Black-Box Recognition of Finite Simple Groups of Lie Type by Statistics Of
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Constructive Recognition of a Black Box Group Isomorphic to GL(N,2)
DIMACS Series in Discrete Mathematics and Theoretical Computer Science Volume 00, 19xx Constructive Recognition of a Black Box Group Isomorphic to GL(n, 2) Gene Cooperman, Larry Finkelstein, and Steve Linton Abstract. A Monte Carlo algorithm is presented for constructing the natu- ral representation of a group G that is known to be isomorphic to GL(n, 2). The complexity parameters are the natural dimension n and the storage space required to represent an element of G. What is surprising about this result is that both the data structure used to compute the isomorphism and each invo- cation of the isomorphism require polynomial time complexity. The ultimate goal is to eventually extend this result to the larger question of construct- ing the natural representation of classical groups. Extensions of the methods developed in this paper are discussed as well as open questions. 1. Introduction The principal objective of this paper is a demonstration of the feasibility of obtaining the natural (projective) matrix representation for a classical group ini- tially presented as a black box group. In this model, group elements are encoded by binary strings of uniform length N, and group operations are performed by an oracle (the black box). The oracle can compute the product of elements, the inverse and recognize the identity element in time polynomial in N. The most important examples of black box groups are matrix groups and permutation groups. This effort was initially motivated by recent efforts to identify the structure of matrix groups defined over finite fields (see [3] [7] and [9] in this volume). -
Expansion in Finite Simple Groups of Lie Type
Expansion in finite simple groups of Lie type Terence Tao Department of Mathematics, UCLA, Los Angeles, CA 90095 E-mail address: [email protected] In memory of Garth Gaudry, who set me on the road Contents Preface ix Notation x Acknowledgments xi Chapter 1. Expansion in Cayley graphs 1 x1.1. Expander graphs: basic theory 2 x1.2. Expansion in Cayley graphs, and Kazhdan's property (T) 20 x1.3. Quasirandom groups 54 x1.4. The Balog-Szemer´edi-Gowers lemma, and the Bourgain- Gamburd expansion machine 81 x1.5. Product theorems, pivot arguments, and the Larsen-Pink non-concentration inequality 94 x1.6. Non-concentration in subgroups 127 x1.7. Sieving and expanders 135 Chapter 2. Related articles 157 x2.1. Cayley graphs and the algebra of groups 158 x2.2. The Lang-Weil bound 177 x2.3. The spectral theorem and its converses for unbounded self-adjoint operators 191 x2.4. Notes on Lie algebras 214 x2.5. Notes on groups of Lie type 252 Bibliography 277 Index 285 vii Preface Expander graphs are a remarkable type of graph (or more precisely, a family of graphs) on finite sets of vertices that manage to simultaneously be both sparse (low-degree) and \highly connected" at the same time. They enjoy very strong mixing properties: if one starts at a fixed vertex of an (two-sided) expander graph and randomly traverses its edges, then the distribution of one's location will converge exponentially fast to the uniform distribution. For this and many other reasons, expander graphs are useful in a wide variety of areas of both pure and applied mathematics. -
CHAPTER 4 Representations of Finite Groups of Lie Type Let Fq Be a Finite
CHAPTER 4 Representations of finite groups of Lie type Let Fq be a finite field of order q and characteristic p. Let G be a finite group of Lie type, that is, G is the Fq-rational points of a connected reductive group G defined over Fq. For example, if n is a positive integer GLn(Fq) and SLn(Fq) are finite groups of Lie type. 0 In Let J = , where In is the n × n identity matrix. Let −In 0 t Sp2n(Fq) = { g ∈ GL2n(Fq) | gJg = J }. Then Sp2n(Fq) is a symplectic group of rank n and is a finite group of Lie type. For G = GLn(Fq) or SLn(Fq) (and some other examples), the standard Borel subgroup B of G is the subgroup of G consisting of the upper triangular elements in G.A standard parabolic subgroup of G is a subgroup of G which contains the standard Borel subgroup B. If P is a standard parabolic subgroup of GLn(Fq), then there exists a partition (n1, . , nr) of n (a set of positive integers nj such that n1 + ··· + nr = n) such that P = P(n1,...,nr ) = M n N, where M ' GLn1 (Fq) × · · · × GLnr (Fq) has the form A 0 ··· 0 1 0 A2 ··· 0 M = | A ∈ GL ( ), 1 ≤ j ≤ r . . .. .. j nj Fq . 0 ··· 0 Ar and In1 ∗ · · · ∗ 0 In2 · · · ∗ N = , . .. .. . 0 ··· 0 Inr where ∗ denotes arbitary entries in Fq. The subgroup M is called a (standard) Levi sub- group of P , and N is called the unipotent radical of P . Note that the partition (1, 1,..., 1) corresponds to B and (n) corresponds to G. -
Contents 1 Root Systems
Stefan Dawydiak February 19, 2021 Marginalia about roots These notes are an attempt to maintain a overview collection of facts about and relationships between some situations in which root systems and root data appear. They also serve to track some common identifications and choices. The references include some helpful lecture notes with more examples. The author of these notes learned this material from courses taught by Zinovy Reichstein, Joel Kam- nitzer, James Arthur, and Florian Herzig, as well as many student talks, and lecture notes by Ivan Loseu. These notes are simply collected marginalia for those references. Any errors introduced, especially of viewpoint, are the author's own. The author of these notes would be grateful for their communication to [email protected]. Contents 1 Root systems 1 1.1 Root space decomposition . .2 1.2 Roots, coroots, and reflections . .3 1.2.1 Abstract root systems . .7 1.2.2 Coroots, fundamental weights and Cartan matrices . .7 1.2.3 Roots vs weights . .9 1.2.4 Roots at the group level . .9 1.3 The Weyl group . 10 1.3.1 Weyl Chambers . 11 1.3.2 The Weyl group as a subquotient for compact Lie groups . 13 1.3.3 The Weyl group as a subquotient for noncompact Lie groups . 13 2 Root data 16 2.1 Root data . 16 2.2 The Langlands dual group . 17 2.3 The flag variety . 18 2.3.1 Bruhat decomposition revisited . 18 2.3.2 Schubert cells . 19 3 Adelic groups 20 3.1 Weyl sets . 20 References 21 1 Root systems The following examples are taken mostly from [8] where they are stated without most of the calculations. -
UCLA Electronic Theses and Dissertations
UCLA UCLA Electronic Theses and Dissertations Title Shapes of Finite Groups through Covering Properties and Cayley Graphs Permalink https://escholarship.org/uc/item/09b4347b Author Yang, Yilong Publication Date 2017 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles Shapes of Finite Groups through Covering Properties and Cayley Graphs A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Mathematics by Yilong Yang 2017 c Copyright by Yilong Yang 2017 ABSTRACT OF THE DISSERTATION Shapes of Finite Groups through Covering Properties and Cayley Graphs by Yilong Yang Doctor of Philosophy in Mathematics University of California, Los Angeles, 2017 Professor Terence Chi-Shen Tao, Chair This thesis is concerned with some asymptotic and geometric properties of finite groups. We shall present two major works with some applications. We present the first major work in Chapter 3 and its application in Chapter 4. We shall explore the how the expansions of many conjugacy classes is related to the representations of a group, and then focus on using this to characterize quasirandom groups. Then in Chapter 4 we shall apply these results in ultraproducts of certain quasirandom groups and in the Bohr compactification of topological groups. This work is published in the Journal of Group Theory [Yan16]. We present the second major work in Chapter 5 and 6. We shall use tools from number theory, combinatorics and geometry over finite fields to obtain an improved diameter bounds of finite simple groups. We also record the implications on spectral gap and mixing time on the Cayley graphs of these groups. -
Quantum Algorithm for Decomposing Black-Box Finite Abelian Groups
Quantum Algorithm for Decomposing Black-Box Finite Abelian Groups Yong Zhang Department of Computer Science, Kutztown University of Pennsylvania, Kutztown, PA 19530 Abstract— Cheung and Mosca [1] gave an efficient quan- to a quantum algorithm for the HIDDEN SUBGROUP problem tum algorithm for decomposing finite abelian groups in a where the given group G is abelian. In the case when G is unique-encoding group model. We present another efficient non-abelian, the HIDDEN SUBGROUP problem generalizes quantum algorithm for this problem in a more general model, other well-known problems such as GRAPH ISOMORPHISM. the black-box group model, where each group element is not However, the non-abelian case is much harder to solve and necessarily uniquely encoded. remains a major challenge in quantum computation. Before one can efficiently implement QFT to solve the Keywords: quantum computation, black-box group model abelian HIDDEN SUBGROUP problem, the decomposition of the given abelian group G must be known. Cheung and Mosca [1] first studied the problem of decomposing finite 1. Introduction abelian groups. They gave an efficient quantum algorithm for this problem. However, one of their assumptions is that Any finite abelian group G can be decomposed into each element of the input group G is uniquely represented the direct sum of cyclic subgroups of prime power order. by a binary string. In another word, their quantum algorithm However, given a set of generators for G, no efficient only works for a unique-encoding group model. classical algorithm is known to find the decomposition of G, i.e., find generators for the cyclic subgroups of G. -
Algorithms for Black-Box Fields and Their Application to Cryptography (Extended Abstract)
Algorithms for Black-Box Fields and their Application to Cryptography (extended abstract) Dan Hone11 Richard ,J. Lipton“ [email protected] [email protected] Princeton University, Princeton NJ 08544 Abstract. We irrtroduce the notion of a black box field and present several algorithms for manipulating such fields. Black box fields arise naturally in cryptography arid our algorit,hnnshave several cryptographic implications. First, our results show that any algebraically homomorphic cryptosystem can be broken in sub-exponential time. The existence of such cryptosystems was posed as an open problem in [la]. Second we show that, over elliptic (or hyperelliptic) curves the hardness of com- puting discrete-log implies the security of the Diffie- Hellman protocol. This provable security of the Diffie-Hellman prot,ocol over elliptic curves demonstrates an additional advantage of elliptic curve cryptosystems over conventional ones. Finally, we prove that manipulating black box fields over the rationals is as hard as factoring integers. 1 Introduction An algebraic structure is often defined as a set of operators acting on some universe. Usually there is no reference as to how the elements in the universe are represented. One can design algorithms for such an abstract algebraic structure by providing the algorithm with oracles for the various operators. We refer to such a representation of an algebraic structure as a black box represenlation. The most widely studied structure given in this fashion is the black box group [3]. In this paper we study fields given in a black box representation. We refer to such fields as black box fields, or BBF for short. -
Abstracts (PDF)
Abstracts of lectures for Banff meeting, Groups and Geometries, May 4-8, 2015 Michael Aschbacher: Quaternion fusion packets Abstract I'll discuss work on a fusion theoretic version of the so-called Clas- sical Involution Theorem for groups. The project is part of a program to simplify part of the proof of the theorem classifying the finite simple groups. Pierre-Emmanuel Caprace, Nicola Radu: A compact space of isomor- phism classes of simple locally compact automorphism groups of trees, I and II Abstract Several important families of examples of non-discrete simple locally compact groups arise as automorphism groups of trees: simple algebraic groups of rank one over local fields, Kac-Moody groups of rank two over finite fields, as well as a large number of groups initially studied by Burger and Mozes and defined by prescribing their local action in terms of a given finite permutation group. The goal of the first part of this talk is to explain that a large set of isomorphism classes of simple locally compact groups acting on a given tree can be given a compact Hausdorff topology. Several questions arise then naturally, and will be addressed in the second part of the talk: Can we describe limits of known isomorphism classes? Which isomorphism classes form isolated points? Andrew Chermak: Locally grouped spaces Abstract That the finite simple groups and the simple algebraic groups have various structural properties in common need come as no great surprise since - as we now know - all but a small number of the finite simple groups are derivable from algebraic groups. -
Subgroups of Finite Groups of Lie Type
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 61, 16-27 (1979) Subgroups of Finite Groups of Lie Type GARY R/I. SEITZ* Urrivrrsity of Oregon, Eugene, Oregon Communicated by Walter F&t Received January 9, 1979 I. INTRODUCTION Let G :- G(p) be a finite group of Lie type defined over the field F, . Choose a Bore1 subgroup, B = UH .< G, of G, where Zi is unipotent and H a Cartan subgroup of G. In this paper we are concerned with the subgroups, Y, of G, such that 11 :< Y, and we determine these subgroups in the case where q is odd andg > 11. Associated with G is a root system, z, and a collection of root subgroups {U, : a: E Z> such that C’ 1 nI,,,- Zrz and such that FI < N(U,) for- each a E ,X In Lemma 3 of [ 1 I] it was shown that for q :‘-- 4 any H-invariant subgroup of U is essentially a product of root subgroups (the word “essentially” is relevant only when G is twisted, with some root subgroup non-Abelian). This I-es& was cxtcnded in [7], where it was shown that any unipotent subgroup of G normalized by H is of this form (although now negative roots are allowed). THEOREM. Suppose q is odd and q :> 11. Let H << t’ :$ G and set k; (ZTaCI YlatzZ\. Then (i) I’,, 4 I- and Y = 17,,A~,.(H); (ii) Y,, = : UOXO , where U, f3 LYO _ I, L), is u&potent and X0 is a central product of groups of Lie type; (iii) Zr,, and each component of-Y,, is generated b?l groups of the.form lJa n Y, 01E 2’; and (iv) If G f ‘G,(q), then for a E Z, lTa TI Y = 1, .L, , or Q(Q). -
Arxiv:Quant-Ph/0011023V2 26 Jan 2001 Ru Oracle Group Ya ffiin Rcdr O Optn H Ru Operations
Quantum algorithms for solvable groups John Watrous∗ Department of Computer Science University of Calgary Calgary, Alberta, Canada [email protected] January 26, 2001 Abstract In this paper we give a polynomial-time quantum algorithm for computing orders of solvable groups. Several other problems, such as testing membership in solvable groups, testing equality of subgroups in a given solvable group, and testing normality of a subgroup in a given solvable group, reduce to computing orders of solvable groups and therefore admit polynomial-time quantum algorithms as well. Our algorithm works in the setting of black-box groups, wherein none of these problems can be computed classically in polynomial time. As an important byproduct, our algorithm is able to produce a pure quantum state that is uniform over the elements in any chosen subgroup of a solvable group, which yields a natural way to apply existing quantum algorithms to factor groups of solvable groups. 1 Introduction The focus of this paper is on quantum algorithms for group-theoretic problems. Specifically we consider finite solvable groups, and give a polynomial-time quantum algorithm for computing or- ders of solvable groups. Naturally this algorithm yields polynomial-time quantum algorithms for testing membership in solvable groups and several other related problems that reduce to comput- ing orders of solvable groups. Our algorithm is also able to produce a uniform pure state over arXiv:quant-ph/0011023v2 26 Jan 2001 the elements in any chosen subgroup of a solvable groups, which yields a natural way of apply- ing certain quantum algorithms to factor groups of solvable groups. -
On the Lie Algebra of a Finite Group of Lie Type
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 74, 333-340 (1982) On the Lie Algebra of a Finite Group of Lie Type MASAHARU KANEDA AND GARY M. SEITZ* Department of Mathematics, University of Oregon, Eugene, Oregon 97403 Communicated by Walter Feit Received October 18, 1980 0. INTRODUCTION In this paper we study a certain finite Lie algebra, g, associated with a finite group of Lie type, G. The maximal tori of g are determined (assuming certain characteristic restrictions), and it is shown that the number of G- orbits of these depends only on the Weyl group. For each maximal torus of g there is a decomposition of g into generalized weight spaces. With additional hypotheses we show that each subgroup of G containing a maximal torus has an associated subalgebra of g, and the subalgebras arising in this manner are precisely those that contain a maximal torus. The association provides a computationally effective linearization of the main results of [3]. The proofs of the above results are fairly easy given the existing literature on modular Lie algebras, standard results on maximal tori in G, and results from [3]. However, we note that the required group theoretic results are in fact based on the full classification of finite simple groups. 1. NOTATION AND BASIC LEMMAS Fix a prime p > 5 and G a simple algebraic group over IF,,. Let u be a surjective endomorphism of G such that G = G,, is a finite group of Lie type. -
Covering Groups of Groups of Lie Type
Pacific Journal of Mathematics COVERING GROUPS OF GROUPS OF LIE TYPE JOHN MOSS GROVER Vol. 30, No. 3 November 1969 PACIFIC JOURNAL OF MATHEMATICS Vol. 30, No. 3, 1969 COVERING GROUPS OF GROUPS OF LIE TYPE JOHN GROVER A construction for a central extension of a group satisfy- ing a certain set of axioms has been given by C. W. Curtis. These groups are called groups of Lie type. The construction is based on that given by R. Steinberg for covering groups of the Chevalley groups. The central extensions constructed by Curtis, however, are not covering groups in the sense of being universal central extensions, as he shows by an example. Here, the Steinberg construction is considered for a more restricted class of groups of Lie type. It is shown that in this case, the central extension is a covering. It is also shown that this more restricted definition of groups of Lie type still includes the Chevalley and twisted groups, with certain exceptions. To fix our terminology: a universal central extension is one which factors through any other central extension. A covering is a universal central extension, no subgroup of which is also an extension of the same group, (x, y) = xyx~ιy~ι, ab = bab~\ and (G, G) is the commutator subgroup of G. G is perfect if G = (G, G). Ln(K) denotes the Chevalley group of type L and rank n over the field K. Twisted groups are defined here to be the (algebraic) nonnormal forms as constructed by D. Hertzig [5, 6], R. Steinberg [9] and J.