2015 Bioenergy Market Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
What Is Still Limiting the Deployment of Cellulosic Ethanol? Analysis of the Current Status of the Sector
applied sciences Review What is still Limiting the Deployment of Cellulosic Ethanol? Analysis of the Current Status of the Sector Monica Padella *, Adrian O’Connell and Matteo Prussi European Commission, Joint Research Centre, Directorate C-Energy, Transport and Climate, Energy Efficiency and Renewables Unit C.2-Via E. Fermi 2749, 21027 Ispra, Italy; [email protected] (A.O.); [email protected] (M.P.) * Correspondence: [email protected] Received: 16 September 2019; Accepted: 15 October 2019; Published: 24 October 2019 Abstract: Ethanol production from cellulosic material is considered one of the most promising options for future biofuel production contributing to both the energy diversification and decarbonization of the transport sector, especially where electricity is not a viable option (e.g., aviation). Compared to conventional (or first generation) ethanol production from food and feed crops (mainly sugar and starch based crops), cellulosic (or second generation) ethanol provides better performance in terms of greenhouse gas (GHG) emissions savings and low risk of direct and indirect land-use change. However, despite the policy support (in terms of targets) and significant R&D funding in the last decade (both in EU and outside the EU), cellulosic ethanol production appears to be still limited. The paper provides a comprehensive overview of the status of cellulosic ethanol production in EU and outside EU, reviewing available literature and highlighting technical and non-technical barriers that still limit its production at commercial scale. The review shows that the cellulosic ethanol sector appears to be still stagnating, characterized by technical difficulties as well as high production costs. -
The Sustainability of Cellulosic Biofuels
The Sustainability of Cellulosic Biofuels All biofuels, by definition, are made from plant material. The main biofuel on the U.S. market is corn ethanol, a type of biofuel made using the starch in corn grain. But only using grain to produce biofuels can lead to a tug of war between food and fuel sources, as well as other environmental and economic challenges. Biofuels made from cellulosic sources – the leaves, stems, and other fibrous parts of a plant – have been touted as a promising renewable energy source. Not only is cellulose the most abundant biological material on Earth, but using cellulose to produce biofuels instead of grain can have environmental benefits. Cellulosic biofuel sources offer a substantially greater energy return on investment compared to grain-based sources. However, environmental benefits are not guaranteed. The environmental success of cellulosic biofuels will depend on 1) which cellulosic crops are grown, 2) the practices used to manage them, and 3) the geographic location of crops. Both grain-based and cellulosic biofuels can help lessen our use of fossil fuels and can help offset carbon dioxide emissions. But cellulosic biofuels are able to offset more gasoline than can grain-based biofuels – and they do so with environmental co-benefits. Cellulosic Biofuels Help Reduce Competition for Land Cellulosic fuel crops can grow on lands that are not necessarily suitable for food crops and thereby reduce or avoid food vs. fuel competition. If grown on land that has already been cleared, cellulosic crops do not further contribute to the release of carbon to the atmosphere. Because many cellulosic crops are perennial and roots are always present, they guard against soil erosion and better retain nitrogen fertilizer. -
Strategic Electrification and Codes
Strategic Electrification and Energy Codes February 2021 Table of Contents Introduction ................................................................................................................................................................3 Shifting the Code Conversation to Carbon .................................................................................................................4 Carbon Reduction through Strategic Electrification ...............................................................................................4 Combustion-Free Requirements ............................................................................................................................4 Code Adoption, Stretch Codes, and Electrification Opportunities in Code ................................................................5 Regional Code Adoption Landscape .......................................................................................................................5 Stretch Codes in the Region ...................................................................................................................................6 DC Stretch Code- Appendix Z .................................................................................................................................6 IECC 2021: Opportunities and Setbacks .................................................................................................................7 Electrification in Codes ...............................................................................................................................................8 -
Energy Recovery from Waste Incineration—The Importance of Technology Data and System Boundaries on CO2 Emissions
energies Article Energy Recovery from Waste Incineration—The Importance of Technology Data and System Boundaries on CO2 Emissions Ola Eriksson 1,* and Göran Finnveden 2 1 Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, University of Gävle, SE 801 76 Gävle, Sweden 2 Division of Environmental Strategies Research–fms, Department of Sustainable Development, Environmental Sciences and Engineering (SEED), School of Architecture and the Built Environment, KTH Royal Institute of Technology, SE 100 44 Stockholm, Sweden; goran.fi[email protected] * Correspondence: [email protected]; Tel.: +46-26-648145 Academic Editor: George Kosmadakis Received: 19 October 2016; Accepted: 12 April 2017; Published: 15 April 2017 Abstract: Previous studies on waste incineration as part of the energy system show that waste management and energy supply are highly dependent on each other, and that the preconditions for the energy system setup affects the avoided emissions and thereby even sometimes the total outcome of an environmental assessment. However, it has not been previously shown explicitly which key parameters are most crucial, how much each parameter affects results and conclusions and how different aspects depend on each other. The interconnection between waste incineration and the energy system is elaborated by testing parameters potentially crucial to the result: design of the incineration plant, avoided energy generation, degree of efficiency, electricity efficiency in combined heat and power plants (CHP), avoided fuel, emission level of the avoided electricity generation and avoided waste management. CO2 emissions have been calculated for incineration of 1 kWh mixed combustible waste. The results indicate that one of the most important factors is the electricity efficiency in CHP plants in combination with the emission level of the avoided electricity generation. -
For Cellulosic Ethanol Production 1 DESCRIPTION of the Formicobio
Appendix 1 formicobio™ technology 1 (2) for cellulosic ethanol production 1 DESCRIPTION OF THE formicobio™ TECHNOLOGY Chempolis’ formicobio™ is a technology for the production of cellulosic sugars and further ethanol. The technology has been specially developed for non-food raw materials (e.g. bamboo, bagasse, straws, oil palm biomass, and other agricultural residues), and it is based on selective fractionation of biomass with fully recoverable biosolvent containing formic acid. The formicobio™ technology avoids the main problems associated with other technologies developed for non-food raw materials and represents a true third- generation (3G) technology for the production of cellulosic sugars and further ethanol. The technology enables co-production of platform chemicals, such as acetic acid and furfural, which are used as raw materials in the production of paints, adhesives, and plastics, and as solvent and raw material for resins. Furfural can also be converted into synthetic diesel or gasoline ingredient by hydrogenation. In addition, combustion of co-produced solid biofuel (biocoal) can generate all the energy needed in biorefinery, with some surplus to be used in other production. The formicobio™ technology offers two principal options for the production of cellulosic ethanol: a) Production of ethanol from cellulose and chemicals from hemicelluloses b) Production of ethanol from cellulose and hemicelluloses with co-production of chemicals from hemicelluloses The principle of the technology (Option a) has been described as a simple block diagram in the picture below. The main steps in the process are the following: ‐ Selective fractionation of biomass with a fully recoverable biosolvent (i.e. formicodeli™). Fractionation takes place in a much lower temperature and pressure than pretreatment in typical 2G technologies. -
Study of Hydrogenation Derived Renewable Diesel As a Renewable Fuel Option in North America
Study of Hydrogenation Derived Renewable Diesel as a Renewable Fuel Option in North America Final Report Natural Resources Canada 580 Booth Street Ottawa, Ontario K1A 0E4 For additional information, please contact: Natalie Lambert Project Manager, Energy Telephone: 514 562-8651 Email: [email protected] March 30,2012 Experts in environment and natural resource economics ■stHSfesa ■ 825, Raoul-Jobin, Quebec (Quebec) Canada GIN 1S6 1097, St-Alexandre, Suite 201, Montreal (Quebec) Canada H2Z IPS www.ecoressources.com • [email protected] Study of Hydrogenation Derived Renewable Diesel as a Renewable Fuel Option in North America - Final Report Executive Summary As of 2011, 27 national governments and 29 state/province governments have implemented policies that mandate the use of a minimum amount of renewable alternatives to diesel, including Europe, six South American countries, six Asian countries, Canada, the United States, Costa Rica and the Dominican Republic. On June 29, 2011, the government of Canada registered regulations amending the Renewable Fuels Regulations which were then published on July 20, 201 11. These amendments stated that the coming into force date of the 2% requirement of renewable content in diesel and heating oil would be July 1st, 2011. Under the Renewable Fuels Regulations, both ester-based biodiesel and hydrogenation-derived renewable diesel (HDRD) are admissible as renewable content that can be used to meet the requirements of the Regulations. While biodiesel is the most widely available diesel fuel alternative, there has been increasing interest by the regulated parties in using HDRD to meet the requirements, even though HDRD is currently only produced in Europe, Southeast Asia and the United States 23. -
Annual Biodiesel and Renewable Di
141.422 Definitions for KRS 141.422 to 141.425. As used in KRS 141.422 to 141.425: (1) "Annual biodiesel and renewable diesel tax credit cap" means: (a) For calendar years beginning prior to January 1, 2008, one million five hundred thousand dollars ($1,500,000); (b) For the calendar year beginning on January 1, 2008, five million dollars ($5,000,000); (c) For calendar years beginning on or after January 1, 2009, but before January 1, 2021, ten million dollars ($10,000,000); (2) "Annual biodiesel, renewable diesel, and renewable chemical production tax credit cap" means, for calendar years beginning on or after January 1, 2021, ten million dollars ($10,000,000); (3) "Annual cellulosic ethanol tax credit cap" means five million dollars ($5,000,000), unless the annual cellulosic ethanol tax credit cap is modified pursuant to KRS 141.4248, in which case the cap established by KRS 141.4248 shall be the annual cellulosic ethanol tax credit cap for that year. Any adjustments to the annual cellulosic ethanol tax credit cap made pursuant to KRS 141.4248 shall be made on an annual basis and shall not carry forward to subsequent years; (4) "Annual ethanol tax credit cap" means five million dollars ($5,000,000), unless the annual credit cap is modified pursuant to KRS 141.4248, in which case the cap established by KRS 141.4248 shall be the annual ethanol tax credit cap for that year. Any adjustments to the annual ethanol tax credit cap made pursuant to KRS 141.4248 shall be made on an annual basis and shall not carry forward to subsequent years; -
No-Deforestation and Responsible Sourcing Guidelines for Renewable Feedstock
No-Deforestation and 1 (4) Responsible Sourcing Guidelines Public 4 April 2013 NESTE OIL NO-DEFORESTATION AND RESPONSIBLE SOURCING GUIDELINES FOR RENEWABLE FEEDSTOCK 1 Introduction Neste Oil believes that biofuels are an important contributor in combating climate change and moving to a low-carbon energy mix. We therefore want to ensure that the biofuels we provide to our customers are contributing to a sustainable future and that any negative impacts of production are thoroughly understood and mitigated. As deforestation is seen as one of the most serious problems with the use of biomass, we have developed these guidelines to make sure that our raw materials will not lead, either directly or indirectly, to loss of valuable forests. 2 General principles All of our feedstock sourcing already follows the requirements for sustainability performance as required by the European Union Renewable Energy1 and Fuel Quality Directives2 and by other international regulations relevant for our markets. This provides certain assurances regarding the protection of peatlands, forested areas, and protected areas, as described in annex 1 of these guidelines. We also do not source from areas that were converted from grassland after January 2008, pending the publication of the European Commission’s definition of highly biodiverse grassland. In addition to those requirements and also considering multi-stakeholder initiatives such as RSPO, we will only purchase biofuel or biofuel feedstock from sources that: Are fully traceable back to the point of origin; Are produced in compliance with local laws and regulations; Protect High Conservation Values as defined by the HCV Network3; Support the Free, Prior and Informed Consent4 of indigenous and local communities for activities on their customary lands; Protect High Carbon Stock (HCS) forest areas through an approach which uses various analytical methods such as satellite analysis and fieldwork to distinguish natural forest from degraded lands with only small trees, scrub, or grass remaining. -
Renewable Diesel Fuel
Renewable Diesel Fuel Robert McCormick and Teresa Alleman July 18, 2016 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Renewable Diesel Fuel Nomenclature • Renewable diesel goes by many names: o Generic names – Hydrogenated esters and fatty acids (HEFA) diesel – Hydrogenation derived renewable diesel (HDRD) – Green diesel (colloquialism) o Company trademark names – Green Diesel™ (Honeywell/UOP) – NExBTL® (Neste) – SoladieselRD® (Solazyme) – Biofene® (Amyris) – HPR Diesel (Propel branded product) – REG-9000™/RHD • Not the same as biodiesel, may be improperly called second generation biodiesel, paraffinic biodiesel – but it is incorrect and misleading to refer to it as biodiesel 2 RD is a Very Broad Term • Renewable diesel (RD) is essentially any diesel fuel produced from a renewable feedstock that is predominantly hydrocarbon (not oxygenates) and meets the requirements for use in a diesel engine • Today almost all renewable diesel is produced from vegetable oil, animal fat, waste cooking oil, and algal oil o Paraffin/isoparaffin mixture, distribution of chain lengths • One producer ferments sugar to produce a hydrocarbon (Amyris – more economical to sell this hydrocarbon into other markets) o Single molecule isoparaffin product 3 RD and Biodiesel • Biodiesel is solely produced through esterification of fats/oils • RD can be produced through multiple processes o Hydrogenation (hydrotreating) of fats/oils/esters o Fermentation -
Kesko Investor Presentation
Kesko Investor Presentation September 2017 K Group the Third Biggest Retail Operator in Northern Europe • K Group’s retail sales €12.9bn* • K Group formed by Kesko and 1,088 K-retailer entrepreneurs • Operations in nine countries • 45,000 trading sector professionals, over 30,000 in Finland • Significant social impact in Finland • Kesko shares listed on Nasdaq Helsinki with €4.4 bn market capitalisation and close to 42,000 shareholders (6/2017) *Pro forma rolling 12 mo 6/2017 2 Net Sales and Comparable Operating Profit by Division Net sales* Comparable operating profit* €890 million €31.9 million 8% 10% €4,724 million 40% €10,967 €274.8 52% €5,359 million €98.2 million 32% 58% €178.0 million million million Grocery trade Building and technical trade Car trade *Rolling 12 mo 6/2017 3 Growth Opportunities Supported by Megatrends Global Digital Urbanization, Consumers' Corporate Climate economy revolution single person knowledge responsibility change - international households and power has and strong operators and ageing increased brands challenge local population companies 5 The Core of Kesko’s Strategy is Profitable Growth in Three Strategic Areas Grocery trade Building and technical trade Car trade Retail sales €6.7bn* Retail sales €5.3bn* Retail sales €0.9bn* 1,300 stores in Finland 600 stores in 9 countries VW, Audi, Seat, Porsche and MAN trucks #2 in the Finnish retail market #1 in Northern Europe #1 in Finland #1 in Finnish food service business *Pro forma rolling 12 mo 6/2017 5 Growth Strategy Implementation is Progressing towards -
2017 District of Columbia Energy Conservation Code
2017 District of Columbia Energy Conservation Code 2017 District of Columbia Energy Conservation Code 2017 District of Columbia Energy Conservation Code First Printing: September 2020 COPYRIGHT © 2014 International Code Council, Inc. (for 2015 International Energy Conservation Code®) COPYRIGHT © 2020 Government of the District of Columbia (for new text) ALL RIGHTS RESERVED. This 2017 District of Columbia Energy Conservation Code contains substantial copyrighted materi- als from the 2015 International Energy Conservation Code®, third printing, which is a copyrighted work owned by the Interna- tional Code Council, Inc. (“ICC”). Without advance written permission from the ICC, no part of this book may be reproduced, distributed or transmitted in any form or by any means, including, without limitation, electronic, optical or mechanical means (by way of example, and not limitation, photocopying, or recording by or in an information storage retrieval system). For information on use rights and permissions, please contact: ICC Publications, 4051 Flossmoor Road, Country Club Hills, IL 60478. Phone 1- 888-ICC-SAFE (422-7233). The 2017 District of Columbia Energy Conservation Code contains substantial copyrighted material from the ANSI/ASHRAE/IES Standard 90.1—2013, which is a copyrighted work owned by ASHRAE. Without advance written permission from the copyright owner, no part of this book may be reproduced, distributed or transmitted in any form or by any means, including, without limita- tion, electronic, optical or mechanical means (by way of example, and not limitation, photocopying, or recording by or in an infor- mation storage retrieval system). For information on permission to copy material exceeding fair use, please contact: ASHRAE Publications, 1791 Tullie NE, Atlanta, GA 30329. -
The Implications of Increased Use of Wood for Biofuel Production
Date Issue Brief # ISSUE BRIEF The Implications of Increased Use of Wood for Biofuel Production Roger A. Sedjo and Brent Sohngen June 2009 Issue Brief # 09‐04 Resources for the Future Resources for the Future is an independent, nonpartisan think tank that, through its social science research, enables policymakers and stakeholders to make better, more informed decisions about energy, environmental, natural resource, and public health issues. Headquartered in Washington, DC, its research scope comprises programs in nations around the world. 1616 P Street NW Washington, DC 20036 202-328-5000 www.rff.org PAGE 2 SEDJO AND SOHNGEN | RESOURCES FOR THE FUTURE The Implications of Increased Use of Wood for Biofuel Production Roger A. Sedjo and Brent Sohngen1 Introduction The growing reliance in the United States and many other industrial countries on foreign petroleum has generated increasing concerns. Since the 1970s, many administrations have called for energy independence, with a particular focus on petroleum. Although energy sources are many, the transport sector is driven largely by petroleum. Despite calls for reduced oil imports, the United States increasingly depends on foreign supply sources. General concerns about the security of petroleum supply are compounded by added concerns about the emissions of greenhouse gases (GHGs) from fossil energy, including petroleum. While the United States did not ratify the Kyoto Protocol, efforts are increasing to find alternatives to petroleum as the dominant transport fuel. The major impediment to alternative fuels is generally their higher costs as well as the existing infrastructure, which has been developed to facilitate a petroleum‐driven economy. Europe is moving to supplement fossil fuel use with renewables, including biomass and particularly wood, in energy and heating functions in part through direct and indirect subsidies (e.g., Sjolie et al.