The Semisimple Elements of E8(2) Aubad, Ali and Ballantyne, John and McGaw, Alexander and Neuhaus, Peter and Phillips, Jamie and Rowley, Peter and Ward, David 2016 MIMS EPrint: 2016.22 Manchester Institute for Mathematical Sciences School of Mathematics The University of Manchester Reports available from: http://eprints.maths.manchester.ac.uk/ And by contacting: The MIMS Secretary School of Mathematics The University of Manchester Manchester, M13 9PL, UK ISSN 1749-9097 The Semisimple Elements of E8(2) Ali Aubad, John Ballantyne, Alexander McGaw, Peter Neuhaus, Jamie Phillips, Peter Rowley, David Ward University of Manchester, School of Mathematics, Alan Turing Building, Oxford Road, United Kingdom, M13 9PL
[email protected] April 4, 2016 Abstract In this paper we determine detailed information on the conjugacy classes and cen- tralizers of semisimple elements in the exceptional Lie-type group E8(2). Keywords: exceptional group of Lie-type; semisimple element; centralizer. 1 Introduction Down the years, considerable effort has been expended examining various properties of families of finite simple groups, or indeed of just one specific finite simple group. These properties range from those encountered in the vast area of representation theory (in the modular and the non-modular case) to various aspects of the substructure of these groups, such as subgroups and conjugacy classes. Often such investigations are a re- sponse to a particular program of work or to aid in the solution of certain questions. For example, the work of Deligne and Lusztig [8] on the degrees of semisimple complex irreducible representations of finite groups of Lie type motivated the comprehensive work of Carter [5], [6], and many subsequent papers.