Hydrogen Production Cost from Fermentation Originator: Katie Randolph and Sarah Studer (DOE)

Total Page:16

File Type:pdf, Size:1020Kb

Hydrogen Production Cost from Fermentation Originator: Katie Randolph and Sarah Studer (DOE) DOE Hydrogen and Fuel Cells Program Record Record: 16016 Date: February 14, 2017 Title: Hydrogen Production Cost f rom Fermentation Originator: Katie Randolph and Sarah Studer (DOE) Reviewed by: Zhiyong "Jason" Ren, Hong Liu, Alexander Beliaev, and Jamie Holladay Approved by: Sunita Satyapal Date: February 27, 2017 (DOE) Item The projected cost to produce hydrogen (H2) from dark fermentation of biomass (corn stover) using techniques and strains currently in development at the laboratory scale is greater than $50/kg1 (untaxed, high system production rates). However, it is expected to drop dramatically in the future to $5.65/kg by 2025, if assumed improvements in the technology and high volumes are realized. Two cases were considered, a projected Current year case based on 2015 technology using performance and design parameters that have been simultaneously demonstrated in the lab at low reactor volumes, and a projected Future case based on projected technological advancements by 2025. The cost analysis was performed using the Hydrogen Analysis version 3.101 (H2A Production v3.101) model and its associated 2 3 assumptions for a centralized production facility with a production capacity of 50,000 kg H2/day. The analysis utilizes a system design based on lab-demonstrated hydrogen production procedures4 and using capital costs derived from a 2013 NREL report5 on the production of hydrocarbons from lignocellulosic compounds. Summary The modeled costs (untaxed, delivery and dispensing not included) to produce hydrogen are summarized in Table 1 for the two cases studied. The baseline costs are the projected costs to produce hydrogen for the projected Current and projected Future cases. The low and high values are included to reflect a range of uncertainty (±25%) in installed capital costs (with all other techno-economic inputs the same as in the baseline cases). Table 1: High-volume cost projections for hydrogen production from a centralized facility with 1 50,000 kg H2 /day production capacity using 2014 (projected Current) and 2025 (projected Future) technologies. Optimistic Value Baseline Conservative Value Case Study (2007$/kg H2) (2007$/kg H2) (2007$/kg H2) Current Case (2015) $59.76 $67.71 $75.67 Current Case (2015) with $40.88 $51.02 $61.16 byproduct credit Future Case (2025) $7.68 $8.56 $9.43 Future Case6(2025) with $3.40 $5.65 $7.91 byproduct credit Analytical Basis Analyses of the cost to produce hydrogen at a central production facility with a plant capacity of 50,000 kg 7 H2/day were performed using the H2A Production v3.1 model. Two technology years were considered, projected Current8 (2015) and projected Future (2025).9 The forecourt production capacity H2A model was not considered in this analysis. 1 There are no commercial dark fermentation hydrogen production facilities on which to base the system designs. Consequently, relevant techno-economic analysis inputs were derived for a hypothesized system. The process design for this projected hydrogen fermentation plant draws from two main sources: a hydrogen production fermentation plant previously conceptualized in 2009,10 and a design and cost report for the production of lignocellulosic ethanol.5 A 2013 National Renewable Energy Laboratory (NREL) report was supported and supplemented by data from previous versions of the report.11,12 Data from these reports were adjusted to reflect recent technological progress and thinking (See Figure 1) and to adapt for hydrogen production. The alterations primarily consist of elimination of the distillation columns and scaling of the waste water system. The distillation columns are not required in the hypothesized system design as the system is not producing and purifying ethanol. The waste water treatment was scaled according to the size of the system and the content of the organic components in the waste stream. These organic compounds were modeled as being converted to biogas in the waste water treatment center. Consistent with the 2009 analysis and the laboratory data, hydrolysis pretreatment of cellulose and hemicellulose have been combined into one reactor, with combined saccharification and fermentation assumed to occur in a subsequent single reactor. In accordance with the 2009 analysis, Clostridium thermocellum converts cellulose to hydrogen and other byproducts in the projected Current case analysis. Clostridium thermocellum can also be combined with other microbes to create a microbial consortium that is capable of converting both cellulose and hemicellulose derivatives to hydrogen. This microbe consortium is modeled for the projected Future case as a technological improvement that will increase corn stover to hydrogen yield. Reaction parameters such as reaction rates, compound concentration, and product yields were provided by NREL.13 Capital equipment design, cost, and performance data were gathered from the literature,5 modified as appropriate to meet the hydrogen fermentation plant needs, and used to populate a set of baseline cases. Inputs to the H2A model fell into five primary categories: 1. Engineering system definition, 2. Capital costs, 3. Operating costs, 4. Variable and fixed expenses, and 5. Replacement costs. 2 Figure 1: Process flow diagram used as the model system to project the cost to produce hydrogen via fermentation at a central production facility with a 50,000 kg/day capacity. For each technology year considered, a model was created to determine the capital cost based on production volume, molar conversion of sugars to hydrogen, heat and energy requirements, and energy byproducts. Both projected Current and projected Future cases envision a hydrogen fermentation plant (Figure 1) in which feed material (modeled as corn stover, with cost of preparation for processing included) is delivered to the plant. Feedstock is first broken down via the pretreatment process.14 The partially converted feedstock is then sent to a fermentation reactor in which two main reactions occur: (1) cellulose is hydrolyzed to hexose sugars, and (2) sugars are fermented into hydrogen and other products. For the projected Current case, C. thermocellum resides within the fermentation reactor and ferments only hexose sugars. For the projected Future case, a consortium of microbes, based on C. thermocellum, resides in the fermentation reactor and ferments both hexose and pentose sugars. The fermentation reactors are modeled as operating at 55°C for a given batch time. The fermentation batch time was determined through a cost optimization study, by plotting projected hydrogen cost as a function of fermentation time (see Figure 2). Maximum fermentation time was limited to 74 hours, as NREL data showed maximum conversion at that limit. The optimization curves, based on 2015 lab results, suggest the minimum cost of hydrogen corresponds to a fermentation time of 74 hours for both the projected Current and projected Future cases.15 3 A B Figure 2: Optimization Curves for Fermentation Cases A) projected Current case and B) projected Future case based on the modeled corn stover loadings and other variables. The H2 and CO2 gaseous products are vented from the fermentation reactor and separated from one another via Pressure Swing Adsorption (PSA). After fermentation, the broth is filtered, with the solids fraction (mostly lignin) used for energy recovery, and the liquid fraction (a dilute mixture of ethanol, acetate, and other organic acids) sent to waste water treatment. The waste water treatment plant is based on anaerobic digestion to create a byproduct gas of mostly methane. The byproduct gases, as well as the lignin, are combusted to generate thermal energy to heat the system.16 The excess thermal energy is converted to electricity in a gas turbine electrical generator and sold to the grid for byproduct credit equivalent to $11.93 and $8.19 per kg of hydrogen produced for the projected Current and projected Future cases, respectively.17 In the cases without byproduct credit, the hydrogen cost is higher since there is no revenue collected from electricity sales, but the cost increase is partially offset by a reduction in system capital cost as there is no need for the gas turbine. Fuel cell conversion of the byproduct gases into 4 electricity was considered but ultimately rejected due to a desire to focus the cases on fermentation technology and to leave them unencumbered by uncertainty of fuel cell capital cost projections. Key differences between the projected Current and projected Future case are: 1) A change in fermentation broth concentration18 from 12.8 g/L (projected Current) to 175 g/L (projected Future).19,20 2) A change from C. thermocellum (capable of converting only hexose sugars) in the projected Current case to a microbial consortium (capable of converting both hexose and pentose sugars) in the projected Future case. 3) An increase in peak molar conversion of sugars to H2 from 1.16 mol H2/mol sugar (projected 21 Current) to 3.2 mol H2/mol sugar (projected Future). The yields were determined based on experimental data from NREL. NREL ran fermentation studies with acid hydrolysis pre-treated corn stover (PCS) and Avicel22 feed stocks, creating fermentation broth with cellulose concentrations of 1 g, 2.5 g, and 5 g cellulose/L.23 The peak molar yields ranged from approximately equivalent to 1.16 mol H2/mol hexose to approximately 3.2 mol H2/mol hexose, at 74 21 hours. The selected operating points for lowest system cost are 1.16 mol H2/mol hexose at 74 hours for a 24 12.8 gram corn stover/L broth concentration for the projected Current case, and, for the projected Future Case, 3.2 mol H2/mol sugar (pentose and hexose) at 74 hours for a 175 g corn stover/L broth concentration. The projected Future case model used the highest yield demonstrated by NREL. Note, however, that this yield occurred at the lowest fermentation broth concentration tested (1 g cellulose/L) while the projected Future case is based on achievement of this high molar yield at the projected Future broth concentration of 175 g/L.
Recommended publications
  • Strategic Electrification and Codes
    Strategic Electrification and Energy Codes February 2021 Table of Contents Introduction ................................................................................................................................................................3 Shifting the Code Conversation to Carbon .................................................................................................................4 Carbon Reduction through Strategic Electrification ...............................................................................................4 Combustion-Free Requirements ............................................................................................................................4 Code Adoption, Stretch Codes, and Electrification Opportunities in Code ................................................................5 Regional Code Adoption Landscape .......................................................................................................................5 Stretch Codes in the Region ...................................................................................................................................6 DC Stretch Code- Appendix Z .................................................................................................................................6 IECC 2021: Opportunities and Setbacks .................................................................................................................7 Electrification in Codes ...............................................................................................................................................8
    [Show full text]
  • Energy Recovery from Waste Incineration—The Importance of Technology Data and System Boundaries on CO2 Emissions
    energies Article Energy Recovery from Waste Incineration—The Importance of Technology Data and System Boundaries on CO2 Emissions Ola Eriksson 1,* and Göran Finnveden 2 1 Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, University of Gävle, SE 801 76 Gävle, Sweden 2 Division of Environmental Strategies Research–fms, Department of Sustainable Development, Environmental Sciences and Engineering (SEED), School of Architecture and the Built Environment, KTH Royal Institute of Technology, SE 100 44 Stockholm, Sweden; goran.fi[email protected] * Correspondence: [email protected]; Tel.: +46-26-648145 Academic Editor: George Kosmadakis Received: 19 October 2016; Accepted: 12 April 2017; Published: 15 April 2017 Abstract: Previous studies on waste incineration as part of the energy system show that waste management and energy supply are highly dependent on each other, and that the preconditions for the energy system setup affects the avoided emissions and thereby even sometimes the total outcome of an environmental assessment. However, it has not been previously shown explicitly which key parameters are most crucial, how much each parameter affects results and conclusions and how different aspects depend on each other. The interconnection between waste incineration and the energy system is elaborated by testing parameters potentially crucial to the result: design of the incineration plant, avoided energy generation, degree of efficiency, electricity efficiency in combined heat and power plants (CHP), avoided fuel, emission level of the avoided electricity generation and avoided waste management. CO2 emissions have been calculated for incineration of 1 kWh mixed combustible waste. The results indicate that one of the most important factors is the electricity efficiency in CHP plants in combination with the emission level of the avoided electricity generation.
    [Show full text]
  • Fermentative Hydrogen Production - Process Design and Bioreactors
    Chemical and Process Engineering 2012, 33 (4), 585-594 DOI: 10.2478/v10176-012-0048-4 FERMENTATIVE HYDROGEN PRODUCTION - PROCESS DESIGN AND BIOREACTORS Małgorzata Waligórska* A. Mickiewicz University, Faculty of Chemistry, ul. Umultowska 89b, 61-614 Poznań, Poland Substitution of fossil fuels with alternative energy carriers has become necessary due to climate change and fossil fuel shortages. Fermentation as a way of producing biohydrogen, an attractive and environmentally friendly future energy carrier, has captured received increasing attention in recent years because of its high H2 production rate and a variety of readily available waste substrates used in the process. This paper discusses the state-of-the-art of fermentative biohydrogen production, factors affecting this process, as well as various bioreactor configurations and performance parameters, including H2 yield and H2 production rate. Keywords: biohydrogen production, fermentation, bioreactors, operational parameters, hydrogen yields 1. INTRODUCTION Energy is a factor significantly influencing the development of civilization. In 2010, its world consumption rose by 5.6 % compared to previous year and equaled 12,002.4 mln tonnes oil equivalent. 87 % of the used energy was generated from fossil fuels (33.5 % crude oil, 29.6 % coal, 23.8 % natural gas) (Statistical Review of World Energy, 2011). If the global population increases by 1.4 billion people over the next 20 years, and assuming an economic growth rate of 3.7%, it has been assessed that the global energy demand will rise by 39 % by 2030 (Statistical Review of World Energy, 2011), whereas in 2100, it can reach a value 3.5 times higher than nowadays (Kruse et al., 2005).
    [Show full text]
  • 2017 District of Columbia Energy Conservation Code
    2017 District of Columbia Energy Conservation Code 2017 District of Columbia Energy Conservation Code 2017 District of Columbia Energy Conservation Code First Printing: September 2020 COPYRIGHT © 2014 International Code Council, Inc. (for 2015 International Energy Conservation Code®) COPYRIGHT © 2020 Government of the District of Columbia (for new text) ALL RIGHTS RESERVED. This 2017 District of Columbia Energy Conservation Code contains substantial copyrighted materi- als from the 2015 International Energy Conservation Code®, third printing, which is a copyrighted work owned by the Interna- tional Code Council, Inc. (“ICC”). Without advance written permission from the ICC, no part of this book may be reproduced, distributed or transmitted in any form or by any means, including, without limitation, electronic, optical or mechanical means (by way of example, and not limitation, photocopying, or recording by or in an information storage retrieval system). For information on use rights and permissions, please contact: ICC Publications, 4051 Flossmoor Road, Country Club Hills, IL 60478. Phone 1- 888-ICC-SAFE (422-7233). The 2017 District of Columbia Energy Conservation Code contains substantial copyrighted material from the ANSI/ASHRAE/IES Standard 90.1—2013, which is a copyrighted work owned by ASHRAE. Without advance written permission from the copyright owner, no part of this book may be reproduced, distributed or transmitted in any form or by any means, including, without limita- tion, electronic, optical or mechanical means (by way of example, and not limitation, photocopying, or recording by or in an infor- mation storage retrieval system). For information on permission to copy material exceeding fair use, please contact: ASHRAE Publications, 1791 Tullie NE, Atlanta, GA 30329.
    [Show full text]
  • Research, Development, Demonstrations and Commercialisation Endeavours for Accelerating Clean Energy Innovations
    Research, development, demonstrations and commercialisation endeavours for accelerating Clean Energy Innovations Sanjay Bajpai Adviser/ Scientist ‘G’ Department of Science & Technology (DST) Ministry of Science & Technology, Government of India New Mehrauli Road, New Delhi-110016 [email protected] www.dst.gov.in Science, Technology and Innovation Framework for Clean Energy Innovation National Policy Accelerate the pace of discovery and delivery of science led solutions for High priority sector including Energy through enhanced global cooperation and Public-Private Partnership (PPP) DST Mandate Build human, institutional and technology capacity forging alliances, partnership and R&D Missions for larger benefit of society through S&T. Mission for Clean Energy • Promote novel ideas & cutting edge research to foster innovations • Foster Translational Research to develop competitive technologies • Nurture start ups and partner with industry for accelerated diffusion through start ups and industries. Page 1 Advancing technology readiness levels through Clean Energy Research, Development and Demonstration Fundamental and early stage research ( www.serb.gov.in) Capacity building, applied research, proof of concept, technology development, demonstrations ( www.dst.gov.in, www.dsttara.in ) Market readiness of promising innovations and technologies (www.nstedb.com, www.tdb.gov.in ) 550 DST’s Clean Energy Portfolio DST Funding for Clean Energy 500 2000 450 1800 400 1600 350 1400 ₹ 300 ₹ 1200 250 1000 200 800 in million million in inmillion 600 150
    [Show full text]
  • Department of Energy Small Business Innovation Research Program and Small Business Technology Transfer Program
    DEPARTMENT OF ENERGY SMALL BUSINESS INNOVATION RESEARCH PROGRAM AND SMALL BUSINESS TECHNOLOGY TRANSFER PROGRAM PHASE I RECOVERY ACT APPLICATIONS SELECTED FOR AWARDS BY STATE ARKANSAS Company Title NanoMech, LLC Recovery Act – 535 Research Center Boulevard, Suite 135 Scale-up of Production of Active Nanoparticles-Based Novel Fayetteville, AR 72701-6948 Lubricant Additives to Improve Energy Efficiency and Durability Summary This proposal addresses scale-up and commercialization of novel nanoparticles-based lubricant additives for harsh boundary lubrication regimes (ball bearings, gears, and other related equipment) saving hundreds of millions of dollars from fuel savings, reduced vehicle exhaust emission, reduced friction and wear to improve energy efficiency and durability of U.S. industries. ARIZONA Company Title MER Corporation (Materials and Electrochemical Research) Recovery Act – 7960 South Kolb Road A Very Low Cost Process for the Manufacture of Ti Heat Tucson, AZ 85756-9237 Exchanger Components for Desalination Summary The very low cost titanium manufacturing developed in this program will provide a dramatic reduction in the cost of heat exchangers used for desalination. In addition to the increased availability of potable water, this will provide a major commercial advantage for domestic corporations for the sale and operation of these plants. Company Title MER Corporation (Materials and Electrochemical Research) Recovery Act – An Improved Design for Magnetocaloric 7960 South Kolb Road Refrigeration Tucson, AZ 85756-9237 Summary An enhanced thermodynamic cycle to improve performance and simultaneously reduce cost of magnetic refrigerators and air conditioners will be tested in a breadboard prototype refrigerator. Results of the tests will be applied to design a new generation magnetic refrigerator that can compete favorably with modern commercial devices.
    [Show full text]
  • Bioliquids and Their Use in Power Generation €
    Renewable and Sustainable Energy Reviews 129 (2020) 109930 Contents lists available at ScienceDirect Renewable and Sustainable Energy Reviews journal homepage: http://www.elsevier.com/locate/rser Bioliquids and their use in power generation – A technology review T. Seljak a, M. Buffi b,c, A. Valera-Medina d, C.T. Chong e, D. Chiaramonti f, T. Katra�snik a,* a University of Ljubljana, Faculty of Mechanical Engineering, A�sker�ceva Cesta 6, 1000, Ljubljana, Slovenia b RE-CORD, Viale Kennedy 182, 50038, Scarperia e San Piero, Italy c University of Florence, Industrial Engineering Department, Viale Morgagni 40, 50134, Firenze, Italy d Cardiff University College of Physical Sciences and Engineering, CF234AA, Cardiff, UK e China-UK Low Carbon College, Shanghai Jiao Tong University, Lingang, Shanghai, 201306, China f University of Turin, Department of Energy "Galileo Ferraris", Corso Duca degli Abruzzi 24, 10129, Torino, Italy ARTICLE INFO ABSTRACT Keywords: The first EU Renewable Energy Directive (RED) served as an effective push for world-wide research efforts on Bioliquids biofuels and bioliquids, i.e. liquid fuels for energy purposes other than for transport, including electricity, Micro gas turbine heating, and cooling, which are produced from biomass. In December 2018 the new RED II was published in the Internal combustion engine OfficialJournal of the European Union. Therefore, it is now the right time to provide a comprehensive overview Power generation of achievements and practices that were developed within the current perspective. To comply with this objective, Renewable energy directive Biofuels the present study focuses on a comprehensive and systematic technical evaluation of all key aspects of the different distributed energy generation pathways using bioliquids in reciprocating engines and micro gas tur­ bines that were overseen by these EU actions.
    [Show full text]
  • Hydrogen Production by Anaerobic Fermentation Using Agricultural and Food Processing Wastes Utilizing a Two-Stage Digestion System
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 12-2008 Hydrogen Production By Anaerobic Fermentation Using Agricultural and Food Processing Wastes Utilizing a Two-Stage Digestion System Reese S. Thompson Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Environmental Engineering Commons Recommended Citation Thompson, Reese S., "Hydrogen Production By Anaerobic Fermentation Using Agricultural and Food Processing Wastes Utilizing a Two-Stage Digestion System" (2008). All Graduate Theses and Dissertations. 208. https://digitalcommons.usu.edu/etd/208 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. HYDROGEN PRODUCTION BY ANAEROBIC FERMENTATION USING AGRICULTURAL AND FOOD PROCESSING WASTES UTILIZING A TWO-STAGE DIGESTION SYSTEM by Reese S. Thompson A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Biological Engineering Approved: _______________________ _______________________ Dr. Conly L. Hansen Dr. Carl S. Hansen Major Professor Committee Member _______________________ _______________________ Dr. Sridhar Viamajala Dr. Byron Burnhan Committee Member Dean of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2008 ii Copyright © Reese S. Thompson 2008 All Rights Reserved iii ABSTRACT Hydrogen Production by Anaerobic Fermentation Using Agricultural and Food Processing Wastes Utilizing a Two-Stage Digestion System by Reese S. Thompson, Master of Science Utah State University, 2008 Major Professor: Dr. Conly L. Hansen Department: Biological and Irrigation Engineering Hydrogen production by means of anaerobic fermentation was researched utilizing three different substrates.
    [Show full text]
  • Waste Heat Recovery Technology Assessment
    Quadrennial Technology Review 2015 Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing Technology Assessments Additive Manufacturing Advanced Materials Manufacturing Advanced Sensors, Controls, Platforms and Modeling for Manufacturing Combined Heat and Power Systems Composite Materials Critical Materials Direct Thermal Energy Conversion Materials, Devices, and Systems Materials for Harsh Service Conditions Process Heating Process Intensification Roll-to-Roll Processing Sustainable Manufacturing - Flow of Materials through Industry Waste Heat Recovery Systems Wide Bandgap Semiconductors for Power Electronics U.S. DEPARTMENT OF ENERGY Quadrennial Technology Review 2015 Waste Heat Recovery Systems Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Waste Heat Recovery Systems is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR technology chapters, and other Chapter 6 technology assessments are illustrated below. Representative Intra-Chapter Connections Representative Extra-Chapter Connections CHP: heat recovery in CHP systems Sustainable Manufacturing: optimization of heat flows to maximize production intensity and minimize waste heat losses Electric Power: waste heat recovery Direct Thermal Energy Conversion: novel energy
    [Show full text]
  • Hydrogen Production by Dark Fermentation
    481 A publication of CHEMICAL ENGINEERINGTRANSACTIONS The Italian Association VOL. 38, 2014 of Chemical Engineering www.aidic.it/cet GuestEditors: Enrico Bardone, Marco Bravi, Taj Keshavarz Copyright © 2014, AIDIC ServiziS.r.l., ISBN 978-88-95608-29-7; ISSN 2283-9216 DOI: 10.3303/CET1438081 Hydrogen Production by Dark Fermentation VicelmaL. Cardoso, Betânia B. Romão*, Felipe T. M. Silva, Júlia G. Santos, Fabiana R. X. Batista, Juliana S. Ferreira Universidade Federal de Uberlânidia – Faculdade de Engenharia Química. Avenida João Naves de Ávila, 2121, Bloco 1K, Campus Santa Mônica, Uberlândia-MG, Brazil, Zip code: 38408-100 [email protected] Alternative energy sources have been extensively studied due to the environmental concerns caused by the employment of fossil fuels. Hydrogen is considered a very clean energy source, since its combustion releases mainly water as a reaction product and also it has the advantage of having the highest energy density when compared to any other fuel. Moreover, hydrogen may be produced biologically by fermentation from renewable sources, such as effluents and agroindustrial wastes. Based on this context, this work evaluated the hydrogen production by dark fermentation, using a microbial consortium obtained from a dairy wastewater treatment plant. The fermentative process occurred in batch with a reaction volume of 75 mL using lactose (20g/L) as substrate, which was procured from whey permeate. The response hydrogen conversion was evaluated from the process variables, temperature, which ranged from 27,9 to 42°C, and magnesium sulfate concentration, which varied from 0,31 to 1,44 g/L. The response surface, which was plotted from the results obtained in the Central Composite Design pointed out for best hydrogen yield for the temperature range from 30ºC to 35ºC and MgSO4 from 1.2 to 1.6 g/L.
    [Show full text]
  • Assessing the Sustainability Implications of Alternative Aviation Fuels
    WORKING PAPER 2021-11 © 2021 INTERNATIONAL COUNCIL ON CLEAN TRANSPORTATION MARCH 2021 Fueling flight: Assessing the sustainability implications of alternative aviation fuels Authors: Nikita Pavlenko, Stephanie Searle Keywords: Aviation, biofuels, low-carbon fuels Aviation faces large technical barriers to making a transition to hydrogen or electricity- powered airframes, so the industry will probably have to rely on liquid fuels through 2050. That is particularly true for the medium- and long-haul flights that generate two- thirds of aviation emissions. If the industry is to meet its long-term climate goal of cutting greenhouse gas (GHG) emissions 50% by 2050 without curbing traffic growth or using out-of-sector carbon offsets, sustainable aviation fuels (SAFs) will need to play a key role. SAFs can be used to generate in-sector GHG reductions when they supplant conventional petroleum jet fuel. In 2018, less than 0.01% of aviation fuel came from alternative sources (Hupe, 2019; Graver, Zhang, & Rutherford, 2019). While reducing petroleum consumption in aviation is an important objective for decarbonization, the specific types of alternative fuels used to displace petroleum will determine the net climate impact of any alternative fuels policy. A fuel’s feedstock and its conversion process—together called the fuel pathway—determine the fuel’s life-cycle GHG emissions. The European Union’s recently announced Green New Deal framework calls for a clear regulatory roadmap for the decarbonization of aviation, to be achieved using a combination of new technology, SAFs, modal shift, and improved efficiency (European Parliament, 2020). As part of this effort, the European Commission announced the ReFuelEU initiative to deploy SAFs to decarbonize EU aviation (European Commission, n.d.).
    [Show full text]
  • Producing Hydrogen in Sequential Dark and Photofermentation from Four Different Distillery Wastewaters
    Pol. J. Environ. Stud. Vol. 29, No. 4 (2020), 2935-2944 DOI: 10.15244/pjoes/112062 ONLINE PUBLICATION DATE: 2020-03-02 Original Research Producing Hydrogen in Sequential Dark and Photofermentation from Four Different Distillery Wastewaters Roman Zagrodnik*, Krystyna Seifert, Mikołaj Stodolny, Anna Juszczak Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland Received: 1 August 2019 Accepted: 1 September 2019 Abstract Four different distillery wastewaters were applied as the substrates for dark and photofermentation – wheat stillage (WTL), wheat syrup (WSR), maize stillage (MTL) and maize syrups (MSR). WTL was found to be the most effective substrate in dark fermentation, with a hydrogen production of 0.88 L H2/Lmedium and a yield of 1.17 L H2/LWTL. In the photofermentation experiments, the highest hydrogen production (1.7 L H2/Lmedium) and the highest yield (8.6 L H2/LWSR) were obtained with WSR as the substrate. A sequential two-step treatment, comprising dark fermentation followed by photofermentation, was applied to the same four substrates. WTL and MTL were the substrates for dark fermentation and the effluent after 5-fold dilution was used as the substrate in photofermentation. The maximum hydrogen production in the two-step system was 4.47 L H2/LWTL. Simultaneously, the organic compounds from the waste and those formed in dark fermentation were completely utilized, except for ethanol and methanol, which were 19% and 10% utilized, respectively. Keywords: distillery wastewaters, dark fermentation, photofermentation, biohydrogen, two-step system Introduction was estimated that the world demand for ethyl alcohol would increase by 70% in the next 10 years because of Large-scale fermentative production of ethyl its application as a gasoline component [1].
    [Show full text]