 2

The three-tier protection zoning system of HKGG (Yeung and Chan, 2010).

Protection level Vulnerability Carrying capacity Naturalness Safety level Locality name

Core Protection Area High Low High Low Fa Shan of , and Ung Kung Group

Special Protection Area Medium Medium Medium Medium Ma Shi Chau, and East Dam

Integrated Protection Area Low High Medium High Lai Chi Wo, Tung Ping Chau, Sharp Island and Tai Long Wan

geoscientific knowledge and environmental and cultural concepts story about a certain coastal feature or an entire coastal

to students. This is accomplished through protected and inter- landform, for example, catering for visitors of different

preted geosites, geoheritage centers, trails, guided tours, school backgrounds. The materials are currently available on the

class excursions, educational materials and displays, seminars, HKGG website and in its publications.

and so on. One such activity organized for young people is a (2) Quality tour guides are essential for providing worthwhile

rock-cleaning activity for students (Fig. 4a). The activity not only tours for visitors. In Hong Kong, there are currently over

effectively restores the natural appearance of the rocks, but helps 5000 tour guides, but the number of geotourism guides is

the participants understand the irreversible impact of the limited. In order to encourage existing tour guides to upgrade

destruction of our invaluable geoheritage. HKGG has also put a their skills and knowledge to provide high-quality geotours, a

lot of effort into providing training for teachers so that they can two-level tour-guide system for HKGG has been developed:

carry out geological education activities such as ‘‘Rock Classroom’’ Recommended Geopark Guides (R2G) and Accredited Geopark

and ‘‘Rock Academy’’ on their own. In terms of HKGG’s contribution Guides (A2G). Routine training and periodic assessments for

to promotion and geological education, a growing number of local the guides have been organized (Fig. 4b). The training includes

communities and young people are getting enthusiastically basic knowledge of the geosites in HKGG, covering geology,

involved in geoconservation, which sustains the geopark’s culture and ecology; an understanding of the code for visiting

conservation efforts now and in the long term. geosites in HKGG, especially regarding safety requirements and

geoconservation; and seminars on geotourism. In addition,

5. Geotourism in HKGG effective interpretation can contribute to sustainable tourism

and recreation (Moscardo, 1998). A Hong Kong Geopark

Supported by its strategic location as the gateway to China’s Handbook for tour guides was published, with voice-over in

huge, rapidly expanding market, Hong Kong is a world famous free , English, Putonghua, Japanese and Korean, which

port and modern metropolis. In addition to being an international has greatly facilitated interaction between the guides and

financial center, Hong Kong boasts a wealth of geosites, in foreign visitors.

particular, a representative and comprehensive coastal landscape, (3) For the development of geotourism and sustainable geological

which presents a wide range of geological and geomorphological education, the HKGG has set up two visitor centers and four

features. Geodiversity, together with an appealing ecological local geoheritage centers as a partnership project among local

environment, creates an attractive tourist product. For this reason, villagers, local environmental organization and the govern-

with the rapid development of HKGG, geotourism has evolved to ment (Fig. 4c and d). These centers function both as transport

become a hot new industry, which can help promote geoconserva- hubs to the geosites in HKGG and museums to enrich visitors’

tion and an understanding of earth science through appreciation experience and knowledge. Combining pictures, text and

and learning (Newsome and Dowling, 2010; Hose, 2011, 2012). modern technology (interactive panels, presentations and

The development of geotourism through HKGG which is one of audiovisual effects), the exhibits in the centers give an

the first geoparks in the world to be established in a densely overview of HKGG including general information about the

populated metropolis, illustrates that geotourism can occur in coasts, coastal features, formation processes of coastal land-

urban areas just as appropriately as in natural areas (Zhang, 2000; forms, geopark coastal landscapes and their scientific value,

Ng, 2007; Ng et al., 2010; Dowling, 2010). In order to harmonize marine life and cultural relics.

the geoheritage and urban contexts of HKGG, various measures (4) A number of cultural and ecological sites can be found in the

had been taken to develop geotourism and good results have been geopark, such as Tin Hau temples (Fig. 2s), traditional Hakka

obtained. fishing villages dating back to the late 18th century (Fig. 2t),

several fish-culture zones (Fig. 2u), and more than 60 hard coral

(1) The most important aspect of geotourism is interpreting the species and extensive seaweed beds in the surrounding waters.

geoheritage information in a way that makes it easily Eight geotrails and two boat-tour routes have been developed

accessible and understandable to the public. Accordingly, to link these cultural and ecological sites with the geological

HKGG developed an integrated interpretation system, which highlights of the sites (Fig. 4). Along the geotrails, the

comprises different types of geological interpretation in five geodiversity is explained, including its relationship with the

levels, from easy (level 1) to expert (level 5). For example, two surrounding biodiversity, and the historical and cultural

to three levels must meet the needs of the majority of visitors, aspects of the region. Information is shared through interpre-

so there are clear guidelines that ensure all interpretation tive panels, leaflets and signs (Fig. 4e). To provide high-quality

materials are easily understandable. Geological jargon and boat tours, the geopark and local boat rental companies have

esoteric terms are avoided to some extent. The information had two geopark-themed yachts designed (Fig. 4f), with

uses an imaginative combination of text and visuals to tell a geopark decorations on both the interior and exterior. Visitors

Fig. 2. Photos of typical coastal landscapes in HKGG. (a) Rocky coast; (b) Sandy coast; (c) Muddy coast; (d) Mangrove coast; (e) Sea cave; (f) Sea cliff; (g and h) Sea arch; (i and j)

Sea stack; (k) Sub-tidal platform; (l) Supra-tidal platform; (m) Abrasion canyon; (n) Marine terrace; (o) Beach; (p) Sand spit; (q) Tombolo; (r) Shell bank; (s) Tin Hou Temple;

(t) Traditional Hakka Fishing village; (u) Fishermen in the fish-culture zone.

All the photos provided by the Agriculture, Fisheries and Conservation Department.

L. Wang et al. / Proceedings of the Geologists’ Association 126 (2015) 426–437 433

Fig. 3. Map of protection zones of HKGG (revised by Tian et al., 2009).

can learn about the geology of coast as they cruise past the (6) HKGG stimulates economic activity and sustainable develop-

coastal landscape. ment through geotourism. The coastal geosites are an

(5) To promote HKGG as a brand for visitors, a geopark logo was important element in the economic development of the region

designed, comprising eight columns, representing the special and the center of geotourism development. HKGG is located in

hexagonal volcanic columns in HKGG (Fig. 4g). The logo won the northeast part of Hong Kong (Fig. 1), which is relatively

‘‘The Outstanding Greater China Design Awards 2010’’. unpopulated except for traditional villages dependent on

434 L. Wang et al. / Proceedings of the Geologists’ Association 126 (2015) 426–437

Fig. 4. Geoconservation activities and geotourism facilities in HKGG. (a) Rock-cleaning activity; (b) Training for the guides; (c) Visitor center; (d) Geoheritage center; (e)

Interpretive panels outside; (f) Geopark-themed yacht; (g) Logo of HKGG; (h) Geopark gourmet; (i) Safety warning board; (j) Interpretive panel corresponding to the stop on

geotrail; (k) Definitive stamps of HKGG; (l) Science popularization publications of HKGG available in the bookstore; (m) Geopark hotel with videos and the leaflets of HKGG in

the lobby.

All the photos provided by the Agriculture, Fisheries and Conservation Department.

L. Wang et al. / Proceedings of the Geologists’ Association 126 (2015) 426–437 435

fishing, mariculture and agriculture. However, these primary wardens, while the remote coastal areas are patrolled using

industries have been declining in recent decades due to rural- Marine Parks patrol vessels, in order to prevent any illegal

urban migration and the decline in fishery resources. To assist development or activities.

fishermen in the geopark area who have been affected by (2) Optimizing the tourism infrastructure

declining harvests, HKGG has been providing them with Most of the geosites in HKGG are in close proximity to the

training and assistance with a view to engaging them as boat city, and Hong Kong’s well-developed public transport system

operators or tour guides for geotourism to help them increase makes it easy for individual visitors to visit most geosites in the

their income. In addition, with a view to promoting the coastal integrated protection areas and special protection areas on

landscape in an interesting and understandable way through their own. The eight main geotrails in the geopark (Fig. 4) are

nonconventional means while engaging the local community, accessible by public bus, minibus, ferry, or a combination of

HKGG, together with Council and the Sai Kung these, along with hiking. To help visitors choose and prepare for

Food and Beverages Association, has been working with Sai the visit, the geopark website provides video clips, public

Kung restaurants to make gourmet meals depicting geological transport information, trail length and difficulty level, a map

concepts, such as typical coastal landforms in HKGG (Fig. 4h). and highlights of each trail, as well as a trail leaflet, which can

Four leading restaurants are participating in the project and be downloaded and printed (http://www.geopark.gov.hk/

over 10 dishes have been developed. en_s5a.htm), or obtained at geopark visitor centers. Basic

visitor facilities, such as piers, trails, safety warning boards

(Fig. 4i) and toilets, are provided.

6. Discussion

(3) Strong scientific interpretation system

In general, the interpretation of geosites may be easy and

The focus of geoparks is geoheritage, geology and landscapes,

interesting to geoscientists but difficult and dull for non-

which are part of an integrated concept of protection, education

specialists. As pointed by Hose (2012), geo-interpretation is not

and sustainable development. Geoparks achieve their goals

about ‘‘dumbing down’’ the science but rather developing

through geoconservation, education and geotourism (Dowling,

vehicles to convey a message to tourists using a gradual

2010; Tian, 2012). With the rapid development of geoparks in

journey of knowledge. Thus, the major point of interpretation is

China, the geoparks have made some significant advances in

the phrase ‘‘as perceived by people’’ (Erikstad, 2013). Since

implementing geoconservation and developing geotourism.

Hong Kong National Geopark was approved by the Ministry of

However, some geoparks in China are still in the primary stage

Land and Resources (MLR) of China in 2009, interpretative

of development, and there remain problems restricting the

boards and panels for the geosites have been upgraded several

positive development of geoconservation and geotourism that

times to ensure that visitors find the content interesting and

need to be addressed, such as inefficient conservation manage-

easy to understand. All the panels have undergone a series of

ment, the lack of geopark legislation, ineffective interpretation of

editorial revisions to simplify the content for easy understand-

geological features for visitors, uninspiring museum exhibits,

ing and are provided in English and Chinese. After several years

and a lack of local community participation, all of which affect

of exploration and experience, all the interpretative boards and

the development of geotourism (Dong et al., 2014; Wang et al.,

panels now have a standard format with eight elements: (1) the

2014). The establishment of HKGG marked a new phase of nature

GGN logo, the National Geopark of China logo and the Hong

conservation in Hong Kong, and with its development reaching

Kong Geopark logo to increase geopark visibility; (2) a concise

the mature stage, it can be used by the geoparks in China and

and interesting heading; (3) a short explanation of the main

other countries which are still in the primary stage of

geosite features; (4) diagrams illustrating the formation of the

development as a model of good practices for geoconservation

features; (5) a representative photo of the feature; (6) a map

and geotourism. To summarize the development of HKGG, the

showing the geotrail and location of the panels along the trail;

successful experience is as follows:

(7) the code number of the geosite; and (8) a mark indicating

the location of the panel (Fig. 4j). To cater for the needs of boat

(1) Effective conservation management

tours, a special interpretation system has been designed, using

The HKGG is managed under the previously existing

a speaking pen and a special map which allow tourists to listen

management framework for protected areas in Hong Kong. This

to an interpretation text by pointing to a geosite on the map.

management system comprises three bodies: the policy maker,

(4) Mass promotion and education material

which is the , advisors, which form a Task

Force, and the management authority, which is the AFCD. The AFCD has teamed up with the Hong Kong Tourism Board

to promote HKGG to visitors by organizing and participating in

The Environment Bureau of the Hong Kong Government is

exhibitions and geo-cultural activities. With the support of a

the policy bureau for HKGG. It formulates the related policies

local business group involved in the transport industry, videos

and offers direction to the operations department. The Task

on various interesting geosites in HKGG and an MTV clip of the

Force on HKGG was established to give advice on strategies for

HKGG theme song have been broadcast on public buses and

the development of HKGG. The Task Force members include

ferries. The broadcasts have greatly aroused the public’s interest

academic experts, geologists, representatives of nongovern-

in the geosites. On 24 July, 2014, Hong Kong Post launched a new

mental organizations, government officials and overseas

set of definitive stamps with 16 different denominations with

advisors. Working together with the policy maker and advisors,

‘‘HKGG of China’’ as the theme (Fig. 4k). These definitive stamps

the AFCD is the statutory management authority of the

display the unique coastal landscape of HKGG. According to

geopark. It is responsible for all aspects of the implementation

UNESCO (2014), geoparks should have three targets: conserva-

of the geopark project, including conservation, management,

tion, education and development of the local economy through

visitor services, etc. Under the Country and Marine Parks

geotourism. It can be said that among the main goals of geoparks

Branch of the AFCD, five divisions are involved in the

are preserving unique geoheritage and introduce it as a tourist

management of the geopark. The daily management duties

attraction, and popularizing geological science. Over the last

of HKGG are shared among different divisions of the depart-

decade, the AFCD has partnered with many nongovernmental

ment. For example, foot patrols are carried out by park

436 L. Wang et al. / Proceedings of the Geologists’ Association 126 (2015) 426–437

organizations to publish over 200 books, which are sold in major (2) Optimization of tourism infrastructure.

bookstores in Hong Kong (Fig. 4l). This has proved to be the most (3) Reinforcement of the science interpretation system.

effective means of science popularization and has been widely (4) Effectiveness of mass promotion and education.

welcomed by the public. (5) Taking the initiative in organizing exchange and learning

(5) Active exchange and training activities activities.

To ensure that HKGG policies are in line with the GGN (6) Engaging in close collaboration with local communities.

requirements, representatives from HKGG have visited over

20 geoparks in mainland China, Japan, Australia and Europe to Through these effective measures and unremitting effort, HKGG

learn from good examples, and Mainland and overseas experts has become a major tourist destination, and this can be used as a

have been invited to visit HKGG to give valuable advice. Every model for the development of geoconservation and geotourism in

year representatives from HKGG also attend various conferences other geoparks. One serious challenge that HKGG faces, however, is

organized at home andabroad. These visits have been very useful the potential conflict between geoconservation and scientific

in helping to identify areas for improvement and in learning how observation. In HKGG, there are designated geoheritage protection

to make changes. HKGG has also established a sister arrange- areas, but there is no clear indication of places where sampling is

ment with six global geoparks, such as English Riviera Global allowed or prohibited for scientific study. In the long run, we

Geopark, United Kingdom; Arch Caves Global Geopark, suggest HKGG designate certain areas where geologists have

United Kingdom/Republic of Ireland; and Geo-Naturpark access to samples for geoscience research.

Bergtrasse-Odenward, Germany. In general, activities with the

six sister geoparks include organizing workshops, mutual Acknowledgements

promotion, exchanging specimens for display, and mutual visits.

In addition, arrangements are made to ensure that all geopark This work was supported by an investigation program of the

staff receive basic training on geology, geoconservation, AFCD, of the Government of the Hong Kong Special Administra-

geotourism and geoparks, which not only is fundamental to tive Region (Grant No. AFCD/SQ/92/14). We are very grateful to

the good management of the geopark, but also supplements and Dr. Ka-ming Yeung, Alvin Ng and T.K. Woo of the geopark division

strengthens the work of geoconservation and geotourism. of the AFCD for their help during the field investigation.

(6) Collaboration with local communities

HKGG’s efforts and experience in encouraging local

References

participation in HKGG could be of great value in geoconserva-

tion and geotourism. Geoconservation has gradually become a Brown, E., Gordon, J., 2011. Climate change: learning from our geological past. Earth

strong movement in local communities in Hong Kong since the Heritage 35, 25–26.

Bruno, D.E., Crowley, B.E., Gutake, J.M., Moroni, A., Nazarenko, O.V., Oheim, K.B.,

Association for Geoconservation, Hong Kong (AGHK) was set up

Ruban, D.A., Tiess, G., Zorina, S.O., 2014. Paleogeography as geological heritage:

in 2006 with the aim of promoting the importance of

developing geosite classification. Earth-Science Reviews 138, 300–312.

geoconservation. This has expedited geopark development Bruno, D.E., Perrotta, P., 2012. A geotouristic proposal for Amendolara territory

(northern ionic sector of Calabria, Italy). Geoheritage 4, 139–151.

by arousing public awareness of the importance of protecting

Bridgland, D.R., 2013. Geoconservation of Quaternary sites and interests. Proceed-

valuable geoheritage and encouraging public participation in

ings of the Geologists’ Association 124, 612–624.

geotourism. This has helped create strong public interest, Burek, C., 2012. The importance of Quaternary geoconservation. Quaternary News-

letter 126, 25–33.

appreciation and knowledge of geoheritage, as well as support

Campbell, S.D.G., Sewell, R.J., 1997. Structure control and tectonic setting of

for the geopark. Furthermore, HKGG plays an important role in

volcanism in Hong Kong. Journal of the Geological Society 154, 1039–1052.

rural development through local involvement in geopark and Cleal, C.J., Thomas, B.A., Bevins, R.E., Wimbledon, W.A.P., 1999. Geosites – an

international geoconservation initiative. Geology Today 15 (2), 64–68.

geotourism activities. HKGG engages local communities in

Davis, A.M., 1999. Quaternary stratigraphy of Hong Kong coastal sediments. Journal

designing new tourist facilities, such as trail alignment, content

of Asian Earth Sciences 17, 521–531.

selection and material selection. The local communities also Davis, D.W., Sewell, R.J., Campbell, S.D.G., 1997. U-Pb dating of Mesozoic igneous

rocks from Hong Kong. Journal of the Geological Society 154, 1067–1076.

make recommendations on the location of the interpretation

Dickson, M.E., 2006. Shore platform development around Lord Howe Island, south-

panels and safety warning boards. In the development of the

west Pacific. Geomorphology 76, 295–315.

boat tours, the boat operators are involved in suggesting visitor Dixon, G., 1996. Geoconservation: An International Review and Strategy for Tas-

routes which meet different requirements. To promote local mania. Miscellaneous Report. Parks and Wildlife Service, Tasmania, pp. 1–101.

Dong, H.M., Song, Y.G., Chen, T., Zhao, J.B., Yu, L.P., 2014. Geoconservation and

development through geodiversity, HKGG encourages local

geotourism in Luochuan Loess National Geopark, China. Quaternary Interna-

companies to invest in and contribute to the development of

tional 334–335, 40–51.

the local economy. This engagement spans several sectors, such Dowling, R., Newsome, D., 2010. Geotourism: a global activity. In: Dowling, R.,

Newsome, D. (Eds.), Global Geotourism Perspectives. Goodfellow Publishers,

as geopark hotels (Fig. 4m), geopark gourmet (Fig. 4h) and

Woodeaton, pp. 1–17.

providers of outdoor leisure activities, and plays a very

Dowling, R.K., 2010. Geotourism’s global growth. Geoheritage 3 (1), 1–13.

important role in geotourism development. It is obvious that Dunbar, P.K., 2007. Increasing public awareness of natural hazards via the Internet.

Natural Hazards 42 (3), 529–536.

HKGG contributes positively to the daily lives of local

Eder, F.W., Patzak, M., 2004. Geoparks – geological attractions: a tool for public

communities by working together with them.

education, recreation and sustainable economic development. Episodes 25,

162–164.

Erikstad, L., 2013. Geoheritage and geodiversity management – the questions for

7. Conclusion

tomorrow. Proceedings of the Geologists’ Association 124, 713–719.

Farsani, N.T., Coelho, C., Costa, C., 2012. Geotourism and geoparks as gateways to

sociocultural sustainability in Qeshm rural areas, Iran. Asia Pacific Journal of

As geodiversity, geoconservation and geotourism are rather

Tourism Research 17, 30–48.

new, emerging topics in the earth science field (Hjort and Luoto,

Fyfe, J.A., Shaw, R., Campbell, S.D.G., Lai, K.W., Kirk, P.A., 2000. The Quaternary

2010; Gordon et al., 2012), HKGG puts a lot of effort into promoting . Geotechnical Engineering Office, Civil Engineering

Department, The Government of the Hong Kong Special Administrative Region,

geodiversity, geoconservation and geotourism. In addition to a

pp. 1–43.

good management foundation, the main achievements in promot-

Gordon, J.E., 2012. Rediscovering a sense of wonder: geoheritage, geotourism and

ing geoconservation and geotourism in HKGG are as follows: cultural landscape experiences. Geoheritage 4, 65–77.

Gordon, J.E., Barron, H.F., Hansom, J.D., Thomas, M.F., 2012. Engaging with geodi-

versity – why it matters. Proceedings of the Geologists’ Association 123, 1–6.

(1) Establishment of effective conservation management.

L. Wang et al. / Proceedings of the Geologists’ Association 126 (2015) 426–437 437

Gray, M., 2004. Geodiversity: Valuing and Conserving Abiotic Nature. John Wiley Engineering Department, The Government of the Hong Kong Special Adminis-

and Sons, Chichester, UK 434 pp. trative Region, pp. 1–157.

Gray, M., 2005. Geodiversity and geoconservation: what, why, and how? In: Sewell, R.J., Tang, D.L.K., Campbell, S.D.G., 2012. Volcanic-plutonic connections in

Santucci, V.L. (Ed.), Papers Presented at the George Wright Forum. pp. 4–12. a tilted nested complex in Hong Kong. Geochemistry Geophysics

Gray, M., 2008. Geodiversity: the origin and evolution of a paradigm. In: Burek, C.V., Geosystems 13, Q01006.

Prosser, C.D. (Eds.), The History of Geoconservation, vol. 300. The Geological Sharples, C., 1993. A methodology for the identification of significant landforms

Society, London, Special Publications, pp. 31–36. and geological sites for geoconservation purposes. Technical Report. Forestry

Gray, M., 2013. Geodiversity: Valuing and Conserving Abiotic Nature, 2nd ed. Commission Tasmania, Hobart, Tasmania.

Wiley-Blackwell, , pp. 3–14. Taylor, G., Workman, D.R., Peart, M.R., 1990. The rocks of Ping Chau, Mirs Bay, Hong

Gray, M., Gordon, J.E., Brown, E.J., 2013. Geodiversity and the ecosystem approach: Kong. Geological Society of Hong Kong Newsletter 8, 46–50.

the contribution of geoscience in delivering integrated environmental manage- Tian, M.Z., 2012. Rising national geoparks and geoheritage conservation of China

ment. Proceedings of the Geologists’ Association 124, 659–673. developed a new research field of the Quaternary science. Quaternary Interna-

Hjort, J., Luoto, M., 2010. Geodiversity of high latitude landscapes in northern tional 279–280, 492.

Finland. Geomorphology 115, 109–116. Tian, M.Z., Cheng, J., 2009. Quaternary Geology and Geomorphology. Geology

Hose, T.A., 2000. European ‘‘geotourism’’ – geological interpretation and conserva- Publishing House, Beijing, pp. 1–307 (in Chinese).

tion promotion for tourists. In: Barettino, D., Wimbledon, W.A.P., Gallego, E. Tian, M.Z., Wu, F.D., Zhang, J.P., Wang, L.L., Xie, L.L., Liu, S.W., 2009. Comprehensive

(Eds.), Geological Heritage: Its Conservation and Management. ITGE, Madrid, report of Hong Kong Geopark. Agriculture, Fisheries and Conservation Depart-

pp. 127–146. ment, Hong Kong SAR Government (in Chinese).

Hose, T.A., 2005. Geotourism and interpretation. In: Dowling, R.K., Newsome, D. Todorov, T., Wimbledon, W.A.P., 2004. Geological heritage conservation on inter-

(Eds.), Geotourism. Elsevier, Oxford, UK, pp. 221–241. national, regional, national and local levels. Polish Geological Institute Special

Hose, T.A., 2011. The English origins of geotourism (as a vehicle for geoconserva- Papers 13, 9–12.

tion) and their relevance to current studies. Acta Geographica Slovenica 51 (3), Trenhaile, A.S., 2000. Modeling the development of wave-cut shore platforms.

343–359. Marine Geology 166, 163–178.

Hose, T.A., 2012. 3gs for modern geotourism. Geoheritage 4 (1–2), 7–14. Trenhaile, A.S., 2001. Modeling the effect of late Quaternary interglacial sea levels

Hose, T.A., Vasiljevic, D.A., 2012. Defining the nature and purpose of Modern on wave-cut shore platforms. Marine Geology 172, 205–223.

Geotourism with particular reference to the United Kingdom and South-East UNESCO, 2014. Guidelines and Criteria for National Geoparks Seeking UNESCO’s

Europe. Geoheritage 4 (1–2), 25–43. Assistance to Join the Global Geoparks Network (GGN). United Nations Educa-

Hose, T.A., Wickens, E., 2004. Typologies, tourism locations and images: meeting tional, Scientific and Cultural Organization, , pp. 1–13.

the real needs of real tourists. In: Weber, S., Tomljenovic´, R. (Eds.), Reinventing Waele, J.D., Mucedda, M., Montanaro, L., 2009. Morphology and origin of coastal

a Tourism Destination: Facing the Challenge. Institute for Tourism, Zagreb, karst landforms in Miocene and Quaternary carbonate rocks along the central-

pp. 103–114. western coast of Sardinia (Italy). Geomorphology 106, 26–34.

Huang, J., 1984. Changes in deltas and major rivers of China in historical periods. In: Wang, L.L., Tian, M.Z., Wen, X.F., Zhao, L.L., Song, J.L., Sun, M., Wang, H., Lan, Y.H., Sun,

Whyte, R.O. (Ed.), The Evolution of the East Asian Environment, vol. 1. Centre for M., 2014. Geoconservation and geotourism in Arxan-Chaihe Volcano Area, Inner

Asian Studies, The , pp. 320–338. Mongolia, China. Quaternary International 349, 384–391.

Jin, Q., Ruban, D.A., 2011. A conceptual framework of tourism crowding manage- Wong, C.G., 2013. Country parks and marine parks in Hong Kong. Urban

ment at geological heritage sites. Natura Nascosta 43, 1–17. Planning Review 6, 6 (in Chinese).

Lai, K.W., 1991. Stratigraphy of the Ping Chau Formation. Geological Society of Hong Wong, W.T., Li, K.W., Yeung, K.H., 2003. Long term sea level change in Hong Kong.

Kong Newsletter 9, 3–23. Hong Kong Meteorological Society Bulletin 13, 23–40.

Lee, C.M., Chen, J.H., He, G.X., Lai, K.W., 1997. Stratigraphical sequence of Worton, G.J., Gillard, R., 2013. Local communities and young people – the future

Hong Kong. Journal of Stratigraphy 21, 161–181 (in Chinese with English of geoconservation. Proceedings of the Geologists’ Association 124, 681–690.

abstract). Wu, F.D., Tian, M.Z., Zhang, J.P., Wang, L.L., 2011. Resource types and construction

Li, J.S., Yan, Y.D., 1999. Formation and evolution of island in the Hong Kong area. features of Hong Kong National Geopark. Acta Geoscientica Sinica 32 (6),

Marine Sciences 1, 61–64 (in Chinese with English abstract). 761–768 (in Chinese with English abstract).

Loon, A.J.V., 2008. Geological education of the future. Earth-Science Reviews 86, Xing, G.F., Ng, C.Y., Tao, K.Y., Ng, S.L., Chen, R., Jiang, Y., Li, Z.M., Yu, M.G., 2011.

247–254. Petrological study of High Island Formation volcanic columns in the Hong Kong

Morton, B., 1996. Protecting Hong Kong’s marine biodiversity: present proposals, National Geopark. Geology in China 38 (4), 1079–1093 (in Chinese with English

future challenges. Environmental Conservation 23 (1), 55–65. abstract).

Moscardo, G., 1998. Interpretation and sustainable tourism: functions, examples Yeung, K.M., 2007. 30th Anniversary of Country Park. Friends of the Country Parks,

and principles. Journal of Tourism Studies 9 (1), 2–13. Hong Kong, pp. 1–195 (in Chinese).

Nau, P.S., 1979. Geological notes on the sedimentary rocks of Ping Chau Island, Mirs Yeung, K.M., 2008. Geodiversity – a new challenge for nature conservation in Hong

Bay, Hong Kong. Annals of the Geographical, Geological and Archaeological Kong. In: Proceedings of Asia-Pacific Seminar on Geological Conservation and

Society. University of Hong Kong 7, 33–41. Sustainable Development, Hong Kong, pp. 47–58.

Newsome, D., Dowling, R., 2010. Geotourism: The Tourism of Geology and Land- Yeung, K.M., Chan, Y.N., 2010. Rediscovering geology and Hong Kong. Agriculture,

scape. Goodfellow Publishers, Oxford, pp. 1–300. Fisheries and Conservation Department, Hong Kong SAR Government.

Ng, Y.C.Y., 2007. The Urban Geopark Concept as a tool in geological conservation in Yeung, K.M., Ng, C.Y., 2008. Landmark Excursions. Friends of the Country Parks,

a metropolitan city – the Case of Hong Kong. In: Proceedings of the 2nd Hong Kong, pp. 1–199.

International Symposium on Development within Geoparks. Geological Pub- Yim, W.W.S., 1999. Radiocarbon dating and the reconstruction of late Quaternary

lishing House, Beijing, pp. 247–255. sea-level changes in Hong Kong. Quaternary International 55, 77–91.

Ng, Y.C.Y., Fung, L.W., Newsome, D., 2010. Hong Kong geopark – uncovering the Yim, W.W.S., 2001. Stratigraphy of Quaternary offshore sand and gravel deposits in

geology of a metropolis. In: Dowling, R.K., Newsome, D. (Eds.), Global Geotour- the Hong Kong SAR, China. Quaternary International 82, 101–116.

ism Perspectives. Goodfellow Publishers, Oxford, pp. 179–191. Yu, F., Switzer, A.D., Lau, A.Y.A., Yeung, H.Y.E., Chik, S.W., Chiu, H.C., Huang, Z., Pile, J.,

Owen, R.B., 1995. Rock platforms – characteristics and origins. Hong Kong Geologist 2013. A comparison of the post-storm recovery of two sandy beaches on Hong

1, 43–45. Kong Island, southern China. Quaternary International 304, 163–175.

Panizza, M., 2001. Geomorphosites: concepts, methods and examples of geomor- Zhang, J.P., Wu, F.D., Tian, M.Z., Xie, L.L., Liu, S.W., Wang, L.L., 2009. Tung Ping Chau-

phological survey. Chinese Science Bulletin 46, 4–6. Geopark Field Guide. Friends of the Country Parks, Hong Kong, pp. 1–17.

Patzack, M., Eder, W., 1998. UNESCO Geopark, a new programme – a new UNESCO Zhang, X.Q., 2000. High-rise and high-density urban form: the development of Hong

label. Geologica Balcanica 28 (3–4), 33–35. Kong. In: Jenks, M., Burgess, R. (Eds.), Compact Cities – Sustainable Urban Forms

ProGEO, 1998. A first attempt at a geosites framework for Europe – an IUGS for Developing Countries. Spon Press, London, pp. 245–254.

initiative to support recognition of world heritage and European geodiversity. Zhang, Y., Ge, E., 2013. Temporal scaling behavior of sea-level change in Hong Kong

Geologica Balcanica 28 (3–4), 5–32. – multifractal temporally weighted detrended fluctuation analysis. Global and

Prosser, C.D., 2013. Our rich and varied geoconservation portfolio: the foundation Planetary Change 100, 362–370.

for the future. Proceedings of the Geologists’ Association 124, 568–580. Zouros, N., 2010a. Lesvos Petrified Forest Geopark, Greece: geoconservation, geo-

Prosser, C.D., Brown, E.J., Larwood, J.G., Bridgland, D.R., 2013. Geoconservation for tourism, and local development. The George Wright Forum Journal 27, 19–28.

science and society – an agenda for the future. Proceedings of the Geologists’ Zouros, N., 2002. The European Geoparks Network: geological heritage protection

Association 124, 561–567. and local development. Episodes 25, 165–171.

Ruban, D.A., 2010. Quantification of geodiversity and its loss. Proceedings of the Zouros, N., 2010b. Geotourism in Greece: a case of the Lesvos Petrified Geopark. In:

Geologists’ Association 121, 326–333. Dowling, R.K., Newsome, D. (Eds.), Global Geotourism Perspectives. Goodfellow

Ruban, D.A., Kuo, I., 2010. Essentials of geological heritage site (geosite) manage- Publishers, Oxford, pp. 215–229.

ment: a conceptual assessment of interests and conflicts. Natura Nascosta 41, Zouros, N., Martini, G., 2003. Introduction to the European Geoparks Network. In:

16–31. Zouros, N., Martini, G., Frey, M.-L. (Eds.), Proceedings of the 2nd European

Sewell, R.J., Campbell, S.D.G., Fletcher, C.J.N., Lai, K.W., Kirk, P.A., 2000. The Pre- Geoparks Network Meeting, Natural History Museum of the Lesvos Petrified

quaternary Geology of Hong Kong. Geotechnical Engineering Office, Civil Forest, Lesvos, pp. 17–21.