Mesophilic and Thermophilic Biohydrogen and Bioelectricity Production from Real and Synthetic Wastewaters Paolo Dessi

Total Page:16

File Type:pdf, Size:1020Kb

Mesophilic and Thermophilic Biohydrogen and Bioelectricity Production from Real and Synthetic Wastewaters Paolo Dessi Mesophilic and thermophilic biohydrogen and bioelectricity production from real and synthetic wastewaters Paolo Dessi To cite this version: Paolo Dessi. Mesophilic and thermophilic biohydrogen and bioelectricity production from real and synthetic wastewaters. Environmental Engineering. Université Paris-Est; Tampereen yliopisto, 2018. English. NNT : 2018PESC2056. tel-02373735 HAL Id: tel-02373735 https://tel.archives-ouvertes.fr/tel-02373735 Submitted on 21 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Joint PhD degree in Environmental Technology Docteur de l’Université Paris-Est Spécialité : Science et Technique de l’Environnement Dottore di Ricerca in Tecnologie Ambientali Degree of Doctor in Environmental Technology Thesis for the degree of Doctor of Philosophy in Environmental Technology Tesi di Dottorato – Thèse – PhD thesis – Väitöskirja Paolo Dessì Mesophilic and thermophilic biohydrogen and bioelectricity production from real and synthetic wastewaters 23/05/2018, Tampere In front of the PhD evaluation committee Prof. Alan Guwy Reviewer Dr. Serge Hiligsmann Reviewer Prof. Jóhann Örlygsson Reviewer Prof. Piet N.L. Lens Promotor Prof. Giovanni Esposito Co-Promotor Prof. Hab. Eric D. van Hullebusch Co-Promotor Asst. Prof. Aino-Maija Lakaniemi Co-Promotor Prof. Jukka Rintala Chair Marie Sklodowska-Curie European Joint Doctorate, Advanced Biological Waste-to-Energy Technologie Evaluation committee Chair Prof. Jukka Rintala Laboratory of Chemistry and Bioengineering Faculty of Natural Sciences Tampere University of Technology Finland Reviewers/Examiners Prof. Alan Guwy Sustainable Environment Research Centre Faculty of Computing, Engineering and Science University of South Wales United Kingdom Dr. Serge Hiligsmann 3BIO-BioTech Brussels School of Engineering Université Libre de Bruxelles Belgium Prof. Jóhann Örlygsson Faculty of Natural Resource Sciences University of Akureyri Iceland Thesis Promotor Prof. P.N.L. Lens Department of Environmental Engineering and Water Technology IHE Delft Delft, The Netherlands Thesis Co-Promotors Prof. Giovanni Esposito Department of Civil and Mechanical Engineering University of Cassino and Southern Lazio Italy Prof. Hab. Eric D. van Hullebusch University of Paris-Est Marne-la-Vallée France Asst. Prof. Aino-Maija Lakaniemi Laboratory of Chemistry and Bioengineering Faculty of Natural Sciences Tampere University of Technology Finland Supervisory team Thesis Supervisor Prof. P.N.L. Lens Department of Environmental Engineering and Water Technology IHE Delft Delft, The Netherlands Thesis Co-Supervisors Prof. Giovanni Esposito Department of Civil and Mechanical Engineering University of Cassino and Southern Lazio Italy Asst. Prof. Aino-Maija Lakaniemi Laboratory of Chemistry and Bioengineering Faculty of Natural Sciences Tampere University of Technology Finland Dr. Gavin Collins Microbial Communities Laboratory School of Natural Sciences National University of Ireland Galway Ireland Thesis Instructors Asst. Prof. Luigi Frunzo Department of Mathematics and Applications University of Naples Federico II Italy Dr. Estefania Porca Microbial Communities Laboratory School of Natural Sciences National University of Ireland Galway Ireland This research was conducted in the framework of the Marie Sklodowska-Curie European Joint Doctorate (EJD) in Advanced Biological Waste-to-Energy Technologies (ABWET) and supported by from Horizon 2020 under grant agreement no. 643071. I Abstract In the last century, fossil fuels have been intensively used for energy production causing a dramatic increase of CO2 level in the atmosphere and the related environmental issues, such as global warming and ozone layer depletion. In 2015, the increased awareness about climate change led to the signature of the Paris agreement, in which 195 countries committed to cut off their greenhouse gases emission by 40% (compared to emissions in 1990) by 2030. The achievement of such an ambitious target is strictly linked to a gradual switch from fossil fuels to sustainable and renewable sources for energy production. This is driving many industries producing organic and inorganic waste towards a biorefinery concept, in which side streams, wastes and wastewaters are seen as a potential feedstocks for biofuel and/or biochemical production. Dark fermentation and microbial fuel cells (MFCs) are two emerging technologies for biological conversion of the chemical energy of organic compounds into hydrogen (H2) and electricity, respectively. Although these technologies can potentially replace fossil fuels for energy production, their establishment is hindered by their low energy output. Due to kinetic and thermodynamic advantages, high temperature can be the key for increasing both dark fermentative H2 production and electricity production in MFCs. Therefore, this thesis focuses on delineating how temperature influences biological production of H2 and electricity from organic carbon-containing wastewaters. Start-up and selection of a suitable microbial community is a crucial phase in dark fermentation. Two heat-treated inocula (fresh and digested activated sludge) were compared, in four consecutive batch cycles, for H2 production from xylose at 37, 55 and 70 °C. At both 37 and 55 °C, a higher H2 yield was achieved by the fresh than the digested activated sludge, whereas a very low H2 yield was obtained by both inocula at 70 °C. Then, four different inoculum pretreatments (acidic, alkaline, heat and freezing shocks) were evaluated, in a single-stage batch experiment, for creating an efficient mesophilic (37 °C) and thermophilic (55 °C) H2 producing community. Acidic and alkaline shocks selected known H2 producing microorganisms belonging to Clostridiaceae at the expenses of lactate producing bacteria, resulting in the highest H2 yield at 37 and 55 °C, respectively. Although a heat shock resulted in a low H2 yield in a single batch, H2 production by the heat-treated fresh activated sludge was shown to increase in the experiment with four consecutive batch cycles. This suggests that H2 producing microbial communities may develop in the long-term as long as culture conditions are optimized for growth of H2 producers. II Heat-treated fresh activated sludge was selected as inoculum for continuous H2 production from a xylose-containing synthetic wastewater in a mesophilic (37 °C) and a thermophilic (55-70 °C, increased stepwise) fluidized bed reactor (FBR). A higher H2 yield was obtained in the thermophilic than in the mesophilic FBR. Furthermore, H2 production at 70 °C, which failed in the earlier batch study, was successful in the FBR, -1 with a stable yield of 1.2 mol H2 mol xyloseadded, by adapting the microbial community from 55 °C to 70 °C stepwise at 5 °C intervals. Operation temperature of 70 °C was also found optimal for H2 production from thermomechanical pulping (TMP) wastewater in a temperature gradient incubator assay, as batch cultivation at 70 °C enriched the H2 producing Thermoanaerobacterium sp. and repressed homoacetogenic microorganisms. A detailed knowledge of microbial communities, and particularly the active subpopulation, is crucial in order to adjust the conditions to favor the growth of exoelectrogenic microorganisms in MFCs. A RNA approach was used to study the structure and role of the anode-attached, membrane-attached and planktonic microbial communities in a mesophilic (37 °C) and a thermophilic (55 °C) two-chamber, xylose-fed MFC. An anode- attached community dominated by Geobacteraceae sustained electricity production at 37 °C, whereas the establishment of methanogenic and H2 oxidizing microorganisms resulted in a low electricity production at 55 °C. However, the development of a thermophilic exoelectrogenic community can be promoted by applying a start-up strategy which includes imposing a negative potential to the anode and chemical inhibition of methanogens. At both 37 and 55 °C, aerobic membrane-attached microorganisms were likely involved in consuming the oxygen diffusing from the cathodic to the anodic chamber, thus favoring the exoelectrogenic microorganisms, which are strictly anaerobic, but competing with them for the substrate. A mesophilic exoelectrogenic community was also shown to produce electricity from TMP wastewater in an upflow MFC operated at 37 °C. In conclusion, a higher and more stable H2 yield can be achieved in thermophilic rather than mesophilic dark fermentation. Dark fermentation at 70 °C is particularly suitable for treatment of TMP wastewater as it is released at high temperature (50-80 °C) and could be treated on site with minimal energy requirement for heating the bioreactor. TMP wastewater can be also used as substrate for electricity production in mesophilic MFCs. Electricity production in thermophilic MFCs is feasible, but enrichment of thermophilic exoelectrogenic microorganisms may require a long start-up period with optimized conditions. The detailed RNA-level microbial community analysis performed in this study may help in selecting a start-up and operation strategy to optimize electricity
Recommended publications
  • Fermentative Hydrogen Production - Process Design and Bioreactors
    Chemical and Process Engineering 2012, 33 (4), 585-594 DOI: 10.2478/v10176-012-0048-4 FERMENTATIVE HYDROGEN PRODUCTION - PROCESS DESIGN AND BIOREACTORS Małgorzata Waligórska* A. Mickiewicz University, Faculty of Chemistry, ul. Umultowska 89b, 61-614 Poznań, Poland Substitution of fossil fuels with alternative energy carriers has become necessary due to climate change and fossil fuel shortages. Fermentation as a way of producing biohydrogen, an attractive and environmentally friendly future energy carrier, has captured received increasing attention in recent years because of its high H2 production rate and a variety of readily available waste substrates used in the process. This paper discusses the state-of-the-art of fermentative biohydrogen production, factors affecting this process, as well as various bioreactor configurations and performance parameters, including H2 yield and H2 production rate. Keywords: biohydrogen production, fermentation, bioreactors, operational parameters, hydrogen yields 1. INTRODUCTION Energy is a factor significantly influencing the development of civilization. In 2010, its world consumption rose by 5.6 % compared to previous year and equaled 12,002.4 mln tonnes oil equivalent. 87 % of the used energy was generated from fossil fuels (33.5 % crude oil, 29.6 % coal, 23.8 % natural gas) (Statistical Review of World Energy, 2011). If the global population increases by 1.4 billion people over the next 20 years, and assuming an economic growth rate of 3.7%, it has been assessed that the global energy demand will rise by 39 % by 2030 (Statistical Review of World Energy, 2011), whereas in 2100, it can reach a value 3.5 times higher than nowadays (Kruse et al., 2005).
    [Show full text]
  • Developing a Genetic Manipulation System for the Antarctic Archaeon, Halorubrum Lacusprofundi: Investigating Acetamidase Gene Function
    www.nature.com/scientificreports OPEN Developing a genetic manipulation system for the Antarctic archaeon, Halorubrum lacusprofundi: Received: 27 May 2016 Accepted: 16 September 2016 investigating acetamidase gene Published: 06 October 2016 function Y. Liao1, T. J. Williams1, J. C. Walsh2,3, M. Ji1, A. Poljak4, P. M. G. Curmi2, I. G. Duggin3 & R. Cavicchioli1 No systems have been reported for genetic manipulation of cold-adapted Archaea. Halorubrum lacusprofundi is an important member of Deep Lake, Antarctica (~10% of the population), and is amendable to laboratory cultivation. Here we report the development of a shuttle-vector and targeted gene-knockout system for this species. To investigate the function of acetamidase/formamidase genes, a class of genes not experimentally studied in Archaea, the acetamidase gene, amd3, was disrupted. The wild-type grew on acetamide as a sole source of carbon and nitrogen, but the mutant did not. Acetamidase/formamidase genes were found to form three distinct clades within a broad distribution of Archaea and Bacteria. Genes were present within lineages characterized by aerobic growth in low nutrient environments (e.g. haloarchaea, Starkeya) but absent from lineages containing anaerobes or facultative anaerobes (e.g. methanogens, Epsilonproteobacteria) or parasites of animals and plants (e.g. Chlamydiae). While acetamide is not a well characterized natural substrate, the build-up of plastic pollutants in the environment provides a potential source of introduced acetamide. In view of the extent and pattern of distribution of acetamidase/formamidase sequences within Archaea and Bacteria, we speculate that acetamide from plastics may promote the selection of amd/fmd genes in an increasing number of environmental microorganisms.
    [Show full text]
  • Microbial (Per)Chlorate Reduction in Hot Subsurface Environments
    Microbial (Per)chlorate Reduction in Hot Subsurface Environments Martin G. Liebensteiner Thesis committee Promotor Prof. Dr Alfons J.M. Stams Personal chair at the Laboratory of Microbiology Wageningen University Co-promotor Dr Bart P. Lomans Principal Scientist Shell Global Solutions International B.V., Rijswijk Other members Prof. Dr Willem J.H. van Berkel, Wageningen University Prof. Dr Mike S.M. Jetten, Radboud University Nijmegen Prof. Dr Ian Head, Newcastle University, UK Dr Timo J. Heimovaara, Delft University of Technology This research was conducted under the auspices of the Graduate School for Socio-Economic and Natural Sciences of the Environment (SENSE) Microbial (Per)chlorate Reduction in Hot Subsurface Environments Martin G. Liebensteiner Thesis submitted in fulfi lment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnifi cus Prof. Dr M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 17 October 2014 at 4 p.m. in the Aula. Martin G. Liebensteiner Microbial (Per)chlorate Reduction in Hot Subsurface Environments 172 pages. PhD thesis, Wageningen University, Wageningen, NL (2014) With references, with summaries in Dutch and English ISBN 978-94-6257-125-9 TABLE OF CONTENTS Chapter 1 General introduction and thesis outline 7 Chapter 2 Microbial redox processes in deep subsurface environments 23 and the potential application of (per)chlorate in oil reservoirs Chapter 3 (Per)chlorate reduction by the hyperthermophilic
    [Show full text]
  • WO 2018/064165 A2 (.Pdf)
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/064165 A2 05 April 2018 (05.04.2018) W !P O PCT (51) International Patent Classification: Published: A61K 35/74 (20 15.0 1) C12N 1/21 (2006 .01) — without international search report and to be republished (21) International Application Number: upon receipt of that report (Rule 48.2(g)) PCT/US2017/053717 — with sequence listing part of description (Rule 5.2(a)) (22) International Filing Date: 27 September 2017 (27.09.2017) (25) Filing Language: English (26) Publication Langi English (30) Priority Data: 62/400,372 27 September 2016 (27.09.2016) US 62/508,885 19 May 2017 (19.05.2017) US 62/557,566 12 September 2017 (12.09.2017) US (71) Applicant: BOARD OF REGENTS, THE UNIVERSI¬ TY OF TEXAS SYSTEM [US/US]; 210 West 7th St., Austin, TX 78701 (US). (72) Inventors: WARGO, Jennifer; 1814 Bissonnet St., Hous ton, TX 77005 (US). GOPALAKRISHNAN, Vanch- eswaran; 7900 Cambridge, Apt. 10-lb, Houston, TX 77054 (US). (74) Agent: BYRD, Marshall, P.; Parker Highlander PLLC, 1120 S. Capital Of Texas Highway, Bldg. One, Suite 200, Austin, TX 78746 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Mannoside Recognition and Degradation by Bacteria Simon Ladeveze, Elisabeth Laville, Jordane Despres, Pascale Mosoni, Gabrielle Veronese
    Mannoside recognition and degradation by bacteria Simon Ladeveze, Elisabeth Laville, Jordane Despres, Pascale Mosoni, Gabrielle Veronese To cite this version: Simon Ladeveze, Elisabeth Laville, Jordane Despres, Pascale Mosoni, Gabrielle Veronese. Mannoside recognition and degradation by bacteria. Biological Reviews, Wiley, 2016, 10.1111/brv.12316. hal- 01602393 HAL Id: hal-01602393 https://hal.archives-ouvertes.fr/hal-01602393 Submitted on 26 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Biol. Rev. (2016), pp. 000–000. 1 doi: 10.1111/brv.12316 Mannoside recognition and degradation by bacteria Simon Ladeveze` 1, Elisabeth Laville1, Jordane Despres2, Pascale Mosoni2 and Gabrielle Potocki-Veron´ ese` 1∗ 1LISBP, Universit´e de Toulouse, CNRS, INRA, INSA, 31077, Toulouse, France 2INRA, UR454 Microbiologie, F-63122, Saint-Gen`es Champanelle, France ABSTRACT Mannosides constitute a vast group of glycans widely distributed in nature. Produced by almost all organisms, these carbohydrates are involved in numerous cellular processes, such as cell structuration, protein maturation and signalling, mediation of protein–protein interactions and cell recognition. The ubiquitous presence of mannosides in the environment means they are a reliable source of carbon and energy for bacteria, which have developed complex strategies to harvest them.
    [Show full text]
  • Thermophilic Carboxydotrophs and Their Applications in Biotechnology Springerbriefs in Microbiology
    SPRINGER BRIEFS IN MICROBIOLOGY EXTREMOPHILIC BACTERIA Sonia M. Tiquia-Arashiro Thermophilic Carboxydotrophs and their Applications in Biotechnology SpringerBriefs in Microbiology Extremophilic Bacteria Series editors Sonia M. Tiquia-Arashiro, Dearborn, MI, USA Melanie Mormile, Rolla, MO, USA More information about this series at http://www.springer.com/series/11917 Sonia M. Tiquia-Arashiro Thermophilic Carboxydotrophs and their Applications in Biotechnology 123 Sonia M. Tiquia-Arashiro Department of Natural Sciences University of Michigan Dearborn, MI USA ISSN 2191-5385 ISSN 2191-5393 (electronic) ISBN 978-3-319-11872-7 ISBN 978-3-319-11873-4 (eBook) DOI 10.1007/978-3-319-11873-4 Library of Congress Control Number: 2014951696 Springer Cham Heidelberg New York Dordrecht London © The Author(s) 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
    [Show full text]
  • Hydrogen Production by Anaerobic Fermentation Using Agricultural and Food Processing Wastes Utilizing a Two-Stage Digestion System
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 12-2008 Hydrogen Production By Anaerobic Fermentation Using Agricultural and Food Processing Wastes Utilizing a Two-Stage Digestion System Reese S. Thompson Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Environmental Engineering Commons Recommended Citation Thompson, Reese S., "Hydrogen Production By Anaerobic Fermentation Using Agricultural and Food Processing Wastes Utilizing a Two-Stage Digestion System" (2008). All Graduate Theses and Dissertations. 208. https://digitalcommons.usu.edu/etd/208 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. HYDROGEN PRODUCTION BY ANAEROBIC FERMENTATION USING AGRICULTURAL AND FOOD PROCESSING WASTES UTILIZING A TWO-STAGE DIGESTION SYSTEM by Reese S. Thompson A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Biological Engineering Approved: _______________________ _______________________ Dr. Conly L. Hansen Dr. Carl S. Hansen Major Professor Committee Member _______________________ _______________________ Dr. Sridhar Viamajala Dr. Byron Burnhan Committee Member Dean of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2008 ii Copyright © Reese S. Thompson 2008 All Rights Reserved iii ABSTRACT Hydrogen Production by Anaerobic Fermentation Using Agricultural and Food Processing Wastes Utilizing a Two-Stage Digestion System by Reese S. Thompson, Master of Science Utah State University, 2008 Major Professor: Dr. Conly L. Hansen Department: Biological and Irrigation Engineering Hydrogen production by means of anaerobic fermentation was researched utilizing three different substrates.
    [Show full text]
  • A B Comea Oxaloacetate Decarboxylase, Beta Subunit C ATP
    C ATP-binding cassette, subfamily B A ComEA WP 025028831 Bacillus mannanilyticus B oxaloacetate decarboxylase, beta subunit WP 041718914 Alkaliphilus oremlandii PKM81186 Firmicutes bacterium HGW-Firmicutes-14 WP 092588843 Acidaminobacter hydrogenoformans Bacillus spp. MZQ96192 Acidaminobacter sp. Paenibacillus spp. 100% WP 088775865 Carboxydothermus islandicus WP 152967700 Oxobacter pfennigii GAV25686 Carboxydothermus islandicus WP 057983007 Virgibacillus soli 70% WP 146620656 Enterococcus florum WP 049886177 Thermacetogenium phaeum WP 064467709 Bacillus galactosidilyticus WP 126109031 Jeotgalibaca sp. H21T32 WP 090886300 Bacillus caseinilyticus Tree scale: 0.1 Peptoclostridium spp. Trichococcus spp. WP 101330798 Halalkalibacillus sp. B3227 WP 156782411 Geosporobacter ferrireducens WP 078755654 Globicatella sulfidifaciens SFQ43799 Desemzia incerta WP 110940224 Geosporobacter subterraneus WP 051258417 Atopococcus tabaci WP 047393312 Carnobacterium sp. ZWU0011 SHI93557 Geosporobacter subterraneus DSM 17957 WP 156883193 Lacticigenium naphtae WP 051237935 Lacticigenium naphtae 100% Natranaerovirga spp. WP 017470521 Amphibacillus jilinensis WP 097004362 amygdalinum Enterococcus spp. 75% HBG15709 Firmicutes bacterium WP 092653112 Isobaculum melis WP 013780596 Mahella australiensis Thermoanaerobacter spp. WP 126780365 Vagococcus salmoninarum WP 087058768 Marinilactibacillus psychrotolerans WP 084110983 Caldanaerobius fijiensis WP 072693424 Marinilactibacillus sp. 15R 2503533728 Mahella australiensis 50-1 BON Caldicellulosiruptor spp. WP 129721893
    [Show full text]
  • Hydrogen Production by Dark Fermentation
    481 A publication of CHEMICAL ENGINEERINGTRANSACTIONS The Italian Association VOL. 38, 2014 of Chemical Engineering www.aidic.it/cet GuestEditors: Enrico Bardone, Marco Bravi, Taj Keshavarz Copyright © 2014, AIDIC ServiziS.r.l., ISBN 978-88-95608-29-7; ISSN 2283-9216 DOI: 10.3303/CET1438081 Hydrogen Production by Dark Fermentation VicelmaL. Cardoso, Betânia B. Romão*, Felipe T. M. Silva, Júlia G. Santos, Fabiana R. X. Batista, Juliana S. Ferreira Universidade Federal de Uberlânidia – Faculdade de Engenharia Química. Avenida João Naves de Ávila, 2121, Bloco 1K, Campus Santa Mônica, Uberlândia-MG, Brazil, Zip code: 38408-100 [email protected] Alternative energy sources have been extensively studied due to the environmental concerns caused by the employment of fossil fuels. Hydrogen is considered a very clean energy source, since its combustion releases mainly water as a reaction product and also it has the advantage of having the highest energy density when compared to any other fuel. Moreover, hydrogen may be produced biologically by fermentation from renewable sources, such as effluents and agroindustrial wastes. Based on this context, this work evaluated the hydrogen production by dark fermentation, using a microbial consortium obtained from a dairy wastewater treatment plant. The fermentative process occurred in batch with a reaction volume of 75 mL using lactose (20g/L) as substrate, which was procured from whey permeate. The response hydrogen conversion was evaluated from the process variables, temperature, which ranged from 27,9 to 42°C, and magnesium sulfate concentration, which varied from 0,31 to 1,44 g/L. The response surface, which was plotted from the results obtained in the Central Composite Design pointed out for best hydrogen yield for the temperature range from 30ºC to 35ºC and MgSO4 from 1.2 to 1.6 g/L.
    [Show full text]
  • Photobiological Hydrogen Production: Photochemical E Ciency and Bioreactor Design
    International Journal of Hydrogen Energy 27 (2002) 1195–1208 www.elsevier.com/locate/ijhydene Photobiological hydrogen production: photochemical e)ciency and bioreactor design Ida Akkermana; ∗, Marcel Janssenb, Jorge Rochac, RenÃe H. Wij1elsd aThe New Delta, Laan 1933-1, 6711 NX Ede, Netherlands bFood and Bioprocess Engineering Group, Wageningen University, Netherlands cChemical Engineering Department, University of Coimbra, Portugal dFood and Bioprocess Engineering Group, Wageningen University, Netherlands Abstract Biological production of hydrogen can be carried out by photoautotrophic or photoheterotrophic organisms. Here, the photosystems of both processes are described. The main drawback of the photoautotrophic hydrogen production process is oxygen inhibition. The few e)ciencies reported on the conversion of light energy into hydrogen energy are low, less than 1.5% on a solar spectrum basis. However, these can be increased to 3–10%, by the immediate removal of produced oxygen. The photochemical e)ciency of hydrogen production can be calculated theoretically, and is estimated to be 10% (on solar spectrum basis) for the photoheterotrophic process. With use of the theoretical photochemical e)ciency, and the climatic data on sunlight irradiance at a certain location at a certain moment of the year, the theoretical maximum hydrogen production can be estimated. Data on H2 yields and photochemical e)ciency from experiments reported in the literature are summarized. Photochemical e)ciencies, essentially based on artiÿcial light, can reach 10% or even more, but only at low light intensities, with associated low-H2 production rates. Some re<ections on possible photobioreactors lead to two types of (modiÿed) photobioreactors that might be successful for a large-scale biological hydrogen production.
    [Show full text]
  • EXPERIMENTAL STUDIES on FERMENTATIVE FIRMICUTES from ANOXIC ENVIRONMENTS: ISOLATION, EVOLUTION, and THEIR GEOCHEMICAL IMPACTS By
    EXPERIMENTAL STUDIES ON FERMENTATIVE FIRMICUTES FROM ANOXIC ENVIRONMENTS: ISOLATION, EVOLUTION, AND THEIR GEOCHEMICAL IMPACTS By JESSICA KEE EUN CHOI A dissertation submitted to the School of Graduate Studies Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in Microbial Biology Written under the direction of Nathan Yee And approved by _______________________________________________________ _______________________________________________________ _______________________________________________________ _______________________________________________________ New Brunswick, New Jersey October 2017 ABSTRACT OF THE DISSERTATION Experimental studies on fermentative Firmicutes from anoxic environments: isolation, evolution and their geochemical impacts by JESSICA KEE EUN CHOI Dissertation director: Nathan Yee Fermentative microorganisms from the bacterial phylum Firmicutes are quite ubiquitous in subsurface environments and play an important biogeochemical role. For instance, fermenters have the ability to take complex molecules and break them into simpler compounds that serve as growth substrates for other organisms. The research presented here focuses on two groups of fermentative Firmicutes, one from the genus Clostridium and the other from the class Negativicutes. Clostridium species are well-known fermenters. Laboratory studies done so far have also displayed the capability to reduce Fe(III), yet the mechanism of this activity has not been investigated
    [Show full text]
  • Biohydrogen Production by Photofermentation of Lactic Acid Using Thiocapsa Roseopersicina
    U.P.B. Sci. Bull., Series B, Vol. 72, Iss. 2, 2010 ISSN 1454-2331 BIOHYDROGEN PRODUCTION BY PHOTOFERMENTATION OF LACTIC ACID USING THIOCAPSA ROSEOPERSICINA Éva HARAI (MOLNOS)1, Árpád KAPÁS2, Szabolcs LÁNYI3, Beáta ÁBRAHÁM4, Iosif NAGY5, Ovidiu MUNTEAN6 Hidrogenul obţinut prin procese biologice este denumit biohidrogen. Procesele biologice de producere a hidrogenului prezintă anumite avantaje, cum ar fi operare în condiţii blânde, selectivitate ridicată şi posibilitatea utilizării surselor regenerabile, dar au şi dezavantaje, precum eficienţa scăzută a conversiei şi costurile ridicate ale operării fotobioreactorului. Scopul nostru este studierea fenomenului de obţinere a biohidrogenului din acidul lactic, specific subproduselor industriei laptelui, prin fotofermentaţie cu bacterii fotosintetice. În această lucrare sunt prezentate caracteristicile definitorii ale bacteriilor Thiocapsa roseopersicina, precum şi acele puncte critice, pe care trebuie să se pună accentul în proiectarea şi construirea unui fotoreactor inovativ. The biologically produced hydrogen is defined as biohydrogen. Biological hydrogen production methods offer distinct advantages, such as operation under mild conditions, high selectivity and the possibility of using renewable sources, but have also some disadvantages, such as low conversion efficiency and high operating cost of photobioreactors. Our goal is to study photofermentative biohydrogen production with photosynthetic bacteria from lactic acid, also found in dairy wastewater. The focus of this paper is on the essential
    [Show full text]