View metadata, citation and similar papers at core.ac.uk brought to you by CORE Journal of Algebra 248, 237–264 (2002) provided by Elsevier - Publisher Connector doi:10.1006/jabr.2001.8992, available online at http://www.idealibrary.com on The Radical 2-Subgroups of Some Sporadic Simple Groups Satoshi Yoshiara Division of Mathematical Sciences, Osaka Kyoiku University, Kashiwara, Osaka 582-8582, Japan E-mail:
[email protected] Communicated by Gernot Stroth Received April 15, 2001 As a continuation of previous work (S. Yoshiara, 2000, J. Algebra 233, 309–341), this paper determines the radical 2-subgroups of the sporadic simple groups Ly O N HS , and HN. 2002 Elsevier Science (USA) 1. INTRODUCTION A nontrivial p-subgroup R of a finite group G is called radical (resp. centric)ifR = OpNGR (resp. every p-element centralizing R lies in ZR. We use the symbol pG to denote the set of radical p-subgroups of G. As a continuation of the papers [24] and [12], the present paper determines the 2-radical subgroups up to conjugacy of the sporadic simple groups Ly of Lyons, HS of Higman–Sims, O N of O’Nan, and HN = F5 of Harada–Norton. This completes the radical 2-subgroups of all sporadic sim- ple groups, except the Monster and the baby Monster, because the papers [24] and [12] determine those of J4Co2 Th Fi22, and Fi24, and those of the remaining sporadics are treated in [2] (the Mathieu groups), [3] He, [11] (J3), [7, 14] McL, [4] Co3, [17] Co1, [18] Rud, [25] Suz, and [5] Fi23.