The Classification of the Finite Simple Groups
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Wielandt Length of Finite Groups
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OFALGEBRA 15, 142-148 (1970) The Wielandt Length of Finite Groups University of East Anglia, School of Mathematics and Physics, ~Vorwich, Br~gland Communicated by B. Huppert Received July 5, 1969 I. ISTHODUCTION In [9] Wielandt introduced a subgroup of a group G defined as the inter- section of the normalizers of all subnormal subgroups of G. I will call this subgroup the Wielandt subgroup E’(G). We can then define ?Vn(G) recursively by W,(G) = 1 and W,(G)/TJJ+,(G) = W[G/LV~/,,+,(G)]. If for some n, W,,(G) = : G and II is the least integer for which this happens, we say that G has Wielandt length n. LVielandt proved [9] that such an integer 11 always exists for finite groups. The main purpose of this paper is to investigate the relation between the Wielandt length of a group and various other invariants. The main result in this direction is Theorem I as follows: ‘I’w:ownf I. If G is a Jinite soluble group zcith Wielandt length II, fitting length m, then G has derived length at most m 4 n 1 if m -;- n :- 2. The proof of this theorem occupies Section 3 of the paper. The theory of 7’ groups, i.e., groups in which normality is a transitive relation, is well-developed [4], [7] and these results are of importance in this paper. Section 4 investigates the properties of groups with Wielandt length 2 and the main result in this section is: Tmomn~ 5. -
Construction of Finite Matrix Groups
Construction of finite matrix groups Robert A. Wilson School of Mathematics and Statistics, The University of Birmingham published in Birkh¨auserProgress in Math. 173 (1999), pp. 61{83 Abstract We describe various methods of construction of matrix representa- tions of finite groups. The applications are mainly, but not exclusively, to quasisimple or almost simple groups. Some of the techniques can also be generalized to permutation representations. 1 Introduction It is one thing to determine the characters of a group, but quite another to construct the associated representations. For example, it is an elementary exercise to obtain the character table of the alternating group A5 by first determining the conjugacy classes, then writing down the trivial character and the permutation characters on points and unordered pairs, and using row orthogonality to obtain the irreducibles of degree 4 and 5, and finally using column orthogonality to complete the table. The result (see Table 1) shows that there are two characters of degree 3, but how do we construct the corresponding 3-dimensional representations? In general, we need some more information than just the characters, such as a presentation in terms of generators and relations, or some knowledge of subgroup structure, such as a generating amalgam, or something similar. If we have a presentation for our group, then in a sense it is already de- termined, and there are various algorithms which in principle at least will construct more or less any desired representation. The most important and 1 Table 1: The character table of A5 Class name 1A 2A 3A 5A 5B Class size 1 15 20 12 12 χ1 1 1 1 1 1 χ2 3 −1 0 τ σ χ3 3 −1 0 σ τ χ4 4 0 1 −1 −1 χ5 5 1 −1 0 0 1 p 1 p τ = (1 + 5); σ = (1 − 5) 2 2 well-known is Todd{Coxeter coset enumeration, which converts a presenta- tion into a permutation representation, and is well described in many places, such as [11]. -
A Generalization of the Hughes Subgroup
A Generalization of the Hughes Subgroup Mark L. Lewis and Mario Sracic Abstract Let G be a finite group, π be a set of primes, and define Hπ G to be the subgroup generated ( ) by all elements of G which do not have prime order for every prime in π. In this paper, we investigate some basic properties of Hπ G and its relationship to the Hughes subgroup. We ( ) show that for most groups, only one of three possibilities occur: Hπ G 1, Hπ G G, or ( ) = ( ) = Hπ G Hp G for some prime p π. There is only one other possibility: G is a Frobenius ( ) = ( ) ∈ group whose Frobenius complement has prime order p, and whose Frobenius kernel, F , is a nonabelian q-group such that Hπ G arises as the proper and nontrivial Hughes subgroup of F . ( ) We investigate a few restrictions on the possible choices of the primes p and q. Mathematics Subject Classification. 20D25. Keywords. Hughes subgroup, Frobenius groups, elements of prime order. 1. Introduction In 1957, D. R. Hughes posed the following problem: Let G be any group and p be a prime. Consider the following subgroup, p Hp G x G x 1 , ( ) ∶= ⟨ ∈ ∶ ≠ ⟩ or Hp when G is clear from the context, which we call the Hughes subgroup of G relative to p. Hughes asked, “is the following conjecture true: either Hp 1,Hp G, or G Hp p?” [7]. = = S ∶ S = Hughes had proved this conjecture for p 2 two years prior [6], and shortly thereafter, Straus and = Szekeres [14] answered in the affirmative for p 3. -
Groups of Finite Morley Rank with Solvable Local Subgroups
8 Introduction to: Groups of finite Morley rank with solvable local subgroups and of odd type The present paper is the continuation of [DJ07a] concerning groups of finite Morley rank with solvable local subgroups. Here we concentrate on groups having involutions in their connected component. It is known from [BBC07] that a connected group of finite Morley has either trivial or infinite Sylow 2- subgroups. Hence we will consider groups with infinite Sylow 2-subgroups. We also recall from [DJ07a] that we study locally◦ solvable◦ groups of finite Morley rank without any simplicity assumption, but rather generally a mere nonsolv- ability assumption. The present work corresponds in the finite case to the full classification of nonsolvable finite groups with involutions and all of whose local subgroups are solvable [Tho68, Tho70, Tho71, Tho73]. The structure of Sylow 2-subgroups of groups of finite Morley rank is well determined as a product of two subgroups corresponding naturally to the struc- ture of Sylow 2-subgroups in algebraic groups over algebraically closed fields of characteristics 2 and different from 2 respectively. This Sylow theory for the prime 2 in groups of finite Morley rank leads to three types of groups of finite Morley rank, those of mixed, even, and odd type respectively. By [DJ08] it is known that • A nonsolvable connected locally◦ solvable◦ group of finite Morley rank of even type is isomorphic to PSL 2(K), with K an algebraically closed field of characteristic 2. • There is no nonsolvable connected locally◦ solvable◦ group of finite Morley rank of mixed type. Hence the present paper will concern the remaining odd type, that is the case in which Sylow 2-subgroups are a finite extension of a nontrivial divisible abelian 2-group. -
On the Fitting Length of Hn(G) Rendiconti Del Seminario Matematico Della Università Di Padova, Tome 89 (1993), P
RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA GÜLIN ERCAN I˙SMAIL ¸S. GÜLOGLU˘ On the Fitting length of Hn(G) Rendiconti del Seminario Matematico della Università di Padova, tome 89 (1993), p. 171-175 <http://www.numdam.org/item?id=RSMUP_1993__89__171_0> © Rendiconti del Seminario Matematico della Università di Padova, 1993, tous droits réservés. L’accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ On the Fitting Length of Hn(G). GÜLIN ERCAN - ISMAIL 015E. GÜLO011FLU(*) For a finite group G and n e N the generalized Hughes subgroup Hn (G ) of G is defined as Hn (G ) _ (x E G11;z! Recently, there has been some research in the direction of finding a bound for the Fitting length of Hn (G ) in a solvable group G with a proper generalized Hugh- es subgroup in terms of n. In this paper we want to present a proof for the following THEOREM 1. Let G be a finite solvable group, Pl, P2, ..., pm pair- wise distinct primes and n = p1 ’ p2 ’ · · · ’ pm · If Hn (G ) ~ G, then the Fit- ting length of Hn (G) is at most m + 3. This result is an immediate consequence of THEOREM 2. -
Atlasrep —A GAP 4 Package
AtlasRep —A GAP 4 Package (Version 2.1.0) Robert A. Wilson Richard A. Parker Simon Nickerson John N. Bray Thomas Breuer Robert A. Wilson Email: [email protected] Homepage: http://www.maths.qmw.ac.uk/~raw Richard A. Parker Email: [email protected] Simon Nickerson Homepage: http://nickerson.org.uk/groups John N. Bray Email: [email protected] Homepage: http://www.maths.qmw.ac.uk/~jnb Thomas Breuer Email: [email protected] Homepage: http://www.math.rwth-aachen.de/~Thomas.Breuer AtlasRep — A GAP 4 Package 2 Copyright © 2002–2019 This package may be distributed under the terms and conditions of the GNU Public License Version 3 or later, see http://www.gnu.org/licenses. Contents 1 Introduction to the AtlasRep Package5 1.1 The ATLAS of Group Representations.........................5 1.2 The GAP Interface to the ATLAS of Group Representations..............6 1.3 What’s New in AtlasRep, Compared to Older Versions?...............6 1.4 Acknowledgements................................... 14 2 Tutorial for the AtlasRep Package 15 2.1 Accessing a Specific Group in AtlasRep ........................ 16 2.2 Accessing Specific Generators in AtlasRep ...................... 18 2.3 Basic Concepts used in AtlasRep ........................... 19 2.4 Examples of Using the AtlasRep Package....................... 21 3 The User Interface of the AtlasRep Package 33 3.1 Accessing vs. Constructing Representations...................... 33 3.2 Group Names Used in the AtlasRep Package..................... 33 3.3 Standard Generators Used in the AtlasRep Package.................. 34 3.4 Class Names Used in the AtlasRep Package...................... 34 3.5 Accessing Data via AtlasRep ............................ -
Irreducible Character Restrictions to Maximal Subgroups of Low-Rank Classical Groups of Type B and C
IRREDUCIBLE CHARACTER RESTRICTIONS TO MAXIMAL SUBGROUPS OF LOW-RANK CLASSICAL GROUPS OF TYPE B AND C KEMPTON ALBEE, MIKE BARNES, AARON PARKER, ERIC ROON, AND A.A. SCHAEFFER FRY Abstract Representations are special functions on groups that give us a way to study abstract groups using matrices, which are often easier to understand. In particular, we are often interested in irreducible representations, which can be thought of as the building blocks of all representations. Much of the information about these representations can then be understood by instead looking at the trace of the matrices, which we call the character of the representation. This paper will address restricting characters to subgroups by shrinking the domain of the original representation to just the subgroup. In particular, we will discuss the problem of determining when such restricted characters remain irreducible for certain low-rank classical groups. 1. Introduction Given a finite group G, a (complex) representation of G is a homomorphism Ψ: G ! GLn(C). By summing the diagonal entries of the images Ψ(g) for g 2 G (that is, taking the trace of the matrices), we obtain the corresponding character, χ = Tr◦Ψ of G. The degree of the representation Ψ or character χ is n = χ(1). It is well-known that any character of G can be written as a sum of so- called irreducible characters of G. In this sense, irreducible characters are of particular importance in representation theory, and we write Irr(G) to denote the set of irreducible characters of G. Given a subgroup H of G, we may view Ψ as a representation of H as well, simply by restricting the domain. -
Arxiv:2002.11183V2 [Math.AG]
Arithmetic statistics on cubic surfaces Ronno Das April 6, 2020 Abstract In this paper we compute the distributions of various markings on smooth cubic surfaces defined over the finite field Fq, for example the distribution of pairs of points, ‘tritangents’ or ‘double sixes’. We also compute the (rational) cohomology of certain associated bundles and covers over complex numbers. 1 Introduction The classical Cayley–Salmon theorem implies that each smooth cubic surface over an algebraically closed field contains exactly 27 lines (see Section 2 for detailed definitions). In contrast, for a surface over a finite field Fq, all 27 lines are defined over Fq but not necessarily over Fq itself. In other words, the action of the Frobenius Frobq permutes the 27 lines and only fixes a (possibly empty) subset of them. It is also classical that the group of all such permutations, which can be identified with the Galois group of an appropriate extension or cover, is isomorphic to the Weyl group W(E6) of type E6. This permutation of the 27 lines governs much of the arithmetic of the surface S: evidently the n pattern of lines defined over Fq and, less obviously, the number of Fq points on S (or UConf S etc). Work of Bergvall and Gounelas [BG19] allows us to compute the number of cubic surfaces over Fq where Frobq induces a given permutation, or rather a permutation in a given conjugacy class of W(E6). The results in this paper can be thought of as a combinatorial (Theorem 1.1) or representation-theoretic (Theorem 2.3) reinterpretation of their computation. -
Completing the Brauer Trees for the Sporadic Simple Lyons Group
COMPLETING THE BRAUER TREES FOR THE SPORADIC SIMPLE LYONS GROUP JURGEN¨ MULLER,¨ MAX NEUNHOFFER,¨ FRANK ROHR,¨ AND ROBERT WILSON Abstract. In this paper we complete the Brauer trees for the sporadic sim- ple Lyons group Ly in characteristics 37 and 67. The results are obtained using tools from computational representation theory, in particular a new con- densation technique, and with the assistance of the computer algebra systems MeatAxe and GAP. 1. Introduction 1.1. In this paper we complete the Brauer trees for the sporadic simple Lyons group Ly in characteristics 37 and 67. The results are stated in Section 2, and will also be made accessible in the character table library of the computer algebra system GAP and electronically in [1]. The shape of the Brauer trees as well as the labelling of nodes up to algebraic conjugacy of irreducible ordinary characters had already been found in [8, Section 6.19.], while here we complete the trees by determining the labelling of the nodes on their real stems and their planar embedding; proofs are given in Section 4. Together with the results in [8, Section 6.19.] for the other primes dividing the group order, this completes all the Brauer trees for Ly. Our main computational workhorse is fixed point condensation, which originally was invented for permutation modules in [20], but has been applied to different types of modules as well. To our knowledge, the permutation module we have condensed is the largest one for which this has been accomplished so far. The theoretical background of the idea of condensation is described in Section 3. -
The Thompson-Lyons Transfer Lemma for Fusion Systems
Submitted exclusively to the London Mathematical Society doi:10.1112/0000/000000 The Thompson-Lyons transfer lemma for fusion systems Justin Lynd Abstract A generalization of the Thompson transfer lemma and its various extensions, most recently due to Lyons, is proven in the context of saturated fusion systems. A strengthening of Alperin’s fusion theorem is also given in this setting, following Alperin’s own “up and down” fusion. The classical Thompson transfer lemma appeared as Lemma 5.38 in [12]; for a 2-perfect group G with S ∈ Syl2(G), it says that if T is a maximal subgroup of S and u is an involution in S − T , then the element u has a G-conjugate in T . Thompson’s lemma has since been generalized in a number of ways. Harada showed [9, Lemma 16] that the same conclusion holds provided one takes u to be of least order in S − T . Unpublished notes of Goldschmidt [6] extended this to show that one may find an G-conjugate of u in T which is extremal under the same conditions. An element t ∈ S is said to be extremal in S with respect to G if CS(t) is a Sylow subgroup of CG(t). In other words, hti is fully FS(G)-centralized, where FS(G) is the fusion system of G. Later, Thompson’s result and its extensions were generalized to all primes via an argument of Lyons [7, Proposition 15.15]. We prove here a common generalization of Lyons’ extension and his similar transfer result [8, Chapter 2, Lemma 3.1] (which relaxes the requirement that S/T be cyclic) in the context of saturated fusion systems. -
Daniel Gorenstein 1923-1992
Daniel Gorenstein 1923-1992 A Biographical Memoir by Michael Aschbacher ©2016 National Academy of Sciences. Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. DANIEL GORENSTEIN January 3, 1923–August 26, 1992 Elected to the NAS, 1987 Daniel Gorenstein was one of the most influential figures in mathematics during the last few decades of the 20th century. In particular, he was a primary architect of the classification of the finite simple groups. During his career Gorenstein received many of the honors that the mathematical community reserves for its highest achievers. He was awarded the Steele Prize for mathemat- New Jersey University of Rutgers, The State of ical exposition by the American Mathematical Society in 1989; he delivered the plenary address at the International Congress of Mathematicians in Helsinki, Finland, in 1978; Photograph courtesy of of Photograph courtesy and he was the Colloquium Lecturer for the American Mathematical Society in 1984. He was also a member of the National Academy of Sciences and of the American By Michael Aschbacher Academy of Arts and Sciences. Gorenstein was the Jacqueline B. Lewis Professor of Mathematics at Rutgers University and the founding director of its Center for Discrete Mathematics and Theoretical Computer Science. He served as chairman of the universi- ty’s mathematics department from 1975 to 1982, and together with his predecessor, Ken Wolfson, he oversaw a dramatic improvement in the quality of mathematics at Rutgers. Born and raised in Boston, Gorenstein attended the Boston Latin School and went on to receive an A.B. -
L-Functions and Non-Abelian Class Field Theory, from Artin to Langlands
L-functions and non-abelian class field theory, from Artin to Langlands James W. Cogdell∗ Introduction Emil Artin spent the first 15 years of his career in Hamburg. Andr´eWeil charac- terized this period of Artin's career as a \love affair with the zeta function" [77]. Claude Chevalley, in his obituary of Artin [14], pointed out that Artin's use of zeta functions was to discover exact algebraic facts as opposed to estimates or approxi- mate evaluations. In particular, it seems clear to me that during this period Artin was quite interested in using the Artin L-functions as a tool for finding a non- abelian class field theory, expressed as the desire to extend results from relative abelian extensions to general extensions of number fields. Artin introduced his L-functions attached to characters of the Galois group in 1923 in hopes of developing a non-abelian class field theory. Instead, through them he was led to formulate and prove the Artin Reciprocity Law - the crowning achievement of abelian class field theory. But Artin never lost interest in pursuing a non-abelian class field theory. At the Princeton University Bicentennial Conference on the Problems of Mathematics held in 1946 \Artin stated that `My own belief is that we know it already, though no one will believe me { that whatever can be said about non-Abelian class field theory follows from what we know now, since it depends on the behavior of the broad field over the intermediate fields { and there are sufficiently many Abelian cases.' The critical thing is learning how to pass from a prime in an intermediate field to a prime in a large field.