Advances in Elliptic Curve Cryptographylondon Mathematical Society Lecture Note Series ;
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
A Companion to User's Guide to Cryptography and Standards
A Companion to User’s Guide to Cryptography and Standards Alexander W. Dent Chris J. Mitchell 17th December 2004 (v1.1) ii Contents 1 Introduction 1 1.1 Scope and purpose . 2 1.2 Structure of book . 2 1.3 Terminology . 2 1.4 Modular Arithmetic . 2 1.5 Notes . 2 2 Standards and the standardisation process 3 2.1 Why bother with standards? . 4 2.2 International standardisation organisations . 4 2.3 National standardisation organisations . 4 2.4 Industrial standardisation organisations . 4 2.5 Cryptographic evaluation bodies . 4 2.6 Notes . 4 3 Security mechanisms and security services 5 3.1 Introduction . 6 3.2 Security standards . 6 3.3 A model for security . 6 3.4 Security services . 6 3.5 Security mechanisms . 6 3.6 Relating services to mechanisms . 6 3.7 Services and protocols layers . 6 3.8 Security management . 6 3.9 Security frameworks . 6 iii iv CONTENTS 3.10 Notes . 6 4 Encryption 9 4.1 Definitions and Basic Properties . 10 4.2 Block Ciphers . 10 4.3 Stream Ciphers . 10 4.4 Asymmetric Ciphers . 11 4.5 Notes . 11 5 Modes of operation for block ciphers 17 5.1 Definitions and basic properties . 18 5.2 Standards for modes of operation . 18 5.3 Padding methods . 18 5.4 Electronic Codebook (ECB) mode . 18 5.5 Cipher Block Chaining (CBC) mode . 18 5.6 Counter (CTR) mode . 18 5.7 Output Feedback (OFB) mode . 18 5.8 Cipher Feedback (CFB) mode . 18 5.9 Choosing a mode of operation . 18 5.10 Other modes . -
Implicit and Explicit Certificates-Based Encryption Scheme Tomasz Hyla, Witold Maćków, Jerzy Pejaś
Implicit and Explicit Certificates-Based Encryption Scheme Tomasz Hyla, Witold Maćków, Jerzy Pejaś To cite this version: Tomasz Hyla, Witold Maćków, Jerzy Pejaś. Implicit and Explicit Certificates-Based Encryption Scheme. 13th IFIP International Conference on Computer Information Systems and Industrial Man- agement (CISIM), Nov 2014, Ho Chi Minh City, Vietnam. pp.651-666, 10.1007/978-3-662-45237- 0_59. hal-01405660 HAL Id: hal-01405660 https://hal.inria.fr/hal-01405660 Submitted on 30 Nov 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Implicit and Explicit Certificates-based Encryption Scheme Tomasz Hyla1, Witold Maćków1, Jerzy Pejaś1, 1 West Pomeranian University of Technology, Szczecin Faculty of Computer Science and Information Technology, Poland {thyla, wmackow, jpejas}@zut.edu.pl Abstract. Certificate-based encryption (CBE) combines traditional public-key encryption and certificateless encryption. However, it does suffer to the Denial of Decryption (DoD) attack called by Liu and Au. To capture this attack, they introduced a new paradigm called self-generated-certificate public key cryptog- raphy. In this paper we show that the problem of DoD attack can be solved with a new implicit and explicit certificates-based public key cryptography paradigm. -
Public Auditing for Secure and Efficient Cloud Data Storage: a Comprehensive Survey
Vol-7 Issue-4 2021 IJARIIE-ISSN(O)-2395-4396 Public Auditing for Secure and Efficient Cloud Data Storage: A Comprehensive Survey 1Ayesha Siddiqha Mukthar, 2Dr. Jitendra Sheetlani 1Research Scholar, Sri Satya Sai University of Technology and Medical Sciences, Sehore 2Associate Professor, Sri Satya Sai University of Technology and Medical Sciences, Sehore Abstract: Nowadays storage of data is big problem because the huge generation of multimedia data likes images, audio, video etc. whose size is very large. For storing of these data size of conventional storage is not sufficient so we need remote storage such as cloud which is resilient infrastructure, reliable and high quality performance for the cloud users. In the cloud there is no direct physical control over the records because the cloud uses its resource pool for storing. Consequently data reliability fortification and auditing is not a modest task. The user prerequisites to depend on a Third Party Auditor (TPA) who is working as a public auditor for authenticating the data integrity and privacy. This paper presents the various auditing techniques of cloud computing for improving security and then future research challenges which need to be adopt by researchers to make system obvious. Keywords: Auditing, Cloud Computing, Storage, TPA, Reliability, Integrity. Introduction: Cloud is offering the different services to its users. Data sharing between two organizations which common in many application areas. The current data sharing and integration among various organizations requires the central and trusted authority to collect data from all data sources and then integrate the collected data. In current trend, there is necessary condition which defines the data sharing while preserving privacy in cloud. -
Groups of Finite Morley Rank with Solvable Local Subgroups
8 Introduction to: Groups of finite Morley rank with solvable local subgroups and of odd type The present paper is the continuation of [DJ07a] concerning groups of finite Morley rank with solvable local subgroups. Here we concentrate on groups having involutions in their connected component. It is known from [BBC07] that a connected group of finite Morley has either trivial or infinite Sylow 2- subgroups. Hence we will consider groups with infinite Sylow 2-subgroups. We also recall from [DJ07a] that we study locally◦ solvable◦ groups of finite Morley rank without any simplicity assumption, but rather generally a mere nonsolv- ability assumption. The present work corresponds in the finite case to the full classification of nonsolvable finite groups with involutions and all of whose local subgroups are solvable [Tho68, Tho70, Tho71, Tho73]. The structure of Sylow 2-subgroups of groups of finite Morley rank is well determined as a product of two subgroups corresponding naturally to the struc- ture of Sylow 2-subgroups in algebraic groups over algebraically closed fields of characteristics 2 and different from 2 respectively. This Sylow theory for the prime 2 in groups of finite Morley rank leads to three types of groups of finite Morley rank, those of mixed, even, and odd type respectively. By [DJ08] it is known that • A nonsolvable connected locally◦ solvable◦ group of finite Morley rank of even type is isomorphic to PSL 2(K), with K an algebraically closed field of characteristic 2. • There is no nonsolvable connected locally◦ solvable◦ group of finite Morley rank of mixed type. Hence the present paper will concern the remaining odd type, that is the case in which Sylow 2-subgroups are a finite extension of a nontrivial divisible abelian 2-group. -
Key Exchange in Ipsec Revisited Formal Analysis of Ikev1 and Ikev2
Research Collection Report Key Exchange in IPsec revisited Formal Analysis of IKEv1 and IKEv2 Author(s): Cremers, Cas Publication Date: 2011 Permanent Link: https://doi.org/10.3929/ethz-a-006804260 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Key Exchange in IPsec revisited: Formal Analysis of IKEv1 and IKEv2 (Preprint?) Cas Cremers Institute of Information Security ETH Zurich, Switzerland [email protected] Abstract. The IPsec standard aims to provide application-transparent end-to-end security for the Internet Protocol. The security properties of IPsec critically depend on the underlying key exchange protocols, known as IKE (Internet Key Exchange). We provide the most extensive formal analysis so far of the current IKE versions, IKEv1 and IKEv2. We combine recently introduced formal anal- ysis methods for security protocols with massive parallelization, allowing the scope of our analysis to go far beyond previous formal analysis. While we do not find any significant weaknesses on the secrecy of the session keys established by IKE, we find several previously unreported weaknesses on the authentication properties of IKE. Keywords: Security protocols, IPsec, IKE, IKEv1, IKEv2, Formal anal- ysis, protocol interaction, multi-protocol attacks 1 Introduction IPsec [19] is an IETF protocol suite that provides Internet Protocol (IP) security. In particular, IPsec provides confidentiality, data integrity, access control, and data source authentication [17]. In contrast to, e. g., SSL/TLS [12], IPsec provides end-to-end security in an application-transparent way, i. -
Towards a Hybrid Public Key Infrastructure (PKI): a Review
Towards a Hybrid Public Key Infrastructure (PKI): A Review Priyadarshi Singh, Abdul Basit, N Chaitanya Kumar, and V. Ch. Venkaiah School of Computer and Information Sciences, University of Hyderabad, Hyderabad-500046, India Abstract. Traditional Certificate- based public key infrastructure (PKI) suffers from the problem of certificate overhead like its storage, verification, revocation etc. To overcome these problems, idea of certificate less identity-based public key cryptography (ID-PKC) was proposed by Shamir. This is suitable for closed trusted group only. Also, this concept has some inherent problems like key escrow problem, secure key channel problem, identity management overhead etc. Later on, there had been several works which tried to combine both the cryptographic techniques such that the resulting hybrid PKI framework is built upon the best features of both the cryptographic techniques. It had been shown that this approach solves many problems associated with an individual cryptosystem. In this paper, we have reviewed and compared such hybrid schemes which tried to combine both the certificate based PKC and ID-based PKC. Also, the summary of the comparison, based on various features, is presented in a table. Keywords: Certificate-based PKI; Identity-based public key cryptography (ID-PKC); Hybrid PKI 1 INTRODUCTION Public key infrastructure (PKI) and public key cryptography (PKC) [12] plays a vital role with four major components of digital security: authentication, integrity, confidentiality and non-repudiation. Infact, PKI enables the use of PKC through key management. The ”efficient and secure management of the key pairs during their whole life cycle" is the purpose of PKI, which involves key generation, key distribution, key renewal, key revocation etc [11]. -
DRAFT Special Publication 800-56A, Recommendation for Pair-Wise Key
The attached DRAFT document (provided here for historical purposes) has been superseded by the following publication: Publication Number: NIST Special Publication (SP) 800-56A Revision 2 Title: Recommendation for Pair-Wise Key-Establishment Schemes Using Discrete Logarithm Cryptography Publication Date: 05/13/2013 • Final Publication: https://doi.org/10.6028/NIST.SP.800-56Ar2 (which links to http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf). • Information on other NIST Computer Security Division publications and programs can be found at: http://csrc.nist.gov/ The following information was posted with the attached DRAFT document: Aug 20, 2012 SP 800-56 A Rev.1 DRAFT Recommendation for Pair-Wise Key-Establishment Schemes Using Discrete Logarithm Cryptography (Draft Revision) NIST announces the release of draft revision of Special Publication 800-56A, Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography. SP 800-56A specifies key-establishment schemes based on the discrete logarithm problem over finite fields and elliptic curves, including several variations of Diffie-Hellman and MQV key establishment schemes. The revision is made on the March 2007 version. The main changes are listed in Appendix D. Please submit comments to 56A2012rev-comments @ nist.gov with "Comments on SP 800-56A (Revision)" in the subject line. The comment period closes on October 31, 2012. NIST Special Publication 800-56A Recommendation for Pair-Wise August 2012 Key-Establishment Schemes Using Discrete Logarithm Cryptography (Draft Revision) Elaine Barker, Lily Chen, Miles Smid and Allen Roginsky C O M P U T E R S E C U R I T Y Abstract This Recommendation specifies key-establishment schemes based on the discrete logarithm problem over finite fields and elliptic curves, including several variations of Diffie-Hellman and MQV key establishment schemes. -
Guidelines on Cryptographic Algorithms Usage and Key Management
EPC342-08 Version 7.0 4 November 2017 [X] Public – [ ] Internal Use – [ ] Confidential – [ ] Strictest Confidence Distribution: Publicly available GUIDELINES ON CRYPTOGRAPHIC ALGORITHMS USAGE AND KEY MANAGEMENT Abstract This document defines guidelines on cryptographic algorithms usage and key management. Document Reference EPC342-08 Issue Version 7.0 Date of Issue 22 November 2017 Reason for Issue Maintenance of document Produced by EPC Authorised by EPC Document History This document was first produced by ECBS as TR 406, with its latest ECBS version published in September 2005. The document has been handed over to the EPC which is responsible for its yearly maintenance. DISCLAIMER: Whilst the European Payments Council (EPC) has used its best endeavours to make sure that all the information, data, documentation (including references) and other material in the present document are accurate and complete, it does not accept liability for any errors or omissions. EPC will not be liable for any claims or losses of any nature arising directly or indirectly from use of the information, data, documentation or other material in the present document. Conseil Européen des Paiements AISBL– Cours Saint-Michel 30A – B 1040 Brussels Tel: +32 2 733 35 33 – Fax: +32 2 736 49 88 Enterprise N° 0873.268.927 – www.epc-cep.eu – [email protected] © 2016 Copyright European Payments Council (EPC) AISBL: Reproduction for non-commercial purposes is authorised, with acknowledgement of the source Table of Content MANAGEMENT SUMMARY ............................................................. 5 1 INTRODUCTION .................................................................... 7 1.1 Scope of the document ...................................................... 7 1.2 Document structure .......................................................... 7 1.3 Recommendations ............................................................ 8 1.4 Implementation best practices ......................................... -
PUF Based Authentication Protocol for Iot
S S symmetry Article PUF Based Authentication Protocol for IoT An Braeken Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium; [email protected]; Tel.: +32-468-104-767 Received: 11 July 2018; Accepted: 11 August 2018; Published: 20 August 2018 Abstract: Key agreement between two constrained Internet of Things (IoT) devices that have not met each other is an essential feature to provide in order to establish trust among its users. Physical Unclonable Functions (PUFs) on a device represent a low cost primitive exploiting the unique random patterns in the device and have been already applied in a multitude of applications for secure key generation and key agreement in order to avoid an attacker to take over the identity of a tampered device, whose key material has been extracted. This paper shows that the key agreement scheme of a recently proposed PUF based protocol, presented by Chatterjee et al., for Internet of Things (IoT) is vulnerable for man-in-the-middle, impersonation, and replay attacks in the Yao–Dolev security model. We propose an alternative scheme, which is able to solve these issues and can provide in addition a more efficient key agreement and subsequently a communication phase between two IoT devices connected to the same authentication server. The scheme also offers identity based authentication and repudiation, when only using elliptic curve multiplications and additions, instead of the compute intensive pairing operations. Keywords: physical unclonable function; authentication; elliptic curve cryptography; internet of things 1. Introduction Internet of Things (IoT) is experiencing worldwide growth. Not only classical computing and communication devices are connected, but also a whole range of other gadgets that are used in our daily life, such as thermostats, light switches, door locks, refrigerators, etc. -
To Interaction Captures the Technology Shift from Mainframes to Worksta
InternetRolf Oppliger Security: Firewalls HE PARADIGM SHIFT FROM ALGORITHMS to interaction captures the technology and shift from mainframes to worksta- tionsT and networks, from number-crunching to embedded systems and graphical user interfaces, Bey and from procedure-oriented to object-based and distributed programming. The radical notion that interactive systems are more powerful problem- solving engines than algorithms is the basis for a new paradigm for computing technology built around the unifying concept of interaction. The emerging use of the TCP/IP communications perhaps, best be described as a collegial environ- protocol suite for internetworking has led to a global ment, where the users and hosts were mutually system of interconnected hosts and networks that is trusting and interested in a free and open exchange commonly referred to as the Internet. During the of information. In this environment, the people on last decade, the Internet has experienced a tri- the Internet were the people who actually built the umphant advance. Projections based on its current Internet. As time went on, the Internet became more rate of growth suggest there will be over one million useful and reliable, and these people were joined by computer networks and well over one billion users others. With fewer goals in common and more peo- by the end of the century. Therefore, the Internet is ple, the Internet steadily twisted away from its orig- seen as the first incarnation of a national information inal intent. infrastructure (NII) as promoted by the U.S. govern- Today, the Internet environment is much less col- ment. legial and trustworthy. -
On the Implementation of Pairing-Based Cryptosystems a Dissertation Submitted to the Department of Computer Science and the Comm
ON THE IMPLEMENTATION OF PAIRING-BASED CRYPTOSYSTEMS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Ben Lynn June 2007 c Copyright by Ben Lynn 2007 All Rights Reserved ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Dan Boneh Principal Advisor I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. John Mitchell I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Xavier Boyen Approved for the University Committee on Graduate Studies. iii Abstract Pairing-based cryptography has become a highly active research area. We define bilinear maps, or pairings, and show how they give rise to cryptosystems with new functionality. There is only one known mathematical setting where desirable pairings exist: hyperellip- tic curves. We focus on elliptic curves, which are the simplest case, and also the only curves used in practice. All existing implementations of pairing-based cryptosystems are built with elliptic curves. Accordingly, we provide a brief overview of elliptic curves, and functions known as the Tate and Weil pairings from which cryptographic pairings are derived. We describe several methods for obtaining curves that yield Tate and Weil pairings that are efficiently computable yet are still cryptographically secure. -
On Robust Key Agreement Based on Public Key Authentication Feng Hao Thales E-Security, Cambridge, UK [email protected]
1 On Robust Key Agreement Based on Public Key Authentication Feng Hao Thales E-Security, Cambridge, UK [email protected] Abstract—This paper discusses public-key authenticated key Elliptic Curve Cryptography (ECC) [10]. Using ECC essen- agreement protocols. First, we critically analyze several authen- tially replaces the underlying (multiplicative) cyclic group ticated key agreement protocols and uncover various theoretical with another (additive) cyclic group defined over some elliptic and practical flaws. In particular, we present two new attacks on the HMQV protocol, which is currently being standardized curve. The essence of the protocol remains unchanged. by IEEE P1363. The first attack presents a counterexample to The acute problem with the Diffie-Hellman key agreement invalidate the basic authentication in HMQV. The second attack is that it is unauthenticated [2]. While secure against passive is applicable to almost all past schemes, despite that many of attackers, the protocol is inherently vulnerable to active attacks them have formal security proofs. These attacks highlight the such as the man-in-the-middle attack [6]. This is a serious lim- difficulty to design a crypto protocol correctly and suggest the caution one should always take. itation, which for many years has been motivating researchers We further point out that many of the design errors are caused to find a solution [3]–[5], [7], [9], [11], [13], [20]. by sidestepping an important engineering principle, namely To add authentication, we must start with assuming some “Do not assume that a message you receive has a particular shared secret. In general, there are two approaches.