Stratigraphy of the Washakie Basin, Wyoming

Total Page:16

File Type:pdf, Size:1020Kb

Stratigraphy of the Washakie Basin, Wyoming Stratigraphy of the Washakie Formation in the Washakie Basin, Wyoming GEOLOGICAL SURVEY BULLETIN 1369 Stratigrap?y of the Washakie_. Form.ation· -in the W qshakie · Basin, Wyoming By HENRY W. ROEHLER GEOLOGICAL. SURVEY BULLETIN 1 3 6 9 The name Washakie F?rmation is revived for Eocene fluvial . rocks that overlie the Green River Formation in the Washakie Basin. The formation is then divided into the· Kinney Rim and Adobe Town Members UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1973 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress catalog-card No. 72-600329 For sale by the Superintendent of Documents, U. S. Government Printing Office t Washington, D. C. 20402 Stock No. 2401-00286 CONTENTS Page Abstract ------------------------------------------------------- 1 Int~~-9-tion ---:-----.---:------------------------------'--------- 1 ·!F>.'q:rpose of mvestigatiOns __ ----__ --____ --_ --____ ----_______ _ 1 Acknowledgments -----------------------------------------­ 2 Location and geologic setting of the Washakie Basin ----------­ 2 Nomenclature and history of geological and paleontological in- vestigations __________ --__ -------------------------------- 3 Gompa'risons of the Washakie, Bridger, and Uinta Formations _ 8 Washakie Formation __________________________________________ _ 12 Kinney Rim Member --------------------------------------­ 12 Adobe Town Member --------------------------------------- 14 Outcrops -------------------------------------------------- 16 Haystack Mountain ------------------------------------- 17 Adobe T·own ------~------------------------------------ 18 Eastern, northern, and southern Washakie Basin --------- HI Western Washakie Basin ------------------------------- 19 Source areas and mineralogy -------------------------------- 21 Correlations ----------------------------------------------- 22 Age and faunal relations -----------------------------------­ 23 Type Sections and principal reference sections ---------------- 26 References cited _ -----__________________________________ -------- 39 ILLUSTRATIONS Page PLATE 1. West-east stratigraphic section and electric log cross section of the Washakie Formation and adjacent parts of the Laney Shale Member of the Green River Formation and Cathedral Bluffs Tongue of the Wasatch Formation in the Washakie Basin, Wyo- ming ------------------------------____________ In pocket 2. Graphic sections of the Washakie Formation in the Washakie Basin, Wyoming ----------------------In pocket FIGURE 1. Map showing the major physiographic features of the Washakie Basin --------------------------------- 5 III IV CONTENTS Page FIGURE 2. Gorre·lation1 chart of the Green River, Washakie, and Uinta Formations ------------------------------- 11 3-10. Photographs of: 3. The white ridge marker bed (bed 515) on the east slopes of Kinney Rim ---------------- 14 4. The robin's-egg-blue marker bed (bed 579) -- 16 5. Outcrops of the Adobe Town Member at the east edge of Haystack Mountain ---------- 17 6. Outcrop·s of the Adobe Town Member at Adobe Town ------------------------------------ 18 7. Outcrops of the lower brown sandstones in Wild Rose Draw ------------------------- 19 8. The sandstone rim below the Adobe Town Rim ------------------------------------ 20 9. The arkosic sandstones of the Adobe Town Mem- ber that cap Haystack Mountain ---------- 20 10. De~ert p·avement in the western part of the Washakie Basin -------------------------- 21 TABLES \ Page TABLE 1. Lithologic ~ifferences between the · Kinney Rim and Adobe Town Members of the Washakie Formation __ 13 2. Vertebrate •localities and partial list of fauna in the Washakie~ Formation ----------------------------- 25 STRATIGRAPHY OF THE WASHAK.ffi FORMATION IN THE WASHAKIE BASIN, WYOMING By HENRY W. RoEHLER ABSTRACT Since 1869 fluvial rocks of middle _and late Eocene age in the Washakie Basin in southwest Wyoming have been variously assigned to the Bridger Formation, the undivided Bridge-r and Uinta Formations, or the Washakie Formation. In this report the name Washakie Formation is reintroduced for use in the Washakie Basin, and the names Bridger Formation- and Uinta Formation are dropped in that basin. The Washakie Formation is a thick sequence o.f interbedded tuffaceous and arkosic sandstone; gray, green, or red mudstone; and minor thin beds of tuff, lime,stone, conglomerate, shale, and siltstone. The beds are numbered, described, and assigned to newly named members for which type sections and principal reference sections are designated, and key reference horizons ar·e shown in correlation diagrams. The lower 900± fe·et of the formation is named the Kinney Rim Member; the upper 2,300± feet of the formation is named the Adobe To.wn Member. The two members are separated by an unconformity, and are distinguished by minor lithologic diffe·rences. The Kinney Rim M·ember is missing in the eastern part of the basin, partly by erosion and truncation and partly by complex intertonguing and lateral re­ placement by the Laney Shale Member of the Green River Formation. The members are ·exposed in badlands between major sandstone ridges that slope basinward toward the central-southwestern part, or structural center, of the Washakie Basin. The Adobe '!'own Member_ comprises the youngest Tertiary strata across the center of the basin. - Vertebrate fossils are widely distributed, and they indicate a middle Eocene (Bridger A-B and Bridg·er C-D) age for the Kinney Rim Member and a middle Eocene (Bridger C-D) and late -Eocene (Uinta B) age· for the Adobe Town Member. The age and stratigraphic relations of the Bridger, Washakie, and Uinta Formations are briefly reviewed. INTRODUCTION PURPOSE OF INVESTIGATIONS Geologic mapping and stratigraphic studies by the U.S. Geo­ logical Survey to locate and evaluate oil-shale deposits in the intermontane Tertiary basins of the Central Rocky Mountains 1, 2 STRATIGRAPHY, WASHAKIE FORMATION, WASHAKIE BASIN have included investigation of Eocene rocks in the Washakie Basin in southwest Wyoming where thick oil-shale deposits are known. In 1968 a field reconnaissance was made in this poorly explored desert basin, numerous stratigraphic s·ections were meas­ ured, and a geologic map was prepared at the scale of 1 : 125,000 on a planimetric base. From this reconnaissance work, a strati­ graphic framework of key beds and unit contracts was developed for the geologic mapping of nearly fifty 71f2-minute quadrangles that cover the Washakie Basin. The purpose of this paper is to describe briefly the fluvial rocks of middle and late Eocene age that overlie the Green River Formation in the remote central part of the basin, to define the major stratigraphic units, and to review information bearing on their ages. Certain changes and refinements in the stratigraphic nomenclature are also proposed. The name Washakie Formation is revived for rocks formerly assigned to the undivided Bridger and Uinta Formations, or the Bridger Formation, and the names Kinney Rim and Adobe Town are proposed as members of the Washakie Formation. ACKNOWLEDGMENTS I thank C. L. Gazin, of the National Museum of Natural History, and P. 0. McGrew, of the University of Wyoming, for identify­ ing vertebrate fossils and establishing their ages. The generous aid of W. D. Turnbull, of the Field Museum of Natural History, who has accompanied me on numerous long field trips through the basin to ·establish stratigraphic correlations, and who has allowed the publication herein of new faunal data from his re­ cent collections, is appreciatively acknowledged. W. J. Mapel, G. E. Lewis, W. C. Culbertson, W. D. Turnbull, P. 0. McGrew, J. D. Love, and D. N. Miller, Jr., read the manuscript and sug­ gested changes. LOCATION AND GEOLOGIC SETTING OF THE WASHAKIE BASIN The Washakie Basin is a structural and topographic basin which consists of an area of aJbout 2,500 square miles north of the Colorado-Wyoming State line in southwest Wyoming (fig. 1). The basin is bounded by the major structural features, the Sierra Madre and the Rock Springs uplift to the east and west respec­ tively, and by the minor anticlinal folds, the Wamsutter Arch and the Cherokee Ridge to the north and south respectively. The overall configuration of the basin is that of a very broad, roughly square bowl having an encircling rim formed by the Laney Shale Member of the Green River Formation. Along its western part the rim is known as Kinney Rim, and in its northern part it is INTRODUCTION 8 known as Laney Rim. The asymmetri-cal shape of the basin results from the presence of several anticlinal noses that plunge basin..: ward from the basin margins. The major synclinal axis is ori­ ented in a northeast direction, slightly west of the geographic center of the basin. Lacustrine and fluvial Eocene rocks nearly 8,000 feet thick are exposed in badlands and ridges aeross the basin, except in small areas where the later Tertiary Bishop Conglomerate and Browns Park Formation cap high ridges, and where Quaternary alluvium and sand dunes fill intermittent stream valleys and cover areas of low relief. Major topographic features formed lby outcrops of the Washakie Formation, such as Adobe Town and Haystack Mountain, are discussed in detail later in this report. Altitudes above sea level range from 8, 700 feet at Pine Butte in the western part of the basin to 6,100 feet in drainages in the southeastern part of the basin, and they average about 6, 700 feet. Rainfall is less than 10 inches per year, which supports
Recommended publications
  • Dinosaur Wars Program Transcript
    Page 1 Dinosaur Wars Program Transcript Narrator: For more than a century, Americans have had a love affair with dinosaurs. Extinct for millions of years, they were barely known until giant, fossil bones were discovered in the mid-nineteenth century. Two American scientists, Edward Drinker Cope and Othniel Charles Marsh, led the way to many of these discoveries, at the forefront of the young field of paleontology. Jacques Gauthier, Paleontologist: Every iconic dinosaur every kid grows up with, apatosaurus, triceratops, stegosaurus, allosaurus, these guys went out into the American West and they found that stuff. Narrator: Cope and Marsh shed light on the deep past in a way no one had ever been able to do before. They unearthed more than 130 dinosaur species and some of the first fossil evidence supporting Darwin’s new theory of evolution. Mark Jaffe, Writer: Unfortunately there was a more sordid element, too, which was their insatiable hatred for each other, which often just baffled and exasperated everyone around them. Peter Dodson, Paleontologist: They began life as friends. Then things unraveled… and unraveled in quite a spectacular way. Narrator: Cope and Marsh locked horns for decades, in one of the most bitter scientific rivalries in American history. Constantly vying for leadership in their young field, they competed ruthlessly to secure gigantic bones in the American West. They put American science on the world stage and nearly destroyed one another in the process. Page 2 In the summer of 1868, a small group of scientists boarded a Union Pacific train for a sightseeing excursion through the heart of the newly-opened American West.
    [Show full text]
  • Download File
    Chronology and Faunal Evolution of the Middle Eocene Bridgerian North American Land Mammal “Age”: Achieving High Precision Geochronology Kaori Tsukui Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2016 © 2015 Kaori Tsukui All rights reserved ABSTRACT Chronology and Faunal Evolution of the Middle Eocene Bridgerian North American Land Mammal “Age”: Achieving High Precision Geochronology Kaori Tsukui The age of the Bridgerian/Uintan boundary has been regarded as one of the most important outstanding problems in North American Land Mammal “Age” (NALMA) biochronology. The Bridger Basin in southwestern Wyoming preserves one of the best stratigraphic records of the faunal boundary as well as the preceding Bridgerian NALMA. In this dissertation, I first developed a chronological framework for the Eocene Bridger Formation including the age of the boundary, based on a combination of magnetostratigraphy and U-Pb ID-TIMS geochronology. Within the temporal framework, I attempted at making a regional correlation of the boundary-bearing strata within the western U.S., and also assessed the body size evolution of three representative taxa from the Bridger Basin within the context of Early Eocene Climatic Optimum. Integrating radioisotopic, magnetostratigraphic and astronomical data from the early to middle Eocene, I reviewed various calibration models for the Geological Time Scale and intercalibration of 40Ar/39Ar data among laboratories and against U-Pb data, toward the community goal of achieving a high precision and well integrated Geological Time Scale. In Chapter 2, I present a magnetostratigraphy and U-Pb zircon geochronology of the Bridger Formation from the Bridger Basin in southwestern Wyoming.
    [Show full text]
  • Hyaenodontidae (Creodonta, Mammalia) and the Position of Systematics in Evolutionary Biology
    Hyaenodontidae (Creodonta, Mammalia) and the Position of Systematics in Evolutionary Biology by Paul David Polly B.A. (University of Texas at Austin) 1987 A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Paleontology in the GRADUATE DIVISION of the UNIVERSITY of CALIFORNIA at BERKELEY Committee in charge: Professor William A. Clemens, Chair Professor Kevin Padian Professor James L. Patton Professor F. Clark Howell 1993 Hyaenodontidae (Creodonta, Mammalia) and the Position of Systematics in Evolutionary Biology © 1993 by Paul David Polly To P. Reid Hamilton, in memory. iii TABLE OF CONTENTS Introduction ix Acknowledgments xi Chapter One--Revolution and Evolution in Taxonomy: Mammalian Classification Before and After Darwin 1 Introduction 2 The Beginning of Modern Taxonomy: Linnaeus and his Predecessors 5 Cuvier's Classification 10 Owen's Classification 18 Post-Darwinian Taxonomy: Revolution and Evolution in Classification 24 Kovalevskii's Classification 25 Huxley's Classification 28 Cope's Classification 33 Early 20th Century Taxonomy 42 Simpson and the Evolutionary Synthesis 46 A Box Model of Classification 48 The Content of Simpson's 1945 Classification 50 Conclusion 52 Acknowledgments 56 Bibliography 56 Figures 69 Chapter Two: Hyaenodontidae (Creodonta, Mammalia) from the Early Eocene Four Mile Fauna and Their Biostratigraphic Implications 78 Abstract 79 Introduction 79 Materials and Methods 80 iv Systematic Paleontology 80 The Four Mile Fauna and Wasatchian Biostratigraphic Zonation 84 Conclusion 86 Acknowledgments 86 Bibliography 86 Figures 87 Chapter Three: A New Genus Eurotherium (Creodonta, Mammalia) in Reference to Taxonomic Problems with Some Eocene Hyaenodontids from Eurasia (With B. Lange-Badré) 89 Résumé 90 Abstract 90 Version française abrégéé 90 Introduction 93 Acknowledgments 96 Bibliography 96 Table 3.1: Original and Current Usages of Genera and Species 99 Table 3.2: Species Currently Included in Genera Discussed in Text 101 Chapter Four: The skeleton of Gazinocyon vulpeculus n.
    [Show full text]
  • (Mammalia) from the French Locality of Aumelas (Hérault), with Possible New Representatives from the Late Ypresian
    geodiversitas 2020 42 13 né – Car ig ni e vo P r e e s n a o f h t p h é e t S C l e a n i r o o z o m i e c – M DIRECTEUR DE LA PUBLICATION / PUBLICATION DIRECTOR: Bruno David, Président du Muséum national d’Histoire naturelle RÉDACTEUR EN CHEF / EDITOR-IN-CHIEF : Didier Merle ASSISTANT DE RÉDACTION / ASSISTANT EDITOR : Emmanuel Côtez ([email protected]) MISE EN PAGE / PAGE LAYOUT : Emmanuel Côtez COMITÉ SCIENTIFIQUE / SCIENTIFIC BOARD : Christine Argot (Muséum national d’Histoire naturelle, Paris) Beatrix Azanza (Museo Nacional de Ciencias Naturales, Madrid) Raymond L. Bernor (Howard University, Washington DC) Alain Blieck (chercheur CNRS retraité, Haubourdin) Henning Blom (Uppsala University) Jean Broutin (Sorbonne Université, Paris, retraité) Gaël Clément (Muséum national d’Histoire naturelle, Paris) Ted Daeschler (Academy of Natural Sciences, Philadelphie) Bruno David (Muséum national d’Histoire naturelle, Paris) Gregory D. Edgecombe (The Natural History Museum, Londres) Ursula Göhlich (Natural History Museum Vienna) Jin Meng (American Museum of Natural History, New York) Brigitte Meyer-Berthaud (CIRAD, Montpellier) Zhu Min (Chinese Academy of Sciences, Pékin) Isabelle Rouget (Muséum national d’Histoire naturelle, Paris) Sevket Sen (Muséum national d’Histoire naturelle, Paris, retraité) Stanislav Štamberg (Museum of Eastern Bohemia, Hradec Králové) Paul Taylor (The Natural History Museum, Londres, retraité) COUVERTURE / COVER : Made from the Figures of the article. Geodiversitas est indexé dans / Geodiversitas is indexed in: – Science
    [Show full text]
  • 7 X 11 Long.P65
    Cambridge University Press 978-0-521-73586-5 - Carnivoran Evolution: New Views on Phylogeny, Form, and Function Edited by Anjali Goswami and Anthony Friscia Index More information Index Page numbers in bold type refers to figures. Acinonyx jubatus, 226, 304 Arctoidea, 12, 27, 30, 31, 40, 94, 104 Actiocyon, 115, 125 Artiodactyla, 312 active replacement, 311 Atilix paludinosis, 9 Adelphailurus, 411 Ailuridae, 11, 30, 92–126, 231, 304 badgers, see Mustelidae diagnosis, 116 bamboo, 12, 94 Ailurinae, 92, 116–20 Barbourofelinae, 10, 34, 295, 301 Ailuropoda, 15, 20, 31, 94, 104, 107, 226 basicranium, 37, 65, 107, 155, 157, 158, 159 Ailurus, 117, 126 Bassaricyon, 11 Ailurus fulgens, 3, 30, 93, 126 Bassaricyon lasius, 377 alisphenoid canal, 82, 107, 110 Bassariscus, 231, 238 allometry, 43, 165, 168 Bassariscus astutus, 388 multiphasic, 172–6, 178–85 Bathygale, 32 postcranial, 411–59 bear-dogs, see Amphicyonidae Alopecocyon, 112, 113, 115, 122, 125 behaviour, 411, 454 Alopex lagopus, 392 Bergmann’s Rule, 396 American lion, see Panthera leo cf. atrox biogeography, 225–39, 247–65, 361 Amphictis, 30, 92, 109, 112, 115, 116, biomechanics 123–124 cranial, 466–81 Amphicynodon, 109 postcranial, 450–9 Amphicynopsis, 297 bite force, 466–81 Amphicyon major, 299 body size, 39–43, 226, 248, 249, 269, Amphicyonidae, 17, 34, 41, 142, 193, 295 270, 301, 314, 325, 330, 412, 413 Ancient DNA, 25 bone cracking, 8, 16, 19, 289, 304 Andrewsarchus, 304 brain size, 39, 43–7 Aonyx, 236 lions, 168 aquatic species, 4, see Pinnipedia Buxolestes, 271 ArcGIS, 379 Arctictis,
    [Show full text]
  • United States
    DEPARTMENT OF THE INTERIOR BULLETIN OF THE UNITED STATES ISTo. 146 WASHINGTON GOVERNMENT Pit IN TING OFFICE 189C UNITED STATES GEOLOGICAL SURVEY CHAKLES D. WALCOTT, DI11ECTOK BIBLIOGRAPHY AND INDEX NORTH AMEEICAN GEOLOGY, PALEONTOLOGY, PETEOLOGT, AND MINERALOGY THE YEA.R 1895 FEED BOUGHTON WEEKS WASHINGTON Cr O V E U N M K N T P K 1 N T I N G OFFICE 1890 CONTENTS. Page. Letter of trail smittal...... ....................... .......................... 7 Introduction.............'................................................... 9 List of publications examined............................................... 11 Classified key to tlio index .......................................... ........ 15 Bibliography ............................................................... 21 Index....................................................................... 89 LETTER OF TRANSMITTAL DEPARTMENT OF THE INTEEIOE, UNITED STATES GEOLOGICAL SURVEY, DIVISION OF GEOLOGY, Washington, D. 0., June 23, 1896. SIR: I have the honor to transmit herewith the manuscript of a Bibliography and Index of North American Geology, Paleontology, Petrology, and Mineralogy for the year 1895, and to request that it be published as a bulletin of the Survey. Very respectfully, F. B. WEEKS. Hon. CHARLES D. WALCOTT, Director United States Geological Survey. 1 BIBLIOGRAPHY AND INDEX OF NORTH AMERICAN GEOLOGY, PALEONTOLOGY, PETROLOGY, AND MINER­ ALOGY FOR THE YEAR 1895. By FRED BOUGHTON WEEKS. INTRODUCTION. The present work comprises a record of publications on North Ameri­ can geology, paleontology, petrology, and mineralogy for the year 1895. It is planned on the same lines as the previous bulletins (Nos. 130 and 135), excepting that abstracts appearing in regular periodicals have been omitted in this volume. Bibliography. The bibliography consists of full titles of separate papers, classified by authors, an abbreviated reference to the publica­ tion in which the paper is printed, and a brief summary of the con­ tents, each paper being numbered for index reference.
    [Show full text]
  • Introduction to Greater Green River Basin Geology, Physiography, and History of Investigations
    Introduction to Greater Green River Basin Geology, Physiography, and History of Investigations U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1506-A Introduction to Greater Green River Basin Geology, Physiography, and History of Investigations By HENRY W. ROEHLER GEOLOGY OF THE EOCENE WASATCH, GREEN RIVER, AND BRIDGER (WASHAKIE) FORMATIONS, GREATER GREEN RIVER BASIN, WYOMING, UTAH, AND COLORADO U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1506-A UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1992 U.S. DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Library of Congress Cataloging in Publication Data Roehler, Henry W. Introduction to greater Green River basin geology, physiography, and history of investigations / by Henry W. Roehler. p. cm. (Geology of the Eocene Wasatch, Green River, and Bridger (Washakie) formations, greater Green River basin, Wyoming, Utah, and Colorado) (U.S. Geological Survey professional paper ; 1506-A) Includes bibliographical references (p. ). Supt. of Docs, no.: I 19.16:1506A 1. Geology, Stratigraphic Eocene. 2. Geology Green River Watershed (Wyo.-Utah). I. Title. II. Series. III. Series: U.S. Geological Survey professional paper ; 1506-A. QE692.2.R625 1992 551.7'84'097925 dc20 91-23181 CIP For sale by Book and Open-File Report Sales, U.S. Geological Survey, Federal Center, Box 25286, Denver, CO 80225 CONTENTS Page Abstract ........................................................................................................................................ Al Purpose and scope of investigation ............................................................................................ 1 Location and accessibility of the greater Green River basin ................................................... 2 Geologic setting ...........................................................................................................................
    [Show full text]
  • Mammal and Plant Localities of the Fort Union, Willwood, and Iktman Formations, Southern Bighorn Basin* Wyoming
    Distribution and Stratigraphip Correlation of Upper:UB_ • Ju Paleocene and Lower Eocene Fossil Mammal and Plant Localities of the Fort Union, Willwood, and Iktman Formations, Southern Bighorn Basin* Wyoming U,S. GEOLOGICAL SURVEY PROFESS IONAL PAPER 1540 Cover. A member of the American Museum of Natural History 1896 expedition enter­ ing the badlands of the Willwood Formation on Dorsey Creek, Wyoming, near what is now U.S. Geological Survey fossil vertebrate locality D1691 (Wardel Reservoir quadran­ gle). View to the southwest. Photograph by Walter Granger, courtesy of the Department of Library Services, American Museum of Natural History, New York, negative no. 35957. DISTRIBUTION AND STRATIGRAPHIC CORRELATION OF UPPER PALEOCENE AND LOWER EOCENE FOSSIL MAMMAL AND PLANT LOCALITIES OF THE FORT UNION, WILLWOOD, AND TATMAN FORMATIONS, SOUTHERN BIGHORN BASIN, WYOMING Upper part of the Will wood Formation on East Ridge, Middle Fork of Fifteenmile Creek, southern Bighorn Basin, Wyoming. The Kirwin intrusive complex of the Absaroka Range is in the background. View to the west. Distribution and Stratigraphic Correlation of Upper Paleocene and Lower Eocene Fossil Mammal and Plant Localities of the Fort Union, Willwood, and Tatman Formations, Southern Bighorn Basin, Wyoming By Thomas M. Down, Kenneth D. Rose, Elwyn L. Simons, and Scott L. Wing U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1540 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1994 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Robert M. Hirsch, Acting Director For sale by U.S. Geological Survey, Map Distribution Box 25286, MS 306, Federal Center Denver, CO 80225 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S.
    [Show full text]
  • Tobey-Dawn-Msc-ERTH-September
    Water and Wind: The Fluvial and Eolian Forces Behind the Pennsylvanian-Permian Halgaito Formation, Utah By Dawn E. Tobey Submitted in partial fulfillment of the requirements for the degree of Masters of Science at Dalhousie University Halifax, Nova Scotia September 2020 © Copyright by Dawn E. Tobey, 2020 Table Of Contents List of Tables ............................................................................................................................... v List of Figures ........................................................................................................................... vi Abstract ..................................................................................................................................... vii List of Abbreviations Used ................................................................................................. viii Acknowledgements .................................................................................................................ix Chapter 1: Introduction .......................................................................................................... 1 1.1 Statement of Problem................................................................................................................ 1 1.2 Objectives ....................................................................................................................................... 6 1.3 Contributions of the Author ..................................................................................................
    [Show full text]
  • Changes in Stratigraphic Nomenclature by the U.S. Geological Survey, 1973
    Changes in Stratigraphic Nomenclature by the U.S. Geological Survey, 1973 GEOLOGICAL SURVEY BULLETIN 1395-A NOV1419/5 5 81 Changes in Stratigraphic Nomenclature by the U.S. Geological Survey, 1973 By GEORGE V. COHEE and WILNA R. WRIGHT CONTRIBUTIONS TO STRATIGRAPHY GEOLOGICAL SURVEY BULLETIN 1395-A UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1975 66 01-141-00 oM UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress Cataloging in Publication Data Cohee, George Vincent, 1907 Changes in stratigraphic nomenclatures by the U. S. Geological Survey, 1973. (Contributions to stratigraphy) (Geological Survey bulletin; 1395-A) Supt. of Docs, no.: I 19.3:1395-A 1. Geology, Stratigraphic Nomenclature United States. I. Wright, Wilna B., joint author. II. Title. III. Series. IV. Series: United States. Geological Survey. Bulletin; 1395-A. QE75.B9 no. 1395-A [QE645] 557.3'08s 74-31466 [551.7'001'4] For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, B.C. 20402 Price 95 cents (paper cover) Stock Number 2401-02593 CONTENTS Page Listing of nomenclatural changes ______ _ Al Beulah Limestone and Hardscrabble Limestone (Mississippian) of Colorado abandoned, by Glenn R. Scott _________________ 48 New and revised stratigraphic names in the western Sacramento Valley, Calif., by John D. Sims and Andre M. Sarna-Wojcicki __ 50 Proposal of the name Orangeburg Group for outcropping beds of Eocene age in Orangeburg County and vicinity, South Carolina, by George E. Siple and William K. Pooser _________________ 55 Abandonment of the term Beattyville Shale Member (of the Lee Formation), by Gordon W.
    [Show full text]
  • Eocene Green River Formation, Western United States
    Synoptic reconstruction of a major ancient lake system: Eocene Green River Formation, western United States M. Elliot Smith* Alan R. Carroll Brad S. Singer Department of Geology and Geophysics, University of Wisconsin, 1215 West Dayton Street, Madison, Wisconsin 53706, USA ABSTRACT Members. Sediment accumulation patterns than being confi ned to a single episode of arid thus refl ect basin-center–focused accumula- climate. Evaporative terminal sinks were Numerous 40Ar/39Ar experiments on sani- tion rates when the basin was underfi lled, initially located in the Greater Green River dine and biotite from 22 ash beds and 3 and supply-limited accumulation when the and Piceance Creek Basins (51.3–48.9 Ma), volcaniclastic sand beds from the Greater basin was balanced fi lled to overfi lled. Sedi- then gradually migrated southward to the Green River, Piceance Creek, and Uinta ment accumulation in the Uinta Basin, at Uinta Basin (47.1–45.2 Ma). This history is Basins of Wyoming, Colorado, and Utah Indian Canyon, Utah, was relatively con- likely related to progressive southward con- constrain ~8 m.y. of the Eocene Epoch. Mul- stant at ~150 mm/k.y. during deposition of struction of the Absaroka Volcanic Prov- tiple analyses were conducted per sample over 5 m.y. of both evaporative and fl uctuat- ince, which constituted a major topographic using laser fusion and incremental heating ing profundal facies, which likely refl ects the and thermal anomaly that contributed to a techniques to differentiate inheritance, 40Ar basin-margin position of the measured sec- regional north to south hydrologic gradient. loss, and 39Ar recoil.
    [Show full text]
  • Attachment J Assessment of Existing Paleontologic Data Along with Field Survey Results for the Jonah Field
    Attachment J Assessment of Existing Paleontologic Data Along with Field Survey Results for the Jonah Field June 12, 2007 ABSTRACT This is compilation of a technical analysis of existing paleontological data and a limited, selective paleontological field survey of the geologic bedrock formations that will be impacted on Federal lands by construction associated with energy development in the Jonah Field, Sublette County, Wyoming. The field survey was done on approximately 20% of the field, primarily where good bedrock was exposed or where there were existing, debris piles from recent construction. Some potentially rich areas were inaccessible due to biological restrictions. Heavily vegetated areas were not examined. All locality data are compiled in the separate confidential appendix D. Uinta Paleontological Associates Inc. was contracted to do this work through EnCana Oil & Gas Inc. In addition BP and Ultra Resources are partners in this project as they also have holdings in the Jonah Field. For this project, we reviewed a variety of geologic maps for the area (approximately 47 sections); none of maps have a scale better than 1:100,000. The Wyoming 1:500,000 geology map (Love and Christiansen, 1985) reveals two Eocene geologic formations with four members mapped within or near the Jonah Field (Wasatch – Alkali Creek and Main Body; Green River – Laney and Wilkins Peak members). In addition, Winterfeld’s 1997 paleontology report for the proposed Jonah Field II Project was reviewed carefully. After considerable review of the literature and museum data, it became obvious that the portion of the mapped Alkali Creek Member in the Jonah Field is probably misinterpreted.
    [Show full text]