Network Scan Data

Total Page:16

File Type:pdf, Size:1020Kb

Network Scan Data Selbyana 19(2): 227-235 TAXONOMY OF THE GENERA ANANAS AND PSEUDANANAS-AN HISTORICAL REVIEW FREDDY LEAL Universidad Central de Venezuela, Facultad de Agronomia, Apartado 4736, Maracay, Aragua, Venezuela GEORGE COPPENS D'EECKENBRUGGE CIRAD-FLHOR/IPGRI, % CIAT, AA 6713, Cali, Colombial BRUCE K. HOLST Marie Selby Botanical Gardens, 811 South Palm Avenue, Sarasota, Florida 34236, USA ABSTRACT. From the first observations of the pineapple by European explorers to the classification into Pseudananas sagenarius and the seven Ananas species prevailing at present, the evolution of pineapple taxonomy has shown considerable variation. Most early botanists named or renamed species from previous dubious descriptions or from particular horticultural types. More recently, the genus Pseudananas was created, while horticultural types disappeared from the Ananas species. Subsequently, the total number of species increased again as botanical varieties and forms with minor variation were elevated to species rank. The resulting classification is questionable, as neither discontinuous morphological variation nor reproduc­ tive barriers exist in the genus Ananas. Ananas and Pseudananas are the only genera peduncle. The dry fibers constitute 6% of plant in the Bromeliaceae whose fused flowers devel­ weight (Camargo 1943). The absence of spines op into a sorose-type fruit formed by the coa­ facilitates manual fiber extraction, although lescence of up to 200 berries. The most recent some spiny or partially spiny mutants have been classification (Smith & Downs 1979) established observed. Ananas lucidus has never been found Pseudananas as a monotypic genus, Pseudan­ in the wild. anas sagenarius (Arruda) Camargo, and divided Ananas bracteatus (Lindl.) Schult. f. comes Ananas divided into eight species, one of which from southern South America (southern Brazil, has been invalidated (Leal 1990). The species Paraguay, and northern Argentina), where it is considered valid now are presented in TABLE 1. always found cultivated as a living hedge or for The best known species of Ananas is the cul­ fruit juice, or abandoned in ancient settlements. tivated A. comosus (L.) Merr., thanks to its im­ Its variegated form has been widely diffused as pressive and delicious fruit, which is considered a garden ornamental. The plant is vigorous with an important taxonomic character (more than 15 wide and long leaves, large spines, and suckers cm long according to the key in Smith & Downs abundantly. The inflorescence is characterized 1979). This large fruit is borne on a wide, short­ by its bright pink to red color and long bracts. to-long peduncle. In the spiny genotypes, spines The fruit and peduncle are medium-sized (ac­ are antrorse and generally smaller and denser cording to the key presented in Smith and than in other species. Partially spiny genotypes Downs (1979), the syncarp is more than 15 cm also exist as well as completely smooth geno­ long; however it is often less). Ananas bractea­ types, characterized by a folding of the lower tus, well adapted to cool conditions and altitude, epidermis over the leaf edge ("piping" character has been observed at 1,000 m in the subtropics. as named by Collins & Kerns 1946). The variability of this species is very limited. Ananas lucidus Mill., the curagua, is cultivat­ Ananas Jritzmuelleri Camargo is almost identical ed by the peoples of the Orinoco basin and to to A. bracteatus with some retrorse spines (Ca­ the North of the Amazon River. They use its margo 1943). Formerly included in A. bractea­ strong and long fibers to make breechcloths, tus (Smith 1939), A. jritzmuelleri has floral hammocks, fishing nets and rods (Leal & Amaya bracts that turn a pale green color at fruit ma­ 1991). This species is mainly characterized by turity. long, smooth, and erect leaves and a small, fi­ Ananas ananassoides (Baker) L.B. Sm., A. brous, inedible fruit borne on a medium-to-long parguazensis Camargo and L.B. Sm., and A. nanus (L.B. Sm.) L.B. Sm. are wild species. An­ anas ananassoides is the most widespread spe­ 1 Address for correspondence. cies, from southern Brazil to Venezuela and Co- 227 228 SELBYANA [Volume 19(2) TABLE 1. Current composition of the genera Pseu­ As commonly found in Bromeliaceae, the ge­ dananas and Ananas. Based on Smith and Downs nus Ananas is diploid, characterized by having (1979) and Leal (1990). 50 minute and almost spherical chromosomes in both root tips and pollen mother cells (Collins Scientific name Common name & Kerns 1931, Canpinpin & Rotor 1937, Mar­ Pseudananas sagenarius Gravata de cere a, gravata chant 1967, Sharma & Ghosh 1971, Lin et al. (Arruda) Camargo de rede, yvira, nana ca­ 1987, Brown & Gilmartin 1989, Dujardin 1991). ",aba, nana brava Giant unreduced gametes may appear and pro­ Ananas ananassoides Ananas de ramosa, curi­ duce natural triploids and tetraploids (Collins (Baker) L.B. Sm. bijul, maya pifion, na­ 1933, 1960). Most genotypes display reduced nlli, pifiuela fertility and a self-incompatibility system with Ananas nanus (L.B. Sm.) Ananai L.B. Sm. considerable variation in its expression (Cop­ Ananas parguazensis Ca­ Gravata, pilla montafiera pens d'Eeckenbrugge et al. 1993). Vegetative re­ margo and L.B. Sm. production is largely dominant over sexuality in Ananas lucidus Mill. Curagua, curana, curaua, Ananas. This is particularly true in domesticated kulaiwat types. Pineapples multiply by suckers (terrestrial Ananas bracteatus Ananas bravo, ananas do and aerial), slips (suckers from the peduncle), (Lindt) Schult. f. mato and crown. Ananas fritzmuelleri Ca­ Ananas silvestre, gravata Pseudananas sagenarius has been cultivated margo de cerca as a source of fibers, which explains the origin Ananas comosus (L.) Abacaxi, ananas, pilla, Merr. matzatli of its common name, yvira, meaning fiber, as well as of its Latin epithet, which refers to a fishing net (sagena). The fibers constitute 7.6% of the leaf dry weight and reach a length of 1.60 lombia. Although a few genotypes thrive in m (Correa 1952). In contrast to Ananas, P. sa­ dense rainforest (in the Guianas). it is generally genarius is a tetraploid (211 = 100), character­ observed in savannas or in low-shade forest, ized by a complete lack of crown and asexual growing well on soils with limited water-holding reproduction by stolons. Its leaf margins bear capacity (such as sand or rocks), and forming strong spines, which are retrorse at the leaf base. populations of variable densities. Most of these Floral bracts are longer than in Ananas como sus. populations are monoclonal, but some are poly­ The fruits are low in acid. The habitat of P. sa­ clonal, with variation of recent sexual origin genarius, limited to forest areas, is under semi­ (Duval et al. 1997). The plant has long and gen­ dense shade and subjected to a rainy season dur­ erally narrow spiny leaves and bears a small, ing most of the year, or even to periods of flood­ globular-to-cylindrical syncarp on a long and ing. This species may be found in southern thin peduncle. The fruit is often seedy, and its South America (southern Brazil, Paraguay, Bo­ pulp is white, firm and fibrous, with a high sugar livia and northern Argentina), and along the and acidity content, good flavor and aroma, and eastern Brazilian coast, up to Pernambuco. Pop­ a narrow heart. According to the key, A. anan­ ulations of P. sagenarius are rare now because assoides is distinguished from A. comosus by the of severely reduced habitat. The few populations size of the fruit (shorter than 15 cm). recently observed, however, showed significant Ananas nanus is characterized by an even variation (Ferreira & Cabral 1993, Ferreira 1996, smaller fruit (shorter than 4 em), In fact, Smith Duval et ai. 1997, Coppens d'Eeckenbrugge et (1939) fonnerly classified it as a dwarf variety al. 1997). of A. ananassoides. Ananas nanus has some­ times been used as an ornamental. HISTORY OF PINEAPPLE TAXONOMY Ananas parguazensis is also very similar to A. ananassoides but differs in the retrorse ori­ The main steps in the evolution of pineapple entation of some spines and a wider leaf slightly taxonomy are presented in FIGURE 1. constricted at its base. Ananas parguazensis The Amerindians had domesticated pineap­ seems less adapted to drought, but an anatomical ples and the curagua for fruit and fiber and had and physiological comparison showed no other dispersed the fonner all over Latin America and differences (Leal & Medina 1995). Its distribu­ the Caribbean and the latter from the North bank tion is also limited to the northern Amazon (Rio of the Amazon to the Caribbean well before the Negro basin) and Rio Orinoco, with a wider var­ anival of Columbus (Leal & Coppens d'Eeck­ iability in the Orinoco region (Duval et ai. enbrugge 1996). They also had domesticated the 1996). It grows in the lowland forests, under yvira, as observed by Thevet (1557) around Rio canopies of variable densities, from clearings or de Janeiro. Native Americans were the first pine­ riverbanks to dense forest. apple taxonomists. On the island of Hispaniola, ..... Plumier (1755) \0 Pseudananas Hassler ex Harms 1930 Ananas Miller 1754 \0 r< < ----- ----I <I Rumphius (1747) 23 XVIII Anassa domestica Anassa silvestris t t Linnaeus (1753) Bromelia ananas Bromelia comosa l' tIl I I Arruda da Ciimara (I 810) Bromelia Iuricata Bromelia sagenaria ? -----= >- Bromelik sylvestris«'<AKanassla bracteata Anana~sa debilis Ananassal!ucida Ananassal sativa Lindley (1827) l' tIl vell;zo 1825 t t ~ .., Ananas muricatus V Ananas sagenaria Ananas semiserratus Ananas sativus Schultes & Sch< (1830) >- XIX , Ananas macrodontes ~ Morren (1878) r-' Ananas sativus Mez(l892) :r: k sativus vaL br~cteatus ..... I ..,CIJ A. comosus Merril(l917) 0 (Ananas Section Pseudoananas) (Ananas Section Euanan~s) Hassler (1919) ::0 >-< ~ 0 '"Ij Ananas microcephalUS A bracteatus? A. g~."iri,c,~ti'W Bertoni (1919) Pseudananas macrodontes t Harms (1930) ~ (Ananas murica'tus) Ananas macrodontes A. sagenaria ~ Ac:mosus Mez(l934) kc< vaL microstachys Smith (1934) ~ ~ ~ V V:l Pseudananas sagenarius A.
Recommended publications
  • Anatomia Foliar De Bromeliaceae Juss. Do Parque Estadual Do Itacolomi, Minas Gerais, Brasil
    TIAGO AUGUSTO RODRIGUES PEREIRA ANATOMIA FOLIAR DE BROMELIACEAE JUSS. DO PARQUE ESTADUAL DO ITACOLOMI, MINAS GERAIS, BRASIL Dissertação apresentada à Universidade Federal de Viçosa, como parte das exigências do Programa de Pós-Graduação em Botânica, para obtenção do título de Magister Scientiae. Viçosa Minas Gerais – Brasil 2011 Não há uma verdadeira grandeza nesta forma de considerar a vida, com os seus poderes diversos atribuídos primitivamente pelo Criador a um pequeno número de formas, ou mesmo a uma só? Ora, enquanto que o nosso planeta, obedecendo à lei fixa da gravitação, continua a girar na sua órbita, uma quantidade infinita de belas e admiráveis formas, saídas de um começo tão simples, não têm cessado de se desenvolver e desenvolvem-se ainda! Charles Darwin, A Origem das Espécies (1859) ii AGRADECIMENTOS A Deus, pela Vida, pela sua Maravilhosa Graça, e pelas suas misericórdias, que se renovam a cada manhã. À Universidade Federal de Viçosa, e ao Programa de Pós-Graduação em Botânica, pela oportunidade de aprendizado e crescimento. Ao Ministério da Educação, pela concessão da bolsa através do Programa REUNI. Ao Instituto Estadual de Florestas (IEF), pela concessão da licença de coleta no Parque Estadual do Itacolomi. À minha orientadora, professora Luzimar Campos da Silva, um exemplo de profissional e de pessoa, pelos ensinamentos, pelo estímulo constante, pela amizade e convivência sempre agradável, pela paciência e por confiar e acreditar em mim e no meu trabalho. Às minhas coorientadoras: professora Aristéa Alves Azevedo e professora Renata Maria Strozi Alves Meira, pela contribuição no trabalho, pelos ensinamentos, pelas correções, sugestões e críticas sempre enriquecedoras, e por serem grandes exemplos de profissional.
    [Show full text]
  • Pineapple Item
    Pineapple Item Issue No. 15Newsletter of the Pineapple Working Group, International Society for Horticultural Science June, 2008 Table of Contents News of General Interest, Pineapple Working Group News ..........................................................................................2 Dr. Jimmie Bob Smith. In Memorium .................................................................................................................................................... 2 Estimating Plant Weights .......................................................................................................................................................................... 2 Control of fruit sunburn in Taiwan ............................................................................................................................................................. 6 Use of Gibberellic Acid (GA) on P in eap p le............................................................................................................................................. 6 A Further Note on Slashing and Sucker Production ............................................................................................................................. 7 7th International Pineapple Symposium .................................................................................................................................................... 7 ISHS .............................................................................................................................................................................................................
    [Show full text]
  • Exporting Fresh Pineapple to Europe 1. Product Description
    Exporting fresh pineapple to Europe Last updated: 25 October 2018 Imports of fresh pineapples into the European market have stabilised at around 900 thousand tonnes in recent years. In 2017, there was a good supply of pineapples and volumes to Europe reached 942 million tonnes. The pineapple trade is dominated by the MD2 type variety and a few multinational companies: Dole Food Company, Del Monte Foods, Fyffes and Chiquita. Smaller exporters from developing countries must seek to distinguish themselves with quality, price, and sustainability. There are also opportunities in new varieties that have advantages with regard to logistics, convenience and the increasing attention given to flavour. Contents of this page 1. Product description 2. Product specification 3. Which European markets offer opportunities for pineapple exporters? 4. Which trends offer opportunities on the European pineapple market? 5. With which requirements must fresh pineapples comply to be allowed on the European market? 6. What competition will you be facing on the European pineapple market? 7. Which trade channels can you use to put fresh pineapples on the European market? 8. What are the end-market prices for pineapples? 1. Product description The pineapple (Ananas comosus) is a tropical plant with edible fruit. It is a member of the Bromeliaceae family. Pineapples are indigenous to South America. Pineapple plants can withstand both drought and rainfall between 500 mm and 3,000 mm per annum. Pineapples are cultivated from a crown cutting of the fruit of the plant. Until the mid-1990s, pineapple production and trade was dominated by the Smooth Cayenne variety, which is characterised by high sugar and acid content and which is well suited to canning.
    [Show full text]
  • Table of Contents Pineapple Working Group News
    Newsletter of the Pineapple Working Group, International Society for Horticultural Science Issue No. 18, July, 2011 Table of Contents Pineapple Working Group News ..................................................................................................................................... 2 7th International Pineapple Symposium ..................................................................................................................................... 2 Proceedings of the 7th International Pineapple Symposium ...................................................................................................... 6 News from Australia ........................................................................................................................................................ 7 8th International Pineapple Symposium .................................................................................................................................... 7 The Effect of Temperature on Pineapple Pollen Tube Growth Rate ......................................................................................... 7 News from Brazil ............................................................................................................................................................. 10 Production of „Pérola‟ Pineapple Plantlets by Stem Sectioning Technique .............................................................................. 10 Evaluation of Pineapple Genotypes For Resistance to the Pineapple Mealybug Wilt-Associated
    [Show full text]
  • S.F.V.B.S. San Fernando Valley Bromeliad Society September 2020 P.O
    S.F.V.B.S. AN ERNANDO ALLEY ROMELIAD OCIETY S F V B S SEPTEMBER 2020 P.O. BOX 16561, ENCINO, CA 91416-6561 sfvbromeliad.homestead.com [email protected] Twitter is: @sfvbromsociety Instagram is: @sfvbromeliadsociety Elected OFFICERS & Volunteers Pres: Bryan Chan V.P. Joyce Schumann Sec: Leni Koska Treas: Mary Chan Membership: vacant Advisors/Directors: Steve Ball, Richard Kaz –fp, & Carole Scott-fp, Sunshine Chair: Georgia Roiz, Refreshments: Steffanie Delgado, Web Mike Wisnev, Editor: Mike Wisnev & Felipe Delgado, Snail Mail: Nancy P-Hapke, Instagram, Twitter & Facebook: Felipe Delgado next meeting: Saturday September 5, 2020 Zoom Meeting Please Put These Dates on Your Calendar Here is our 2020 Calendar. Rarely does our schedule change……. however, please review our website and email notices before making your plans for these dates. Your attendance is important to us. Due to Covid, future meetings may be cancelled. Saturday September 5 SFVBS 1st Zoom Online Meeting Saturday October 3 ?? Saturday November 7 John Martinez, Dyckia Program STBA = Speaker To Be Announced Speakers Let us know if you have any ideas for Speakers about Bromeliads or any similar topics? We are always looking for an interesting speaker. If you hear of someone, please notify Joyce Schumann at 818-416-5585 or [email protected] President’s message: The SFVBS is going to host a meeting on Zoom. This is scheduled on our regular September meeting date Sept. 5th at Noon. Since this is experimental for us a program has not been scheduled but, we are planning to have programs in future meetings. You can join us for a chat with video – with Show-N-Tell, plant Q&A, and a general bromeliad topics discussion.
    [Show full text]
  • Phylogeny, Adaptive Radiation, and Historical Biogeography in Bromeliaceae: Insights from an Eight-Locus
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/51165827 Phylogeny, Adaptive Radiation, and Historical Biogeography in Bromeliaceae: Insights from an Eight-Locus... Article in American Journal of Botany · May 2011 DOI: 10.3732/ajb.1000059 · Source: PubMed CITATIONS READS 183 290 19 authors, including: Michael H J Barfuss Ralf Horres University of Vienna GenXPro GmbH 37 PUBLICATIONS 1,137 CITATIONS 40 PUBLICATIONS 1,175 CITATIONS SEE PROFILE SEE PROFILE Timothy M. Evans Georg Zizka Grand Valley State University Goethe-Universität Frankfurt am Main and Sen… 27 PUBLICATIONS 1,270 CITATIONS 271 PUBLICATIONS 1,798 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Genetic Analysis of The Coffea Family View project Phylojive View project All content following this page was uploaded by Thomas J Givnish on 02 June 2014. The user has requested enhancement of the downloaded file. American Journal of Botany 98(5): 872–895. 2011. PHYLOGENY, ADAPTIVE RADIATION, AND HISTORICAL BIOGEOGRAPHY IN BROMELIACEAE: INSIGHTS FROM AN EIGHT-LOCUS PLASTID PHYLOGENY 1 Thomas J. Givnish 2,15 , Michael H. J. Barfuss 3 , Benjamin Van Ee 2,4 , Ricarda Riina 2,5 , Katharina Schulte 6,7 , Ralf Horres 8 , Philip A. Gonsiska 2 , Rachel S. Jabaily 2,9 , Darren M. Crayn 7 , J. Andrew C. Smith 10 , Klaus Winter 11 , Gregory K. Brown 12 , Timothy M. Evans 13 , Bruce K. Holst 14 , Harry Luther 14 , Walter Till 3 , Georg Zizka 6 , Paul E. Berry 5 , and Kenneth J. Sytsma 2 2 Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706 USA; 3 Department of Systematic and Evolutionary Botany, Faculty of Life Sciences, University of Vienna, Vienna A-1030, Austria; 4 Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02183 USA; 5 Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109 USA; 6 Department of Botany and Molecular Evolution, Research Institute Senckenberg and J.
    [Show full text]
  • The Pineapple Genome and the Evolution of CAM Photosynthesis
    ARTICLES OPEN The pineapple genome and the evolution of CAM photosynthesis Ray Ming1–3,27, Robert VanBuren1–4,27, Ching Man Wai1–3,27, Haibao Tang1,2,5,27, Michael C Schatz6, John E Bowers7, Eric Lyons5, Ming-Li Wang8, Jung Chen9, Eric Biggers6, Jisen Zhang1,2, Lixian Huang1,2, Lingmao Zhang1,2, Wenjing Miao1,2, Jian Zhang1,2, Zhangyao Ye1,2, Chenyong Miao1,2, Zhicong Lin1,2, Hao Wang7, Hongye Zhou7, Won C Yim10, Henry D Priest4, Chunfang Zheng11, Margaret Woodhouse12, Patrick P Edger12, Romain Guyot13, Hao-Bo Guo14, Hong Guo14, Guangyong Zheng15, Ratnesh Singh16, Anupma Sharma16, Xiangjia Min17, Yun Zheng18, Hayan Lee6, James Gurtowski6, Fritz J Sedlazeck6, Alex Harkess7, Michael R McKain4, Zhenyang Liao1,2, Jingping Fang1,2, Juan Liu1,2, Xiaodan Zhang1,2, Qing Zhang1,2, Weichang Hu1,2, Yuan Qin1,2, Kai Wang1,2, Li-Yu Chen1,2, Neil Shirley19, Yann-Rong Lin20, Li-Yu Liu20, Alvaro G Hernandez21, Chris L Wright21, Vincent Bulone19, Gerald A Tuskan22, Katy Heath3, Francis Zee23, Paul H Moore8, Ramanjulu Sunkar24, James H Leebens-Mack7, Todd Mockler4, Jeffrey L Bennetzen7, Michael Freeling12, David Sankoff11, Andrew H Paterson25, Xinguang Zhu15, Xiaohan Yang22, J Andrew C Smith26, John C Cushman10, Robert E Paull9 & Qingyi Yu16 Pineapple (Ananas comosus (L.) Merr.) is the most economically valuable crop possessing crassulacean acid metabolism (CAM), a photosynthetic carbon assimilation pathway with high water-use efficiency, and the second most important tropical fruit. We sequenced the genomes of pineapple varieties F153 and MD2 and a wild pineapple relative, Ananas bracteatus accession CB5. The pineapple genome has one fewer ancient whole-genome duplication event than sequenced grass genomes and a conserved karyotype with seven chromosomes Nature America, Inc.
    [Show full text]
  • Pandanaceae, Linnaeus Dan Koneksiswedia
    Berita Biologi 8(4a) - Mei 2007 - Edisi Khusus "Memperingati 300 Tahun Carolus Linnaeus" (23 Mei 1707 - 23 Mei 2007) 300 TAHUN LINNAEUS: PANDANACEAE, LINNAEUS DAN KONEKSISWEDIA Ary Prihardhyanto Keim Herbarium Bogoriense Bidang Botani, Pusat Penelitian Biologi-LIPI Cibinong Science Centre-LIPI, Jl. Raya Jakarta-Bogor Km 46, Cibinong, Jawa Barat ABSTRACT Pandanaceae is one of the three large and important families within the Monocotyledoneaie consisting of approximately 900 species found only in the Old World Tropics. Malesia is the region of importance for the fanmyfwhere the prominent diversity and the three principal genera (Freycinetia, Pandanus, and Sararanga) are found. Pandanaceae is also an important family of the Monocotyledoneae in the Malayo-Austronesian and^elanesian cultures. The usage of pannans in the Melanesian culture is more diverse and incorporating more number of species. Although pandan was first described by the two distinguish Dutch naturalists, Rumphius and Rheede tot Drakenstein, the introduction of pandan into the world of Botany was started and in the early stage also involved Swedish botanists, from Linnaeus to Fagerlind. Linnaeus still suggested Pandanus as a possibly member of Bromelliaceae. Linnaeus Jr. placed it as a genus of its own, Pandanus, thus laid the firm foundation for the classification of the genus and the entire family. The information on Pandanaceae encompassing morphology to history is described in this paper, including the significance of the family in relation with the Agenda 21. Kata kunci: Agenda 21, Freycinetia, keanekaragaman hayati, Linnaeus, Malesia, Pandan, Pandanus, Pandanaceae, Sararanga, taksonomi. PENDAHULUAN Sebagai bagian dari Malesia (sebuah kawasan floristik yang membentang mulai dari Malaysia di barat hingga Papua New Guinea di timur) Indonesia memiliki keanekaragaman hayati yang paling tinggi (van Steenis, 1950).
    [Show full text]
  • Genetic Variation of the Ananas Genus with Ornamental Potential
    Genet Resour Crop Evol (2012) 59:1357–1376 DOI 10.1007/s10722-011-9763-9 RESEARCH ARTICLE Genetic variation of the Ananas genus with ornamental potential Everton Hilo de Souza • Fernanda Vidigal Duarte Souza • Maria Ange´lica Pereira de Carvalho Costa • Davi Silva Costa Jr • Janay Almeida dos Santos-Serejo • Edson Perito Amorim • Carlos Alberto da Silva Ledo Received: 20 April 2011 / Accepted: 23 September 2011 / Published online: 13 October 2011 Ó The Author(s) 2011. This article is published with open access at Springerlink.com Abstract Brazil is one of the main centers of origin of ornamental pineapples. Eighty-nine accessions of of pineapple species presenting the largest genetic Ananas comosus var. comosus, A. comosus var. variation of the Ananas genus. Embrapa Cassava and bracteatus (Lindl.) Coppens et Leal, A. comosus var. Fruits is a Brazilian Agricultural Research Corpora- ananassoides (Baker) Coppens et Leal, A. comosus tion and has an ex-situ collection of 678 accessions of var. erectifolius (L. B. Smith) Coppens et Leal, the Ananas genus and some other Bromeliaceae. The A. comosus var. parguasensis (Camargo et L. B. use of ornamental pineapple has increased in the last Smith) Coppens et Leal and A. macrodontes Morren years demanding new varieties, mainly for the external were evaluated with 25 morphological descriptors. market, due to the originality and colors of its tiny According to the results, the evaluated accessions were fruits. The main aim of the present study was separated into the following categories: landscape describing accessions from the pineapple gene bank plants, cut flower, potted plants, minifruits, foliage and in order to quantify their genetic variation and identify hedge.
    [Show full text]
  • Diversity and Evolution of Monocots
    Commelinids 4 main groups: Diversity and Evolution • Acorales - sister to all monocots • Alismatids of Monocots – inc. Aroids - jack in the pulpit • Lilioids (lilies, orchids, yams) – non-monophyletic . palms, spiderworts, bananas, and – petaloid • Commelinids pineapples . – Arecales – palms – Commelinales – spiderwort – Zingiberales –banana – Poales – pineapple – grasses & sedges Commelinids Commelinids • largest group of monocots ranging from palms to grasses Dasypogonaceae • strongly monophyletic! • bound ferulic acid in cell walls (fluoresce under UV with ammonium hydroxide added) • this feature allowed placement of Dasypogonaceae 4 genera - W Australia Commelinids *Arecaceae - palms • theme: reduction of flower, loss of • the order has one family - also nectar, loss of zoophily, evolution of called Palmae bracts • 190 genera and 2400 species of trees and shrubs • tropics, subtropics, deserts, grass Mediterranean biomes pickeral weed rapatead bromeliad *Arecaceae - palms *Arecaceae - palms Malaysia • greatest center of diversity in • Rattan palms - a plant group that honors the Wallace Malay archipelago, then Biogeographic Line Amazonia • Asian distribution with few species passing through Sulawesi • depauperate in Africa, but or New Guinea diverse in Madagascar Rattan palm & generic distributions Madagascar *Arecaceae - palms *Arecaceae - palms Great morphological diversity: in stature Great morphological diversity: largest seed of seed plants Syagrus - lilliput palm of Paraguay Jubaea - Chilean wine palm Lodoicea maldivica - Seychelles palm or double nut This genus of 1 species endemic to the Seychelles has generated interest in having the largest seed, and in that the shape of the *Arecaceae - palms seed has suggested the devil's work or aphrodisiacal properties. Great morphological diversity: largest leaf What is unusual about how this species was first discovered? Corypha Raffia - rattan Lodoicea maldivica - Seychelles palm or double nut .
    [Show full text]
  • I. Del Monte Rose Pineapple
    Del Monte Fresh Produce Company July 30, 2012 Mr. Michael C. Gregoire Deputy Administrator Biotechnology Regulatory Services Animal and Plant Health Inspection Service United States Department of Agriculture 4700 River Road, Unit 98 Riverdale, MD 20737 Mr. Gregoire: Del Monte Fresh Produce Company, Inc. (hereinafter "Del Monte Fresh") has genetically engineered pineapple (Ananas comosus var. comosus) and wishes to import whole, fresh fruits and processed products into the United States for commercial distribution and sale. We request confirmation from the United States Department of Agriculture Animal and Plant Health Inspection Service that whole, fresh fruits and processed products of genetically engineered pineapple described herein may be legally imported into the United States in conformance with 7 CFR Part 340. In support of our request, the company provides the following information. I. Del Monte Rose Pineapple Pineapple varieties currently in widest commercial production exhibit internal flesh color that ranges from pale yellow to deep golden yellow. To differentiate its products in the marketplace, Del Monte Fresh has genetically engineered pineapple to increase lycopene levels in the edible tissues to produce a novel rose color. Del Monte Fresh has also genetically engineered pineapple to suppress ethylene biosynthesis to prevent precocious flowering thereby promoting more uniform growth and development of the pineapple plant to aid fruit production, harvest and quality. Del Monte Fresh has designated its pineapple with increased lycopene and controlled flowering phenotype by the variety name, Del Monte Rose pineapple. To achieve its novel fruit color, Del Monte Fresh has altered expression of genes involved in lycopene biosynthesis to increase levels in edible tissues of pineapple fruit.
    [Show full text]
  • Ananas Comosus (L.) Merr., 1917 (Ananas)
    Ananas comosus (L.) Merr., 1917 (Ananas) Identifiants : 2355/anacom Association du Potager de mes/nos Rêves (https://lepotager-demesreves.fr) Fiche réalisée par Patrick Le Ménahèze Dernière modification le 03/10/2021 Classification phylogénétique : Clade : Angiospermes ; Clade : Monocotylédones ; Clade : Commelinidées ; Ordre : Poales ; Famille : Bromeliaceae ; Classification/taxinomie traditionnelle : Règne : Plantae ; Sous-règne : Tracheobionta ; Division : Magnoliophyta ; Classe : Liliopsida ; Ordre : Bromeliales ; Famille : Bromeliaceae ; Sous-famille : Bromelioideae ; Genre : Ananas ; Nom complet : Ananas comosus var. comosus ; Synonymes : x (=) basionym, Ananas bracteatus Baker 1889, Ananas debilis Schult. (synonyme selon DPC), Ananassa sativa Lindl. (synonyme selon DPC), Bromelia ananas L. (synonyme selon DPC) ; Synonymes français : ananas Victoria [cv. 'Victoria'], ananas Queen [cv. 'Victoria'], Queen Victoria [cv 'Victoria'], ananas 'Queen Victoria' [cv. 'Victoria'], ananas cayenne lisse [cv. 'Cayenne lisse'] ; Nom(s) anglais, local(aux) et/ou international(aux) : pineapple, pineapple [Ananas comosus var. comosus], red pineapple [Ananas comosus var. bracteatus], wild pineapple , Ananas (de), rote Ananas (de), feng li (cn transcrit), nanas (id), nanas (ms), abacaxi (pt), ananas (pt), abacaxi-do-mato (pt,br), ananas-selvagem (pt,br), ananai (pt,br) [Ananas comosus var. ananassoides], ananas-de-cerca (pt,br) [Ananas comosus var. bracteatus], ananas-de-ramosa (pt,br) [Ananas comosus var. ananassoides], ananas-do-indio (pt,br) [Ananas comosus var. ananassoides], ananas-do-mato (pt,br) [Ananas comosus var. bracteatus], curibijul (pt,br) [Ananas comosus var. ananassoides], gravata (pt,br) [Ananas comosus var. comosus] gravata (pt,br) [Ananas comosus var. parguazensis], maya-pinon (pt,br) [Ananas comosus var. ananassoides], nanai (pt,br) [Ananas comosus var. ananassoides], pinuela (pt,br) [Ananas comosus var. ananassoides], anana (es) [Ananas comosus var.
    [Show full text]