Machine-Assisted Proofs (ICM 2018 Panel)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Groups of Finite Morley Rank with Solvable Local Subgroups
8 Introduction to: Groups of finite Morley rank with solvable local subgroups and of odd type The present paper is the continuation of [DJ07a] concerning groups of finite Morley rank with solvable local subgroups. Here we concentrate on groups having involutions in their connected component. It is known from [BBC07] that a connected group of finite Morley has either trivial or infinite Sylow 2- subgroups. Hence we will consider groups with infinite Sylow 2-subgroups. We also recall from [DJ07a] that we study locally◦ solvable◦ groups of finite Morley rank without any simplicity assumption, but rather generally a mere nonsolv- ability assumption. The present work corresponds in the finite case to the full classification of nonsolvable finite groups with involutions and all of whose local subgroups are solvable [Tho68, Tho70, Tho71, Tho73]. The structure of Sylow 2-subgroups of groups of finite Morley rank is well determined as a product of two subgroups corresponding naturally to the struc- ture of Sylow 2-subgroups in algebraic groups over algebraically closed fields of characteristics 2 and different from 2 respectively. This Sylow theory for the prime 2 in groups of finite Morley rank leads to three types of groups of finite Morley rank, those of mixed, even, and odd type respectively. By [DJ08] it is known that • A nonsolvable connected locally◦ solvable◦ group of finite Morley rank of even type is isomorphic to PSL 2(K), with K an algebraically closed field of characteristic 2. • There is no nonsolvable connected locally◦ solvable◦ group of finite Morley rank of mixed type. Hence the present paper will concern the remaining odd type, that is the case in which Sylow 2-subgroups are a finite extension of a nontrivial divisible abelian 2-group. -
View This Volume's Front and Back Matter
Expansion in Finite Simple Groups of Lie Type Terence Tao Graduate Studies in Mathematics Volume 164 American Mathematical Society Expansion in Finite Simple Groups of Lie Type https://doi.org/10.1090//gsm/164 Expansion in Finite Simple Groups of Lie Type Terence Tao Graduate Studies in Mathematics Volume 164 American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Dan Abramovich Daniel S. Freed Rafe Mazzeo (Chair) Gigliola Staffilani 2010 Mathematics Subject Classification. Primary 05C81, 11B30, 20C33, 20D06, 20G40. For additional information and updates on this book, visit www.ams.org/bookpages/gsm-164 Library of Congress Cataloging-in-Publication Data Tao, Terence, 1975 Expansion in finite simple groups of Lie type / Terence Tao. pages cm. – (Graduate studies in mathematics ; volume 164) Includes bibliographical references and index. ISBN 978-1-4704-2196-0 (alk. paper) 1. Finite simple groups. 2. Lie groups. I. Title. QA387.T356 2015 512.482–dc23 2014049154 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Permissions to reuse portions of AMS publication content are handled by Copyright Clearance Center’s RightsLink service. For more information, please visit: http://www.ams.org/rightslink. Send requests for translation rights and licensed reprints to [email protected]. -
Linking Together Members of the Mathematical Carlos Rocha, University of Lisbon; Jean Taylor, Cour- Community from the US and Abroad
NEWSLETTER OF THE EUROPEAN MATHEMATICAL SOCIETY Features Epimorphism Theorem Prime Numbers Interview J.-P. Bourguignon Societies European Physical Society Research Centres ESI Vienna December 2013 Issue 90 ISSN 1027-488X S E European M M Mathematical E S Society Cover photo: Jean-François Dars Mathematics and Computer Science from EDP Sciences www.esaim-cocv.org www.mmnp-journal.org www.rairo-ro.org www.esaim-m2an.org www.esaim-ps.org www.rairo-ita.org Contents Editorial Team European Editor-in-Chief Ulf Persson Matematiska Vetenskaper Lucia Di Vizio Chalmers tekniska högskola Université de Versailles- S-412 96 Göteborg, Sweden St Quentin e-mail: [email protected] Mathematical Laboratoire de Mathématiques 45 avenue des États-Unis Zdzisław Pogoda 78035 Versailles cedex, France Institute of Mathematicsr e-mail: [email protected] Jagiellonian University Society ul. prof. Stanisława Copy Editor Łojasiewicza 30-348 Kraków, Poland Chris Nunn e-mail: [email protected] Newsletter No. 90, December 2013 119 St Michaels Road, Aldershot, GU12 4JW, UK Themistocles M. Rassias Editorial: Meetings of Presidents – S. Huggett ............................ 3 e-mail: [email protected] (Problem Corner) Department of Mathematics A New Cover for the Newsletter – The Editorial Board ................. 5 Editors National Technical University Jean-Pierre Bourguignon: New President of the ERC .................. 8 of Athens, Zografou Campus Mariolina Bartolini Bussi GR-15780 Athens, Greece Peter Scholze to Receive 2013 Sastra Ramanujan Prize – K. Alladi 9 (Math. Education) e-mail: [email protected] DESU – Universitá di Modena e European Level Organisations for Women Mathematicians – Reggio Emilia Volker R. Remmert C. Series ............................................................................... 11 Via Allegri, 9 (History of Mathematics) Forty Years of the Epimorphism Theorem – I-42121 Reggio Emilia, Italy IZWT, Wuppertal University [email protected] D-42119 Wuppertal, Germany P. -
L-Functions and Non-Abelian Class Field Theory, from Artin to Langlands
L-functions and non-abelian class field theory, from Artin to Langlands James W. Cogdell∗ Introduction Emil Artin spent the first 15 years of his career in Hamburg. Andr´eWeil charac- terized this period of Artin's career as a \love affair with the zeta function" [77]. Claude Chevalley, in his obituary of Artin [14], pointed out that Artin's use of zeta functions was to discover exact algebraic facts as opposed to estimates or approxi- mate evaluations. In particular, it seems clear to me that during this period Artin was quite interested in using the Artin L-functions as a tool for finding a non- abelian class field theory, expressed as the desire to extend results from relative abelian extensions to general extensions of number fields. Artin introduced his L-functions attached to characters of the Galois group in 1923 in hopes of developing a non-abelian class field theory. Instead, through them he was led to formulate and prove the Artin Reciprocity Law - the crowning achievement of abelian class field theory. But Artin never lost interest in pursuing a non-abelian class field theory. At the Princeton University Bicentennial Conference on the Problems of Mathematics held in 1946 \Artin stated that `My own belief is that we know it already, though no one will believe me { that whatever can be said about non-Abelian class field theory follows from what we know now, since it depends on the behavior of the broad field over the intermediate fields { and there are sufficiently many Abelian cases.' The critical thing is learning how to pass from a prime in an intermediate field to a prime in a large field. -
Complex Analysis on Riemann Surfaces Contents 1
Complex Analysis on Riemann Surfaces Math 213b | Harvard University C. McMullen Contents 1 Introduction . 1 2 Maps between Riemann surfaces . 14 3 Sheaves and analytic continuation . 28 4 Algebraic functions . 35 5 Holomorphic and harmonic forms . 45 6 Cohomology of sheaves . 61 7 Cohomology on a Riemann surface . 72 8 Riemann-Roch . 77 9 The Mittag–Leffler problems . 84 10 Serre duality . 88 11 Maps to projective space . 92 12 The canonical map . 101 13 Line bundles . 110 14 Curves and their Jacobians . 119 15 Hyperbolic geometry . 137 16 Uniformization . 147 A Appendix: Problems . 149 1 Introduction Scope of relations to other fields. 1. Topology: genus, manifolds. Algebraic topology, intersection form on 1 R H (X; Z), α ^ β. 3 2. 3-manifolds. (a) Knot theory of singularities. (b) Isometries of H and 3 3 Aut Cb. (c) Deformations of M and @M . 3. 4-manifolds. (M; !) studied by introducing J and then pseudo-holomorphic curves. 1 4. Differential geometry: every Riemann surface carries a conformal met- ric of constant curvature. Einstein metrics, uniformization in higher dimensions. String theory. 5. Complex geometry: Sheaf theory; several complex variables; Hodge theory. 6. Algebraic geometry: compact Riemann surfaces are the same as alge- braic curves. Intrinsic point of view: x2 +y2 = 1, x = 1, y2 = x2(x+1) are all `the same' curve. Moduli of curves. π1(Mg) is the mapping class group. 7. Arithmetic geometry: Genus g ≥ 2 implies X(Q) is finite. Other extreme: solutions of polynomials; C is an algebraically closed field. 8. Lie groups and homogeneous spaces. We can write X = H=Γ, and ∼ g M1 = H= SL2(Z). -
NSTITUTE TUDY DVANCED For
C. N. YANG YANG N. C. SHING-TUNG YAU SHING-TUNG • www.ias.edu FRANK WILCZEK WILCZEK FRANK ERNEST LLEWELLYN WOODWARD LLEWELLYN ERNEST • PRINCETON, NEW JERSEY NEW PRINCETON, EINSTEIN DRIVE EINSTEIN ANDRÉ WEIL WEIL ANDRÉ HASSLER WHITNEY HASSLER WEYL HERMANN • • ROBERT B. WARREN B. ROBERT NEUMANN von JOHN VEBLEN OSWALD • • BENGT G. D. STRÖMGREN STRÖMGREN D. G. BENGT KIRK VARNEDOE KIRK THOMPSON A. HOMER • • KENNETH M. SETTON SETTON M. KENNETH WALTER W. STEWART W. WALTER SIEGEL L. CARL • • WINFIELD W. RIEFLER RIEFLER W. WINFIELD ATLE SELBERG ATLE ROSENBLUTH N. MARSHALL • • ABRAHAM PAIS PAIS ABRAHAM TULLIO E. REGGE E. TULLIO PANOFSKY ERWIN • • DEANE MONTGOMERY MONTGOMERY DEANE J. ROBERT OPPENHEIMER ROBERT J. MORSE MARSTON • • BENJAMIN D. MERITT MERITT D. BENJAMIN DAVID MITRANY DAVID MILNOR W. JOHN • • ELIAS A. LOWE LOWE A. ELIAS MILLARD MEISS MILLARD Jr. MATLOCK, F. JACK • • ERNST H. KANTOROWICZ KANTOROWICZ H. ERNST T. D. LEE D. T. KENNAN F. GEORGE • • HARISH-CHANDRA HARISH-CHANDRA LARS V. HÖRMANDER HÖRMANDER V. LARS HERZFELD ERNST • • FELIX GILBERT GILBERT FELIX HETTY GOLDMAN HETTY GÖDEL KURT GILLIAM F. JAMES • • • ALBERT EINSTEIN EINSTEIN ALBERT CLIFFORD GEERTZ GEERTZ CLIFFORD ELLIOTT H. JOHN • • JOSÉ CUTILEIRO JOSÉ EDWARD M. EARLE M. EDWARD DASHEN F. ROGER • • LUIS A. CAFFARELLI A. LUIS MARSHALL CLAGETT MARSHALL CHERNISS F. HAROLD • • ARMAND BOREL ARMAND BEURLING A. K. ARNE BAHCALL N. JOHN • • MICHAEL F. ATIYAH F. MICHAEL ALFÖLDI Z. E. ANDREW ALEXANDER W. JAMES • • 2007-2008 PAST FACULTY PAST M F EMBERS AND ACULTY PHILLIP A. GRIFFITHS A. PHILLIP MARVIN L. GOLDBERGER GOLDBERGER L. MARVIN • S A for TUDY DVANCED HARRY WOOLF HARRY KAYSEN CARL J. -
A Machine-Checked Proof of the Odd Order Theorem
A Machine-Checked Proof of the Odd Order Theorem Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Cohen, Fran¸cois Garillot, St´ephane Le Roux, Assia Mahboubi, Russell O'Connor, Sidi Ould Biha, Ioana Pasca, Laurence Rideau, Alexey Solovyev, Enrico Tassi and Laurent Th´ery Microsoft Research - Inria Joint Centre Abstract. This paper reports on a six-year collaborative effort that cul- minated in a complete formalization of a proof of the Feit-Thompson Odd Order Theorem in the Coq proof assistant. The formalized proof is con- structive, and relies on nothing but the axioms and rules of the founda- tional framework implemented by Coq. To support the formalization, we developed a comprehensive set of reusable libraries of formalized math- ematics, including results in finite group theory, linear algebra, Galois theory, and the theories of the real and complex algebraic numbers. 1 Introduction The Odd Order Theorem asserts that every finite group of odd order is solvable. This was conjectured by Burnside in 1911 [34] and proved by Feit and Thomp- son in 1963 [14], with a proof that filled an entire issue of the Pacific Journal of Mathematics. The result is a milestone in the classification of finite simple groups, and was one of the longest proof to have appeared in the mathematical literature to that point. Subsequent work in the group theory community aimed at simplifying and clarifying the argument resulted in a more streamlined version of the proof, described in two volumes [6, 36]. The first of these, by H. Bender and G. Glauberman, deals with the \local analysis", a term coined by Thompson in his dissertation, which involves studying the structure of a group by focusing on certain subgroups. -
Accepted Manuscript
Harald Helfgott, Kate Juschenko Soficity, short cycles and the Higman group Transactions of the American Mathematical Society DOI: 10.1090/tran/7534 Accepted Manuscript This is a preliminary PDF of the author-produced manuscript that has been peer-reviewed and accepted for publication. It has not been copyedited, proofread, or finalized by AMS Production staff. Once the accepted manuscript has been copyedited, proofread, and finalized by AMS Production staff, the article will be published in electronic form as a \Recently Published Article" before being placed in an issue. That electronically published article will become the Version of Record. This preliminary version is available to AMS members prior to publication of the Version of Record, and in limited cases it is also made accessible to everyone one year after the publication date of the Version of Record. The Version of Record is accessible to everyone five years after publication in an issue. SOFICITY, SHORT CYCLES AND THE HIGMAN GROUP HARALD A. HELFGOTT AND KATE JUSCHENKO Abstract. This is a paper with two aims. First, we show that the map from x Z=pZ to itself defined by exponentiation x ! m has few 3-cycles { that is to say, the number of cycles of length three is o(p). This improves on previous bounds. Our second objective is to contribute to an ongoing discussion on how to find a non-sofic group. In particular, we show that, if the Higman group were sofic, there would be a map from Z=pZ to itself, locally like an exponential map, yet satisfying a recurrence property. -
Lectures on Height Zeta Functions: at the Confluence of Algebraic
Lectures on height zeta functions: At the confluence of algebraic geometry, algebraic number theory, and analysis French-Japanese Winter School, Miura (Japan), January 2008 Antoine Chambert-Loir IRMAR, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France Courriel : [email protected] Contents 1. Introduction..................................... ............... 2 1.1. Diophantineequationsandgeometry................ ........ 2 1.2. ElementarypreviewofManin’sproblem.............. ........ 3 2. Heights.......................................... .............. 6 2.1. Heightsovernumberfields......................... ......... 6 2.2. Linebundlesonvarieties......................... ........... 8 2.3. Linebundlesandembeddings....................... ........ 9 2.4. Metrizedlinebundles............................ ........... 10 3. Manin’sproblem................................... ............. 15 arXiv:0812.0947v2 [math.NT] 30 Dec 2009 3.1. Countingfunctionsandzetafunctions.. .. .. .. .. .. ......... 15 3.2. Thelargestpole................................. ............ 16 3.3. Therefinedasymptoticexpansion................... ......... 18 4. Methodsandresults................................ ............. 21 4.1. Explicitcounting............................... ............. 21 4.2. ThecirclemethodofHardy–Littlewood.............. ......... 22 4.3. Homogeneousspaces.............................. ......... 23 4.4. Some detailson the Fourier–Poissonmethod.. ........ 24 5. HeightsandIgusazetafunctions.................... -
Collaborative Mathematics and the 'Uninvention' of a 1000-Page Proof
436547SSS Social Studies of Science 42(2) 185 –213 A group theory of group © The Author(s) 2012 Reprints and permission: sagepub. theory: Collaborative co.uk/journalsPermissions.nav DOI: 10.1177/0306312712436547 mathematics and the sss.sagepub.com ‘uninvention’ of a 1000-page proof Alma Steingart Program in History, Anthropology, and Science, Technology, and Society, MIT, Cambridge, MA, USA Abstract Over a period of more than 30 years, more than 100 mathematicians worked on a project to classify mathematical objects known as finite simple groups. The Classification, when officially declared completed in 1981, ranged between 300 and 500 articles and ran somewhere between 5,000 and 10,000 journal pages. Mathematicians have hailed the project as one of the greatest mathematical achievements of the 20th century, and it surpasses, both in scale and scope, any other mathematical proof of the 20th century. The history of the Classification points to the importance of face-to-face interaction and close teaching relationships in the production and transformation of theoretical knowledge. The techniques and methods that governed much of the work in finite simple group theory circulated via personal, often informal, communication, rather than in published proofs. Consequently, the printed proofs that would constitute the Classification Theorem functioned as a sort of shorthand for and formalization of proofs that had already been established during personal interactions among mathematicians. The proof of the Classification was at once both a material artifact and a crystallization of one community’s shared practices, values, histories, and expertise. However, beginning in the 1980s, the original proof of the Classification faced the threat of ‘uninvention’. -
Appendix: Algebraic Integers and Characters
Appendix: Algebraic Integers and Characters In this appendix, we discuss some aspects of character theory that have a different flavor than the material covered in Chapter 6. Log ically speaking, this appendix follows Section 15, although here we require a somewhat higher level of algebraic background than in the main part of the book; for instance, some familiarity with Galois theory would be an asset. Throughout, we let G be a finite group. We say that x E C is an algebraic integer if there is some monic polynomial f E Z[X] such that f(x) = O. LEMMA 1. The set of rational numbers that are also algebraic integers is exactly the set of ordinary integers. PROOF. Suppose that alb E Q is an algebraic integer, where a and b are coprime integers with 1 =1= bEN. Then there are integers co, ... ,Cn-l for some n E N such that (ba)n + Cn-l (a)n-lb + ... + Cl (a)b + Co = O. Upon multiplying through by bn, we see that an == 0 (mod b); this contradicts the fact that a and b are coprime. • 180 Appendix: Algebraic Integers and Characters We will make use of the following standard result, whose proof we sketch in the exercises. PROPOSITION 2. The algebraic integers form a subring of C. • The relevance of algebraic integers to the representation theory of finite groups is established by the following basic fact: PROPOSITION 3. Let X be a character of G. Then X(g) is an algebraic integer for any 9 E G. PROOF. Let 9 E G. -
Algebra Number Theory
Connecting Great Minds Algebra Number Theory2006/2007& THE UNIVERSAL MANDELBROT SET Beginning of the Story by V Dolotin & A Morozov (ITEP, Russia) This book is devoted to the structure of the Mandelbrot set — a remarkable and important feature of modern theoretical physics, related to chaos and fractals and simultaneously to analytical functions, Riemann surfaces, phase transitions and string theory. The Mandelbrot set is one of the bridges connecting the world of chaos and order. The authors restrict consideration to discrete dynamics of a single variable. This restriction preserves the most essential properties of the subject, but drastically simplifies computer A COURSE IN LINEAR ALGEBRA WITH APPLICATIONS simulations and the mathematical formalism. (2nd Edition) The coverage includes a basic description of by Derek J S Robinson (University of Illinois at Urbana-Champaign, USA) the structure of the set of orbits and pre-orbits associated with any map of an analytic space into This is the second edition of the best-selling introduction to linear algebra. Presupposing no knowledge itself. A detailed study of the space of orbits (the beyond calculus, it provides a thorough treatment of all the basic concepts, such as vector space, algebraic Julia set) as a whole, together with related linear transformation and inner product. The concept of a quotient space is introduced and related to attributes, is provided. Also covered are: moduli solutions of linear system of equations, and a simplified treatment of Jordan normal form is given. space in the space of maps and the classification problem for analytic maps, the relation of the Numerous applications of linear algebra are described, including systems of linear recurrence moduli space to the bifurcations (topology changes) relations, systems of linear differential equations, Markov processes, and the Method of Least Squares.