The Classification of the Finite Simple Groups, Number 3

Total Page:16

File Type:pdf, Size:1020Kb

The Classification of the Finite Simple Groups, Number 3 http://dx.doi.org/10.1090/surv/040.3 Selected Titles in This Series 55 J. Scott Carter and Masahico Saito, Knotted surfaces and their diagrams, 1998 54 Casper Goffman, Togo Nishiura, and Daniel Waterman, Homeomorphisms in analysis, 1997 53 Andreas Kriegl and Peter W. Michor, The convenient setting of global analysis, 1997 52 V. A. Kozlov, V. G. Maz'ya? and J. Rossmann, Elliptic boundary value problems in domains with point singularities, 1997 51 Jan Maly and William P. Ziemer, Fine regularity of solutions of elliptic partial differential equations, 1997 50 Jon Aaronson, An introduction to infinite ergodic theory, 1997 49 R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, 1997 48 Paul-Jean Cahen and Jean-Luc Chabert, Integer-valued polynomials, 1997 47 A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May (with an appendix by M. Cole), Rings, modules, and algebras in stable homotopy theory, 1997 46 Stephen Lipscomb, Symmetric inverse semigroups, 1996 45 George M. Bergman and Adam O. Hausknecht, Cogroups and co-rings in categories of associative rings, 1996 44 J. Amoros, M. Burger, K. Corlette, D. Kotschick, and D. Toledo, Fundamental groups of compact Kahler manifolds, 1996 43 James E. Humphreys, Conjugacy classes in semisimple algebraic groups, 1995 42 Ralph Freese, Jaroslav Jezek, and J. B. Nation, Free lattices, 1995 41 Hal L. Smith, Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems, 1995 40.3 Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups, number 3, 1998 40.2 Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups, number 2, 1995 40.1 Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups, number 1, 1994 39 Sigurdur Helgason, Geometric analysis on symmetric spaces, 1994 38 Guy David and Stephen Semmes, Analysis of and on uniformly rectifiable sets, 1993 37 Leonard Lewin, Editor, Structural properties of polylogarithms, 1991 36 John B. Conway, The theory of subnormal operators, 1991 35 Shreeram S. Abhyankar, Algebraic geometry for scientists and engineers, 1990 34 Victor Isakov, Inverse source problems, 1990 33 Vladimir G. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, 1990 32 Howard Jacobowitz, An introduction to CR structures, 1990 31 Paul J. Sally, Jr. and David A. Vogan, Jr., Editors, Representation theory and harmonic analysis on semisimple Lie groups, 1989 30 Thomas W. Cusick and Mary E. Flahive, The Markoff and Lagrange spectra, 1989 29 Alan L. T. Paterson, Amenability, 1988 28 Richard Beals, Percy Deift, and Carlos Tomei, Direct and inverse scattering on the line, 1988 27 Nathan J. Fine, Basic hypergeometric series and applications, 1988 26 Hari Bercovici, Operator theory and arithmetic in H°°, 1988 25 Jack K. Hale, Asymptotic behavior of dissipative systems, 1988 24 Lance W. Small, Editor, Noetherian rings and their applications, 1987 23 E. H. Rothe, Introduction to various aspects of degree theory in Banach spaces, 1986 22 Michael E. Taylor, Noncommutative harmonic analysis, 1986 (Continued in the back of this publication) The Classification of the Finite Simple Groups, Number 3 MATHEMATICAL Surveys and Monographs Volume 40, Number 3 The Classification of the Finite Simple Groups, Number 3 Part I, Chapter A: Almost Simple X- Groups Daniel Gorenstein Richard Lyons Ronald Solomon American Mathematical Society Providence, Rhode Island The authors were supported in part by NSF grant #DMS 94-01852 and by NSA grant #MDA-904-95-H-1048. 1991 Mathematics Subject Classification. Primary 20D06, 20D08; Secondary 20D05, 20E32, 20G40. ABSTRACT. This volume examines in detail the internal structure of the finite simple groups of Lie type, the finite alternating groups and the twenty-six sporadic finite simple groups, as well as their almost simple analogues. Emphasis is on the structure of local subgroups and their relationships with one another. The foundation is laid for the development of the many specific properties of 3C-groups to be used in the inductive proof of the classification theorem. Library of Congress Cataloging-in-Publication Data ISBN 0-8218-0391-3 (number 3) ISBN 0-8218-0390-5 (number 2) The first volume was catalogued as follows: Gorenstein, Daniel. The classification of the finite simple groups / Daniel Gorenstein, Richard Lyons, Ronald Solomon. p. cm. — (Mathematical surveys and monographs; v. 40, number 1-) Includes bibliographical references and index. ISBN 0-8218-0334-4 [number 1] 1. Finite simple groups. I. Lyons, Richard, 1945- . II. Solomon, Ronald. III. Title. IV. Series: Mathematical surveys and monographs; no. 40, pt. 1-. QA177.G67 1994 512/.2-dc20 94-23001 CIP Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication (including abstracts) is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Assistant to the Publisher, American Mathematical Society, P. O. Box 6248, Providence, Rhode Island 02940-6248. Requests can also be made by e-mail to [email protected]. © 1998 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America. @ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at URL: http://www.ams.org/ 10 9 8 7 6 5 4 3 2 1 03 02 01 00 99 98 For Lisa and Myriam Contents List of Tables xi Preface xiii PART I, CHAPTER A: ALMOST SIMPLE K-GROUPS Chapter 1. Some Theory of Linear Algebraic Groups 1 1.1. Fundamental Notions 2 1.2. Jordan Decomposition 4 1.3. Unipotent Groups; One-Parameter Groups 5 1.4. Tori 6 1.5. Solvable Algebraic Groups 6 1.6. Borel Subgroups 7 1.7. Radical; Reductive, Semisimple and Simple Groups 7 1.8. Abstract Root Systems 8 1.9. Weights, Roots and Root Subgroups in Reductive Groups 13 1.10. Classification of Semisimple Groups; Isogenics and Versions 15 1.11. £iV-Structure 16 1.12. Chevalley Generators and Relations 17 1.13. Parabolic Subgroups 22 1.14. Weights and Representations 23 1.15. Isomorphisms, Automorphisms and Endomorphisms 27 1.16. Notes 30 Chapter 2. The Finite Groups of Lie Type 31 2.1. Steinberg Endomorphisms and Lang's Theorem 31 2.2. The Finite Groups of Lie Type 36 2.3. Bruhat Structure 40 2.4. Chevalley Relations for Finite Groups of Lie Type 45 2.5. Automorphisms 53 2.6. Subsystem Subgroups and Parabolic Subgroups 63 2.7. The Classical Groups 67 2.8. Equicharacteristic Representations 73 2.9. Presentations; Curtis-Tits Theorem 79 2.10. Standard Notation 89 Chapter 3. Local Subgroups of Groups of Lie Type, I 91 3.1. A Theorem of Borel and Tits 91 3.2. Structure of Parabolic Subgroups 95 3.3. Equicharacteristic Sylow Structure 106 x CONTENTS Chapter 4. Local Subgroups of Groups of Lie Type, II 119 4.1. Semisimple Automorphisms of Algebraic Groups 119 4.2. Semisimple Automorphisms of Finite Groups of Lie Type 134 4.3. Centralizers of Involutions in Auto (if): Statements 143 4.4. Centralizers of Involutions in Auto(K): Proofs 153 4.5. Centralizers of Involutions in Groups in £jie(r), r Odd: Statements 170 4.6. Centralizers of Involutions in Groups in £ie(r), r Odd: Proofs 186 4.7. Inner-Diagonal and Graph Automorphisms of Exceptional Odd Prime Orders 204 4.8. Some Other p-Local Subgroups 219 4.9. The Remaining Types of Non-Inner Automorphisms 227 4.10. Cross-Characteristic Sylow Structure 236 Chapter 5. The Alternating Groups and the Twenty-Six Sporadic Groups 249 5.1. Schur Multipliers and Coverings of Simple Groups 249 5.2. The Alternating Groups 252 5.3. Structure of the Twenty-Six Sporadic Groups 259 5.4. Justification of the Tables: The Simple Case 288 5.5. Justification of the Tables: The Non-Simple Case 294 5.6. Ranks of Sporadic Groups 302 Chapter 6. Coverings and Embeddings of Quasisimple DC-Groups 311 6.1. The Schur Multipliers and Covering Groups of the Simple X-Groups 311 6.2. Some Embeddings of Quasisimple Groups 313 6.3. The Action of Out (if) on M(K) 317 6.4. Splitting and Stable Involutions 324 6.5. Subgroups of Small Simple Groups 328 Chapter 7. General Properties of X-Groups 335 7.1. Verification of the Fundamental X-Group Properties 335 7.2. Generation of Semisimple Groups: Generalities 343 7.3. Generation for Groups in Qhev: Statements of Main Results 346 7.4. Generation for Groups in Qhev: Proofs 349 7.5. Generation for Groups in Alt U Spor 380 7.6. Strongly p-Embedded Subgroups and Proper fc-Generated Cores 383 7.7. Balance and Signalizers 385 7.8. Fusion 399 Background References 403 Expository References 404 Errata for Numbers 1 and 2 409 Glossary 410 Index 414 List of Tables Chapter 1 1.8. Irreducible reduced crystallographic root systems 12 1.12.5. Centers of universal Chevalley groups 19 1.12.6. Generators of Z(K) 20 1.15.2d. Graph automorphisms and their centralizers 28 Chapter 2 2.2. Orders of the finite groups of Lie type 39 2.3.2d. Twisted root systems 42 2.4. Structure of root groups X& 46 2.4.7.
Recommended publications
  • Simple Groups, Permutation Groups, and Probability
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 12, Number 2, April 1999, Pages 497{520 S 0894-0347(99)00288-X SIMPLE GROUPS, PERMUTATION GROUPS, AND PROBABILITY MARTIN W. LIEBECK AND ANER SHALEV 1. Introduction In recent years probabilistic methods have proved useful in the solution of several problems concerning finite groups, mainly involving simple groups and permutation groups. In some cases the probabilistic nature of the problem is apparent from its very formulation (see [KL], [GKS], [LiSh1]); but in other cases the use of probability, or counting, is not entirely anticipated by the nature of the problem (see [LiSh2], [GSSh]). In this paper we study a variety of problems in finite simple groups and fi- nite permutation groups using a unified method, which often involves probabilistic arguments. We obtain new bounds on the minimal degrees of primitive actions of classical groups, and prove the Cameron-Kantor conjecture that almost sim- ple primitive groups have a base of bounded size, apart from various subset or subspace actions of alternating and classical groups. We use the minimal degree result to derive applications in two areas: the first is a substantial step towards the Guralnick-Thompson genus conjecture, that for a given genus g, only finitely many non-alternating simple groups can appear as a composition factor of a group of genus g (see below for definitions); and the second concerns random generation of classical groups. Our proofs are largely based on a technical result concerning the size of the intersection of a maximal subgroup of a classical group with a conjugacy class of elements of prime order.
    [Show full text]
  • Construction of Finite Matrix Groups
    Construction of finite matrix groups Robert A. Wilson School of Mathematics and Statistics, The University of Birmingham published in Birkh¨auserProgress in Math. 173 (1999), pp. 61{83 Abstract We describe various methods of construction of matrix representa- tions of finite groups. The applications are mainly, but not exclusively, to quasisimple or almost simple groups. Some of the techniques can also be generalized to permutation representations. 1 Introduction It is one thing to determine the characters of a group, but quite another to construct the associated representations. For example, it is an elementary exercise to obtain the character table of the alternating group A5 by first determining the conjugacy classes, then writing down the trivial character and the permutation characters on points and unordered pairs, and using row orthogonality to obtain the irreducibles of degree 4 and 5, and finally using column orthogonality to complete the table. The result (see Table 1) shows that there are two characters of degree 3, but how do we construct the corresponding 3-dimensional representations? In general, we need some more information than just the characters, such as a presentation in terms of generators and relations, or some knowledge of subgroup structure, such as a generating amalgam, or something similar. If we have a presentation for our group, then in a sense it is already de- termined, and there are various algorithms which in principle at least will construct more or less any desired representation. The most important and 1 Table 1: The character table of A5 Class name 1A 2A 3A 5A 5B Class size 1 15 20 12 12 χ1 1 1 1 1 1 χ2 3 −1 0 τ σ χ3 3 −1 0 σ τ χ4 4 0 1 −1 −1 χ5 5 1 −1 0 0 1 p 1 p τ = (1 + 5); σ = (1 − 5) 2 2 well-known is Todd{Coxeter coset enumeration, which converts a presenta- tion into a permutation representation, and is well described in many places, such as [11].
    [Show full text]
  • Janko's Sporadic Simple Groups
    Janko’s Sporadic Simple Groups: a bit of history Algebra, Geometry and Computation CARMA, Workshop on Mathematics and Computation Terry Gagen and Don Taylor The University of Sydney 20 June 2015 Fifty years ago: the discovery In January 1965, a surprising announcement was communicated to the international mathematical community. Zvonimir Janko, working as a Research Fellow at the Institute of Advanced Study within the Australian National University had constructed a new sporadic simple group. Before 1965 only five sporadic simple groups were known. They had been discovered almost exactly one hundred years prior (1861 and 1873) by Émile Mathieu but the proof of their simplicity was only obtained in 1900 by G. A. Miller. Finite simple groups: earliest examples É The cyclic groups Zp of prime order and the alternating groups Alt(n) of even permutations of n 5 items were the earliest simple groups to be studied (Gauss,≥ Euler, Abel, etc.) É Evariste Galois knew about PSL(2,p) and wrote about them in his letter to Chevalier in 1832 on the night before the duel. É Camille Jordan (Traité des substitutions et des équations algébriques,1870) wrote about linear groups defined over finite fields of prime order and determined their composition factors. The ‘groupes abéliens’ of Jordan are now called symplectic groups and his ‘groupes hypoabéliens’ are orthogonal groups in characteristic 2. É Émile Mathieu introduced the five groups M11, M12, M22, M23 and M24 in 1861 and 1873. The classical groups, G2 and E6 É In his PhD thesis Leonard Eugene Dickson extended Jordan’s work to linear groups over all finite fields and included the unitary groups.
    [Show full text]
  • Expansion in Finite Simple Groups of Lie Type
    Expansion in finite simple groups of Lie type Terence Tao Department of Mathematics, UCLA, Los Angeles, CA 90095 E-mail address: [email protected] In memory of Garth Gaudry, who set me on the road Contents Preface ix Notation x Acknowledgments xi Chapter 1. Expansion in Cayley graphs 1 x1.1. Expander graphs: basic theory 2 x1.2. Expansion in Cayley graphs, and Kazhdan's property (T) 20 x1.3. Quasirandom groups 54 x1.4. The Balog-Szemer´edi-Gowers lemma, and the Bourgain- Gamburd expansion machine 81 x1.5. Product theorems, pivot arguments, and the Larsen-Pink non-concentration inequality 94 x1.6. Non-concentration in subgroups 127 x1.7. Sieving and expanders 135 Chapter 2. Related articles 157 x2.1. Cayley graphs and the algebra of groups 158 x2.2. The Lang-Weil bound 177 x2.3. The spectral theorem and its converses for unbounded self-adjoint operators 191 x2.4. Notes on Lie algebras 214 x2.5. Notes on groups of Lie type 252 Bibliography 277 Index 285 vii Preface Expander graphs are a remarkable type of graph (or more precisely, a family of graphs) on finite sets of vertices that manage to simultaneously be both sparse (low-degree) and \highly connected" at the same time. They enjoy very strong mixing properties: if one starts at a fixed vertex of an (two-sided) expander graph and randomly traverses its edges, then the distribution of one's location will converge exponentially fast to the uniform distribution. For this and many other reasons, expander graphs are useful in a wide variety of areas of both pure and applied mathematics.
    [Show full text]
  • Factorizations of Almost Simple Groups with a Solvable Factor, and Cayley Graphs of Solvable Groups
    Factorizations of almost simple groups with a solvable factor, and Cayley graphs of solvable groups Cai Heng Li, Binzhou Xia (Li) The University of Western Australia, Crawley 6009, WA, Aus- tralia. Email: [email protected] (Xia) Peking University, Beijing 100871, China. Email: [email protected] arXiv:1408.0350v3 [math.GR] 25 Feb 2016 Abstract A classification is given for factorizations of almost simple groups with at least one factor solvable, and it is then applied to characterize s-arc-transitive Cayley graphs of solvable groups, leading to a striking corollary: Except the cycles, every non- bipartite connected 3-arc-transitive Cayley graph of a solvable group is a cover of the Petersen graph or the Hoffman-Singleton graph. Key words and phrases: factorizations; almost simple groups; solvable groups; s-arc-transitive graphs AMS Subject Classification (2010): 20D40, 20D06, 20D08, 05E18 Acknowledgements. We would like to thank Cheryl Praeger for valuable com- ments. We also thank Stephen Glasby and Derek Holt for their help with some of the computation in Magma. The first author acknowledges the support of a NSFC grant and an ARC Discovery Project Grant. The second author acknowledges the support of NSFC grant 11501011. Contents Chapter 1. Introduction 5 1.1. Factorizations of almost simple groups 5 1.2. s-Arc transitive Cayley graphs 8 Chapter 2. Preliminaries 11 2.1. Notation 11 2.2. Results on finite simple groups 13 2.3. Elementary facts concerning factorizations 16 2.4. Maximal factorizations of almost simple groups 18 Chapter 3. The factorizations of linear and unitary groups of prime dimension 21 3.1.
    [Show full text]
  • CHAPTER 4 Representations of Finite Groups of Lie Type Let Fq Be a Finite
    CHAPTER 4 Representations of finite groups of Lie type Let Fq be a finite field of order q and characteristic p. Let G be a finite group of Lie type, that is, G is the Fq-rational points of a connected reductive group G defined over Fq. For example, if n is a positive integer GLn(Fq) and SLn(Fq) are finite groups of Lie type. 0 In Let J = , where In is the n × n identity matrix. Let −In 0 t Sp2n(Fq) = { g ∈ GL2n(Fq) | gJg = J }. Then Sp2n(Fq) is a symplectic group of rank n and is a finite group of Lie type. For G = GLn(Fq) or SLn(Fq) (and some other examples), the standard Borel subgroup B of G is the subgroup of G consisting of the upper triangular elements in G.A standard parabolic subgroup of G is a subgroup of G which contains the standard Borel subgroup B. If P is a standard parabolic subgroup of GLn(Fq), then there exists a partition (n1, . , nr) of n (a set of positive integers nj such that n1 + ··· + nr = n) such that P = P(n1,...,nr ) = M n N, where M ' GLn1 (Fq) × · · · × GLnr (Fq) has the form A 0 ··· 0 1 0 A2 ··· 0 M = | A ∈ GL ( ), 1 ≤ j ≤ r . . .. .. j nj Fq . 0 ··· 0 Ar and In1 ∗ · · · ∗ 0 In2 · · · ∗ N = , . .. .. . 0 ··· 0 Inr where ∗ denotes arbitary entries in Fq. The subgroup M is called a (standard) Levi sub- group of P , and N is called the unipotent radical of P . Note that the partition (1, 1,..., 1) corresponds to B and (n) corresponds to G.
    [Show full text]
  • Atlasrep —A GAP 4 Package
    AtlasRep —A GAP 4 Package (Version 2.1.0) Robert A. Wilson Richard A. Parker Simon Nickerson John N. Bray Thomas Breuer Robert A. Wilson Email: [email protected] Homepage: http://www.maths.qmw.ac.uk/~raw Richard A. Parker Email: [email protected] Simon Nickerson Homepage: http://nickerson.org.uk/groups John N. Bray Email: [email protected] Homepage: http://www.maths.qmw.ac.uk/~jnb Thomas Breuer Email: [email protected] Homepage: http://www.math.rwth-aachen.de/~Thomas.Breuer AtlasRep — A GAP 4 Package 2 Copyright © 2002–2019 This package may be distributed under the terms and conditions of the GNU Public License Version 3 or later, see http://www.gnu.org/licenses. Contents 1 Introduction to the AtlasRep Package5 1.1 The ATLAS of Group Representations.........................5 1.2 The GAP Interface to the ATLAS of Group Representations..............6 1.3 What’s New in AtlasRep, Compared to Older Versions?...............6 1.4 Acknowledgements................................... 14 2 Tutorial for the AtlasRep Package 15 2.1 Accessing a Specific Group in AtlasRep ........................ 16 2.2 Accessing Specific Generators in AtlasRep ...................... 18 2.3 Basic Concepts used in AtlasRep ........................... 19 2.4 Examples of Using the AtlasRep Package....................... 21 3 The User Interface of the AtlasRep Package 33 3.1 Accessing vs. Constructing Representations...................... 33 3.2 Group Names Used in the AtlasRep Package..................... 33 3.3 Standard Generators Used in the AtlasRep Package.................. 34 3.4 Class Names Used in the AtlasRep Package...................... 34 3.5 Accessing Data via AtlasRep ............................
    [Show full text]
  • Irreducible Character Restrictions to Maximal Subgroups of Low-Rank Classical Groups of Type B and C
    IRREDUCIBLE CHARACTER RESTRICTIONS TO MAXIMAL SUBGROUPS OF LOW-RANK CLASSICAL GROUPS OF TYPE B AND C KEMPTON ALBEE, MIKE BARNES, AARON PARKER, ERIC ROON, AND A.A. SCHAEFFER FRY Abstract Representations are special functions on groups that give us a way to study abstract groups using matrices, which are often easier to understand. In particular, we are often interested in irreducible representations, which can be thought of as the building blocks of all representations. Much of the information about these representations can then be understood by instead looking at the trace of the matrices, which we call the character of the representation. This paper will address restricting characters to subgroups by shrinking the domain of the original representation to just the subgroup. In particular, we will discuss the problem of determining when such restricted characters remain irreducible for certain low-rank classical groups. 1. Introduction Given a finite group G, a (complex) representation of G is a homomorphism Ψ: G ! GLn(C). By summing the diagonal entries of the images Ψ(g) for g 2 G (that is, taking the trace of the matrices), we obtain the corresponding character, χ = Tr◦Ψ of G. The degree of the representation Ψ or character χ is n = χ(1). It is well-known that any character of G can be written as a sum of so- called irreducible characters of G. In this sense, irreducible characters are of particular importance in representation theory, and we write Irr(G) to denote the set of irreducible characters of G. Given a subgroup H of G, we may view Ψ as a representation of H as well, simply by restricting the domain.
    [Show full text]
  • Arxiv:2002.11183V2 [Math.AG]
    Arithmetic statistics on cubic surfaces Ronno Das April 6, 2020 Abstract In this paper we compute the distributions of various markings on smooth cubic surfaces defined over the finite field Fq, for example the distribution of pairs of points, ‘tritangents’ or ‘double sixes’. We also compute the (rational) cohomology of certain associated bundles and covers over complex numbers. 1 Introduction The classical Cayley–Salmon theorem implies that each smooth cubic surface over an algebraically closed field contains exactly 27 lines (see Section 2 for detailed definitions). In contrast, for a surface over a finite field Fq, all 27 lines are defined over Fq but not necessarily over Fq itself. In other words, the action of the Frobenius Frobq permutes the 27 lines and only fixes a (possibly empty) subset of them. It is also classical that the group of all such permutations, which can be identified with the Galois group of an appropriate extension or cover, is isomorphic to the Weyl group W(E6) of type E6. This permutation of the 27 lines governs much of the arithmetic of the surface S: evidently the n pattern of lines defined over Fq and, less obviously, the number of Fq points on S (or UConf S etc). Work of Bergvall and Gounelas [BG19] allows us to compute the number of cubic surfaces over Fq where Frobq induces a given permutation, or rather a permutation in a given conjugacy class of W(E6). The results in this paper can be thought of as a combinatorial (Theorem 1.1) or representation-theoretic (Theorem 2.3) reinterpretation of their computation.
    [Show full text]
  • Contents 1 Root Systems
    Stefan Dawydiak February 19, 2021 Marginalia about roots These notes are an attempt to maintain a overview collection of facts about and relationships between some situations in which root systems and root data appear. They also serve to track some common identifications and choices. The references include some helpful lecture notes with more examples. The author of these notes learned this material from courses taught by Zinovy Reichstein, Joel Kam- nitzer, James Arthur, and Florian Herzig, as well as many student talks, and lecture notes by Ivan Loseu. These notes are simply collected marginalia for those references. Any errors introduced, especially of viewpoint, are the author's own. The author of these notes would be grateful for their communication to [email protected]. Contents 1 Root systems 1 1.1 Root space decomposition . .2 1.2 Roots, coroots, and reflections . .3 1.2.1 Abstract root systems . .7 1.2.2 Coroots, fundamental weights and Cartan matrices . .7 1.2.3 Roots vs weights . .9 1.2.4 Roots at the group level . .9 1.3 The Weyl group . 10 1.3.1 Weyl Chambers . 11 1.3.2 The Weyl group as a subquotient for compact Lie groups . 13 1.3.3 The Weyl group as a subquotient for noncompact Lie groups . 13 2 Root data 16 2.1 Root data . 16 2.2 The Langlands dual group . 17 2.3 The flag variety . 18 2.3.1 Bruhat decomposition revisited . 18 2.3.2 Schubert cells . 19 3 Adelic groups 20 3.1 Weyl sets . 20 References 21 1 Root systems The following examples are taken mostly from [8] where they are stated without most of the calculations.
    [Show full text]
  • Completing the Brauer Trees for the Sporadic Simple Lyons Group
    COMPLETING THE BRAUER TREES FOR THE SPORADIC SIMPLE LYONS GROUP JURGEN¨ MULLER,¨ MAX NEUNHOFFER,¨ FRANK ROHR,¨ AND ROBERT WILSON Abstract. In this paper we complete the Brauer trees for the sporadic sim- ple Lyons group Ly in characteristics 37 and 67. The results are obtained using tools from computational representation theory, in particular a new con- densation technique, and with the assistance of the computer algebra systems MeatAxe and GAP. 1. Introduction 1.1. In this paper we complete the Brauer trees for the sporadic simple Lyons group Ly in characteristics 37 and 67. The results are stated in Section 2, and will also be made accessible in the character table library of the computer algebra system GAP and electronically in [1]. The shape of the Brauer trees as well as the labelling of nodes up to algebraic conjugacy of irreducible ordinary characters had already been found in [8, Section 6.19.], while here we complete the trees by determining the labelling of the nodes on their real stems and their planar embedding; proofs are given in Section 4. Together with the results in [8, Section 6.19.] for the other primes dividing the group order, this completes all the Brauer trees for Ly. Our main computational workhorse is fixed point condensation, which originally was invented for permutation modules in [20], but has been applied to different types of modules as well. To our knowledge, the permutation module we have condensed is the largest one for which this has been accomplished so far. The theoretical background of the idea of condensation is described in Section 3.
    [Show full text]
  • On the Uniform Spread of Almost Simple Linear Groups
    ON THE UNIFORM SPREAD OF ALMOST SIMPLE LINEAR GROUPS TIMOTHY C. BURNESS AND SIMON GUEST Abstract. Let G be a finite group and let k be a non-negative integer. We say that G has uniform spread k if there exists a fixed conjugacy class C in G with the property that for any k nontrivial elements x1; : : : ; xk in G there exists y 2 C such that G = hxi; yi for all i. Further, the exact uniform spread of G, denoted by u(G), is the largest k such that G has the uniform spread k property. By a theorem of Breuer, Guralnick and Kantor, u(G) ≥ 2 for every finite simple group G. Here we consider the uniform spread of almost simple linear groups. Our main theorem states that if G = hPSLn(q); gi is almost simple then u(G) ≥ 2 (unless G =∼ S6), and we determine precisely when u(G) tends to infinity as jGj tends to infinity. 1. Introduction Let G be a group and let d(G) be the minimal number of generators for G. We say that G is d-generated if d(G) ≤ d. It is well known that every finite simple group is 2- generated, and in recent years a wide range of related problems on the generation of simple groups has been studied. For example, in [18, 31, 36] it is proved that the probability that two randomly chosen elements of a finite simple group G generate G tends to 1 as jGj tends to infinity, confirming a 1969 conjecture of Dixon [18].
    [Show full text]