Download Download
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Exporting Fresh Pineapple to Europe 1. Product Description
Exporting fresh pineapple to Europe Last updated: 25 October 2018 Imports of fresh pineapples into the European market have stabilised at around 900 thousand tonnes in recent years. In 2017, there was a good supply of pineapples and volumes to Europe reached 942 million tonnes. The pineapple trade is dominated by the MD2 type variety and a few multinational companies: Dole Food Company, Del Monte Foods, Fyffes and Chiquita. Smaller exporters from developing countries must seek to distinguish themselves with quality, price, and sustainability. There are also opportunities in new varieties that have advantages with regard to logistics, convenience and the increasing attention given to flavour. Contents of this page 1. Product description 2. Product specification 3. Which European markets offer opportunities for pineapple exporters? 4. Which trends offer opportunities on the European pineapple market? 5. With which requirements must fresh pineapples comply to be allowed on the European market? 6. What competition will you be facing on the European pineapple market? 7. Which trade channels can you use to put fresh pineapples on the European market? 8. What are the end-market prices for pineapples? 1. Product description The pineapple (Ananas comosus) is a tropical plant with edible fruit. It is a member of the Bromeliaceae family. Pineapples are indigenous to South America. Pineapple plants can withstand both drought and rainfall between 500 mm and 3,000 mm per annum. Pineapples are cultivated from a crown cutting of the fruit of the plant. Until the mid-1990s, pineapple production and trade was dominated by the Smooth Cayenne variety, which is characterised by high sugar and acid content and which is well suited to canning. -
Apocynaceae-Apocynoideae)
THE NERIEAE (APOCYNACEAE-APOCYNOIDEAE) A. J. M. LEEUWENBERG1 ABSTRACT The genera of tribe Nerieae of Apocynaceae are surveyed here and the relationships of the tribe within the family are evaluated. Recent monographic work in the tribe enabled the author to update taxonomie approaches since Pichon (1950) made the last survey. Original observations on the pollen morphology ofth egener a by S.Nilsson ,Swedis h Natural History Museum, Stockholm, are appended to this paper. RÉSUMÉ L'auteur étudie lesgenre s de la tribu desNeriea e desApocynacée s et évalue lesrelation s del a tribu au sein de la famille. Un travail monographique récent sur la tribu a permit à l'auteur de mettre à jour lesapproche s taxonomiques depuis la dernière étude de Pichon (1950). Lesobservation s inédites par S. Nilsson du Muséum d'Histoire Naturelle Suédois à Stockholm sur la morphologie des pollens des genres sontjointe s à cet article. The Apocynaceae have long been divided into it to generic rank and in his arrangement includ two subfamilies, Plumerioideae and Apocynoi- ed Aganosma in the Echitinae. Further, because deae (Echitoideae). Pichon (1947) added a third, of its conspicuous resemblance to Beaumontia, the Cerberioideae, a segregate of Plumerioi it may well be that Amalocalyx (Echiteae— deae—a situation which I have provisionally ac Amalocalycinae, according to Pichon) ought to cepted. These subfamilies were in turn divided be moved to the Nerieae. into tribes and subtribes. Comparative studies Pichon's system is artificial, because he used have shown that the subdivision of the Plume the shape and the indumentum of the area where rioideae is much more natural than that of the the connectives cohere with the head of the pistil Apocynoideae. -
S.F.V.B.S. San Fernando Valley Bromeliad Society September 2020 P.O
S.F.V.B.S. AN ERNANDO ALLEY ROMELIAD OCIETY S F V B S SEPTEMBER 2020 P.O. BOX 16561, ENCINO, CA 91416-6561 sfvbromeliad.homestead.com [email protected] Twitter is: @sfvbromsociety Instagram is: @sfvbromeliadsociety Elected OFFICERS & Volunteers Pres: Bryan Chan V.P. Joyce Schumann Sec: Leni Koska Treas: Mary Chan Membership: vacant Advisors/Directors: Steve Ball, Richard Kaz –fp, & Carole Scott-fp, Sunshine Chair: Georgia Roiz, Refreshments: Steffanie Delgado, Web Mike Wisnev, Editor: Mike Wisnev & Felipe Delgado, Snail Mail: Nancy P-Hapke, Instagram, Twitter & Facebook: Felipe Delgado next meeting: Saturday September 5, 2020 Zoom Meeting Please Put These Dates on Your Calendar Here is our 2020 Calendar. Rarely does our schedule change……. however, please review our website and email notices before making your plans for these dates. Your attendance is important to us. Due to Covid, future meetings may be cancelled. Saturday September 5 SFVBS 1st Zoom Online Meeting Saturday October 3 ?? Saturday November 7 John Martinez, Dyckia Program STBA = Speaker To Be Announced Speakers Let us know if you have any ideas for Speakers about Bromeliads or any similar topics? We are always looking for an interesting speaker. If you hear of someone, please notify Joyce Schumann at 818-416-5585 or [email protected] President’s message: The SFVBS is going to host a meeting on Zoom. This is scheduled on our regular September meeting date Sept. 5th at Noon. Since this is experimental for us a program has not been scheduled but, we are planning to have programs in future meetings. You can join us for a chat with video – with Show-N-Tell, plant Q&A, and a general bromeliad topics discussion. -
F^^R^-^-C."V.— Mededelingen Landbouwhogeschool Wageningen 82-4 (1982) (Communications Agricultural University) Isals O Published Asa Thesi S CONTENTS
581.961:582.937(6) MEDEDELINGEN LANDBOUWHOGESCHOOL WAGENINGEN• NEDERLAN D.82-4(1982 ) A MONOGRAPH ON STROPHANTHUS DC. (APOCYNACEAE) H.J. BEENTJE Department ofPlant Taxonomy andPlant Geography, Wageningen Agricultural University, The Netherlands Received19-V-198 2 Dateo fpublicatio n 15-10-82 H. VEENMAN&ZONENB.V.-WAGENINGEN-1982 -f^^r^-^-C."V.— Mededelingen Landbouwhogeschool Wageningen 82-4 (1982) (Communications Agricultural University) isals o published asa thesi s CONTENTS INTRODUCTION AND ACKNOWLEDGEMENTS 1 GENERAL PART: History of the genus 3 Geographical distribution and ecology 3 Habit and growth 6 Morphology 7 Flowering and fruiting seasons 7 Pollination 8 Dispersal of seeds 9 Anatomy 10 Chemistry and pharmacology 10 Palynology 11 Chromosome numbers, by J. C. ARENDS and F. M. VAN DER LAAN . 11 Local names 12 Uses and economic importance 12 Relationships with other genera 14 Citation of specimens 15 Definitions 15 TAXONOMIC PART: Genus diagnosis 17 Sectional arrangement 20 Discussion of the relationships within the genus 21 Key for flowering specimens 24 Key for specimens with leaves and mature fruits 31 Species diagnoses 35 Intermediates (possible hybrids) 164 Doubtful species 164 Nomina nuda 164 Excluded species 165 Old commercial names 166 List of names and synonyms not cited elsewhere in this revision ... 166 Index of exsiccatae 167 REFERENCES 183 REGISTER 189 INTRODUCTION AND ACKNOWLEDGEMENTS The present publication is a monograph on the genus Strophanthus, repre sented by 30 species in continental Africa, 1o n Madagascar, and 7 species in Asia. This monograph is based on the study of approximately 4700 herbarium specimens preserved in 54 herbaria. Living plants of 9 species were studied in the field and in cultivation. -
Ethnobotanical Knowledge of the Kuy and Khmer People in Prey Lang, Cambodia
Ethnobotanical knowledge of the Kuy and Khmer people in Prey Lang, Cambodia Turreira Garcia, Nerea; Argyriou, Dimitrios; Chhang, Phourin; Srisanga, Prachaya; Theilade, Ida Published in: Cambodian Journal of Natural History Publication date: 2017 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Turreira Garcia, N., Argyriou, D., Chhang, P., Srisanga, P., & Theilade, I. (2017). Ethnobotanical knowledge of the Kuy and Khmer people in Prey Lang, Cambodia. Cambodian Journal of Natural History, 2017(1), 76-101. http://www.fauna-flora.org/wp-content/uploads/CJNH-2017-June.pdf Download date: 26. Sep. 2021 76 N. Turreira-García et al. Ethnobotanical knowledge of the Kuy and Khmer people in Prey Lang, Cambodia Nerea TURREIRA-GARCIA1,*, Dimitrios ARGYRIOU1, CHHANG Phourin2, Prachaya SRISANGA3 & Ida THEILADE1,* 1 Department of Food and Resource Economics, University of Copenhagen, Rolighedsvej 25, 1958 Frederiksberg, Denmark. 2 Forest and Wildlife Research Institute, Forestry Administration, Hanoi Street 1019, Phum Rongchak, Sankat Phnom Penh Tmei, Khan Sen Sok, Phnom Penh, Cambodia. 3 Herbarium, Queen Sirikit Botanic Garden, P.O. Box 7, Maerim, Chiang Mai 50180, Thailand. * Corresponding authors. Email [email protected], [email protected] Paper submitted 30 September 2016, revised manuscript accepted 11 April 2017. ɊɮɍɅʂɋɑɳȶɆſ ȹɅƺɁɩɳȼˊɊNJȴɁɩȷ Ʌɩȶ ɑɒȴɊɅɿɴȼɍɈɫȶɴɇơȲɳɍˊɵƙɈɳȺˊƙɁȪɎLJɅɳȴȼɫȶǃNjɅȷɸɳɀɹȼɫȶɈɩɳɑɑ ɳɍˊɄɅDžɅɄɊƗƺɁɩɳǷȹɭɸ ɎȻɁɩ ɸɆɅɽɈɯȲɳȴɌɑɽɳǷʆ ɳDŽɹƺnjɻ ȶǁ ƳɌȳɮȷɆɌǒɩ Ə ɅLJɅɆɅƏɋȲƙɊɩɁɄɅDžɅɄɊƗƺɁɩɴȼɍDžƚ ɆɽNjɅ -
The Pineapple Genome and the Evolution of CAM Photosynthesis
ARTICLES OPEN The pineapple genome and the evolution of CAM photosynthesis Ray Ming1–3,27, Robert VanBuren1–4,27, Ching Man Wai1–3,27, Haibao Tang1,2,5,27, Michael C Schatz6, John E Bowers7, Eric Lyons5, Ming-Li Wang8, Jung Chen9, Eric Biggers6, Jisen Zhang1,2, Lixian Huang1,2, Lingmao Zhang1,2, Wenjing Miao1,2, Jian Zhang1,2, Zhangyao Ye1,2, Chenyong Miao1,2, Zhicong Lin1,2, Hao Wang7, Hongye Zhou7, Won C Yim10, Henry D Priest4, Chunfang Zheng11, Margaret Woodhouse12, Patrick P Edger12, Romain Guyot13, Hao-Bo Guo14, Hong Guo14, Guangyong Zheng15, Ratnesh Singh16, Anupma Sharma16, Xiangjia Min17, Yun Zheng18, Hayan Lee6, James Gurtowski6, Fritz J Sedlazeck6, Alex Harkess7, Michael R McKain4, Zhenyang Liao1,2, Jingping Fang1,2, Juan Liu1,2, Xiaodan Zhang1,2, Qing Zhang1,2, Weichang Hu1,2, Yuan Qin1,2, Kai Wang1,2, Li-Yu Chen1,2, Neil Shirley19, Yann-Rong Lin20, Li-Yu Liu20, Alvaro G Hernandez21, Chris L Wright21, Vincent Bulone19, Gerald A Tuskan22, Katy Heath3, Francis Zee23, Paul H Moore8, Ramanjulu Sunkar24, James H Leebens-Mack7, Todd Mockler4, Jeffrey L Bennetzen7, Michael Freeling12, David Sankoff11, Andrew H Paterson25, Xinguang Zhu15, Xiaohan Yang22, J Andrew C Smith26, John C Cushman10, Robert E Paull9 & Qingyi Yu16 Pineapple (Ananas comosus (L.) Merr.) is the most economically valuable crop possessing crassulacean acid metabolism (CAM), a photosynthetic carbon assimilation pathway with high water-use efficiency, and the second most important tropical fruit. We sequenced the genomes of pineapple varieties F153 and MD2 and a wild pineapple relative, Ananas bracteatus accession CB5. The pineapple genome has one fewer ancient whole-genome duplication event than sequenced grass genomes and a conserved karyotype with seven chromosomes Nature America, Inc. -
Pandanaceae, Linnaeus Dan Koneksiswedia
Berita Biologi 8(4a) - Mei 2007 - Edisi Khusus "Memperingati 300 Tahun Carolus Linnaeus" (23 Mei 1707 - 23 Mei 2007) 300 TAHUN LINNAEUS: PANDANACEAE, LINNAEUS DAN KONEKSISWEDIA Ary Prihardhyanto Keim Herbarium Bogoriense Bidang Botani, Pusat Penelitian Biologi-LIPI Cibinong Science Centre-LIPI, Jl. Raya Jakarta-Bogor Km 46, Cibinong, Jawa Barat ABSTRACT Pandanaceae is one of the three large and important families within the Monocotyledoneaie consisting of approximately 900 species found only in the Old World Tropics. Malesia is the region of importance for the fanmyfwhere the prominent diversity and the three principal genera (Freycinetia, Pandanus, and Sararanga) are found. Pandanaceae is also an important family of the Monocotyledoneae in the Malayo-Austronesian and^elanesian cultures. The usage of pannans in the Melanesian culture is more diverse and incorporating more number of species. Although pandan was first described by the two distinguish Dutch naturalists, Rumphius and Rheede tot Drakenstein, the introduction of pandan into the world of Botany was started and in the early stage also involved Swedish botanists, from Linnaeus to Fagerlind. Linnaeus still suggested Pandanus as a possibly member of Bromelliaceae. Linnaeus Jr. placed it as a genus of its own, Pandanus, thus laid the firm foundation for the classification of the genus and the entire family. The information on Pandanaceae encompassing morphology to history is described in this paper, including the significance of the family in relation with the Agenda 21. Kata kunci: Agenda 21, Freycinetia, keanekaragaman hayati, Linnaeus, Malesia, Pandan, Pandanus, Pandanaceae, Sararanga, taksonomi. PENDAHULUAN Sebagai bagian dari Malesia (sebuah kawasan floristik yang membentang mulai dari Malaysia di barat hingga Papua New Guinea di timur) Indonesia memiliki keanekaragaman hayati yang paling tinggi (van Steenis, 1950). -
Genetic Variation of the Ananas Genus with Ornamental Potential
Genet Resour Crop Evol (2012) 59:1357–1376 DOI 10.1007/s10722-011-9763-9 RESEARCH ARTICLE Genetic variation of the Ananas genus with ornamental potential Everton Hilo de Souza • Fernanda Vidigal Duarte Souza • Maria Ange´lica Pereira de Carvalho Costa • Davi Silva Costa Jr • Janay Almeida dos Santos-Serejo • Edson Perito Amorim • Carlos Alberto da Silva Ledo Received: 20 April 2011 / Accepted: 23 September 2011 / Published online: 13 October 2011 Ó The Author(s) 2011. This article is published with open access at Springerlink.com Abstract Brazil is one of the main centers of origin of ornamental pineapples. Eighty-nine accessions of of pineapple species presenting the largest genetic Ananas comosus var. comosus, A. comosus var. variation of the Ananas genus. Embrapa Cassava and bracteatus (Lindl.) Coppens et Leal, A. comosus var. Fruits is a Brazilian Agricultural Research Corpora- ananassoides (Baker) Coppens et Leal, A. comosus tion and has an ex-situ collection of 678 accessions of var. erectifolius (L. B. Smith) Coppens et Leal, the Ananas genus and some other Bromeliaceae. The A. comosus var. parguasensis (Camargo et L. B. use of ornamental pineapple has increased in the last Smith) Coppens et Leal and A. macrodontes Morren years demanding new varieties, mainly for the external were evaluated with 25 morphological descriptors. market, due to the originality and colors of its tiny According to the results, the evaluated accessions were fruits. The main aim of the present study was separated into the following categories: landscape describing accessions from the pineapple gene bank plants, cut flower, potted plants, minifruits, foliage and in order to quantify their genetic variation and identify hedge. -
Introduction Medicinal Plants, Used by Both Ancient and Modern Cultures
Antioxidant Properties and Total Phenolic Content of Selected Traditional Thai Medicinal Plants นิพนธ์ต้นฉบ ับ Original Article พัชราภรณ์ ไชยศรี1* และ นงค์ลักษณ์ เหลาพรม2 Patcharaporn Chaisri1* and Nonglak Laoprom2 1 สาขาวิชาวิทยาศาสตร์สุขภาพ คณะวิทยาศาสตร์ มหาวิทยาลัยราชภัฏอุดรธานี จ.อุดรธานี 1 Department of Health Science, Faculty of Science, Udon Thani Rajabhat University, Udon 2 ภาควิชาวิทยาศาสตร์ทั่วไป คณะวิทยาศาสตร์และวิศวกรรมศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ วิทยา Thani Province, Thailand เขตเฉลิมพระเกียรติ จ.สกลนคร 2 Department of General Science, Faculty of Science and Engineering, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon Province, Thailand * ติดต่อผู้นิพนธ์: [email protected] * Corresponding author: [email protected] วารสารไทยเภสชั ศาสตรแ์ ละวทิ ยาการสุขภาพ 2559;12(1):10-18. Thai Pharmaceutical and Health Science Journal 2016;12(1):10-18. บทค ัดย่อ Abstract วัตถุประสงค์: พืชสมุนไพรไทยตามภูมิปัญญาท้องถิ่นที่พบในภาค Objectives: In accordance with traditional local wisdom, medicinal plants ตะวันออกเฉียงเหนือถูกน ามาใช้รักษาบาดแผลทางผิวหนังและอักเสบ งานวิจัยนี้ from north-eastern Thailand are used for the treatment of dermatitis-related มวี ตั ถุประสงค์เพ่ือศึกษาฤทธติ์ ้านอนุมูลอิสระและปรมิ าณสารประกอบฟีนอลกิ inflammations. This study aimed to investigate the antioxidant activity and ทั้งหมด (total phenolic content; TPC) ของสารสกัดจากเปลือกพืชสมุนไพรไทย total phenolic content (TPC) of the bark of thirteen medicinal plants. ทั้งหมด 13 ชนิด วิธีการศึกษา: กระท่อมเลือด (Stephania venosa -
Ep 1 915 997 A1
(19) & (11) EP 1 915 997 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (43) Date of publication: (51) Int Cl.: 30.04.2008 Bulletin 2008/18 A61K 36/48 (2006.01) A61K 8/97 (2006.01) A61K 36/18 (2006.01) A61K 36/70 (2006.01) (2006.01) (2006.01) (21) Application number: 06780703.2 A61P 17/14 A61Q 7/00 A23L 1/30 (2006.01) (22) Date of filing: 30.06.2006 (86) International application number: PCT/JP2006/313146 (87) International publication number: WO 2007/020755 (22.02.2007 Gazette 2007/08) (84) Designated Contracting States: (72) Inventor: KOHNO, Kenji AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Hadano-shi, Kanagawa 257-0004 (JP) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR (74) Representative: Rutherford, Jodie Frank B. Dehn & Co. (30) Priority: 12.08.2005 JP 2005261312 St Bride’s House 01.02.2006 JP 2006024532 10 Salisbury Square London EC4Y 8JD (GB) (71) Applicant: KOHNO, Kenji Hadano-shi, Kanagawa 257-0004 (JP) (54) AGENT FOR HAIR GROWTH (57) The aim of this invention is to offer a novel agent essed Cynanchum bungei Decne extracts ,preferably for hair growth, which has excellent hair growth effects further comprising Longan seed and/or Longan seed ex- but not side effects. The agent for hair growth of the tracts as active ingredients. This agent for hair growth present invention is characterized by comprising a proc- has no side effects when used externally or internally, it essed semi-mature soybean and/or a processed semi- can notably improve hair growth within a short period of mature soybean extracts and at least one substance se- time; ranging from 6 to 12 weeks, can return hair to its lected from the group consisting of a processed Polygoni normal hair colour (for example from white to black) and Multiflori Radix, processed Polygoni Multiflori Radix ex- can improve the gloss of hair. -
Apocynaceae) Author(S): David J
A Revision of Aganosma (Blume) G. Don (Apocynaceae) Author(s): David J. Middleton Source: Kew Bulletin, Vol. 51, No. 3 (1996), pp. 455-482 Published by: Springer on behalf of Royal Botanic Gardens, Kew Stable URL: http://www.jstor.org/stable/4117024 Accessed: 31/10/2010 14:53 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=kew. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Royal Botanic Gardens, Kew and Springer are collaborating with JSTOR to digitize, preserve and extend access to Kew Bulletin. http://www.jstor.org A revision of Aganosma (Blume) G. Don (Apocynaceae) DAVID J. -
Thành Phần Loài Và Thảm Thực Vật Ven Sông Vàm Cỏ Tây, Tỉnh Long An
Tạp chí KHOA HỌC ĐHSP TPHCM Số 61 năm 2014 _____________________________________________________________________________________________________________ THÀNH PHẦN LOÀI VÀ THẢM THỰC VẬT VEN SÔNG VÀM CỎ TÂY, TỈNH LONG AN LÊ BÁ KHOA*, ĐẶNG VĂN SƠN**,PHẠM VĂN NGỌT*** TÓM TẮT Kết quả nghiên cứu đã xác định được ven sông Vàm Cỏ Tây có 205 loài, 159 chi, 74 họ của 2 ngành thực vật bậc cao có mạch là ngành Dương xỉ (Polypodiophyta) và Ngọc lan (Magnoliophyta). Tài nguyên thực vật có ích được thống kê, trong đó có 135 loài cây có giá trị làm thuốc, 31 loài làm thực phẩm, 22 loài làm gia dụng, 6 loài làm cảnh và 1 loài cho tinh dầu. Đã xác định 2 loài thực vật có giá trị bảo tồn theo Sách Đỏ Việt Nam (2007) là Cà na (Elaeocarpus hygrophilus) và Lúa trời (Oryza rufipogon). Dạng sống của thực vật được chia làm 6 nhóm chính là cây thân thảo, cây bụi, cây gỗ nhỏ, cây gỗ lớn, dây leo và bán kí sinh. Đồng thời, ghi nhận được 11 kiểu quần hợp thực vật có ở ven sông Vàm Cỏ Tây. Từ khóa: Vàm Cỏ Tây, thực vật ven sông, đất ngập nước, tài nguyên thực vật, thảm thực vật. ABSTRACT Species composition and vegetation along the Vam Co Tay river, Long An province The results of the study of species composition and vegetation along the Vam Co Tay river recorded 205 species, 159 genera, 74 families belonging to two phyla of vascular plants Polypodiophyta and Magnoliophyta. The plant resources were divided into five groups as follows: (1) medicinal plants with 72 species, (2) vegetables with 31 species, (3) household - used plants with 22 species, (4) ornamental plants with 6 species, and (5) essential oil with 1 species.