JESSICA COCCO.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Insect Survey of Four Longleaf Pine Preserves
A SURVEY OF THE MOTHS, BUTTERFLIES, AND GRASSHOPPERS OF FOUR NATURE CONSERVANCY PRESERVES IN SOUTHEASTERN NORTH CAROLINA Stephen P. Hall and Dale F. Schweitzer November 15, 1993 ABSTRACT Moths, butterflies, and grasshoppers were surveyed within four longleaf pine preserves owned by the North Carolina Nature Conservancy during the growing season of 1991 and 1992. Over 7,000 specimens (either collected or seen in the field) were identified, representing 512 different species and 28 families. Forty-one of these we consider to be distinctive of the two fire- maintained communities principally under investigation, the longleaf pine savannas and flatwoods. An additional 14 species we consider distinctive of the pocosins that occur in close association with the savannas and flatwoods. Twenty nine species appear to be rare enough to be included on the list of elements monitored by the North Carolina Natural Heritage Program (eight others in this category have been reported from one of these sites, the Green Swamp, but were not observed in this study). Two of the moths collected, Spartiniphaga carterae and Agrotis buchholzi, are currently candidates for federal listing as Threatened or Endangered species. Another species, Hemipachnobia s. subporphyrea, appears to be endemic to North Carolina and should also be considered for federal candidate status. With few exceptions, even the species that seem to be most closely associated with savannas and flatwoods show few direct defenses against fire, the primary force responsible for maintaining these communities. Instead, the majority of these insects probably survive within this region due to their ability to rapidly re-colonize recently burned areas from small, well-dispersed refugia. -
Tachinid (Diptera: Tachinidae) Parasitoid Diversity and Temporal Abundance at a Single Site in the Northeastern United States Author(S): Diego J
Tachinid (Diptera: Tachinidae) Parasitoid Diversity and Temporal Abundance at a Single Site in the Northeastern United States Author(s): Diego J. Inclan and John O. Stireman, III Source: Annals of the Entomological Society of America, 104(2):287-296. Published By: Entomological Society of America https://doi.org/10.1603/AN10047 URL: http://www.bioone.org/doi/full/10.1603/AN10047 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. CONSERVATION BIOLOGY AND BIODIVERSITY Tachinid (Diptera: Tachinidae) Parasitoid Diversity and Temporal Abundance at a Single Site in the Northeastern United States 1 DIEGO J. INCLAN AND JOHN O. STIREMAN, III Department of Biological Sciences, 3640 Colonel Glenn Highway, 235A, BH, Wright State University, Dayton, OH 45435 Ann. Entomol. Soc. Am. 104(2): 287Ð296 (2011); DOI: 10.1603/AN10047 ABSTRACT Although tachinids are one of the most diverse families of Diptera and represent the largest group of nonhymenopteran parasitoids, their local diversity and distribution patterns of most species in the family are poorly known. -
To Us Insectometers, It Is Clear That Insect Decline in Our Costa Rican
SPECIAL FEATURE: PERSPECTIVE To us insectometers, it is clear that insect decline in our Costa Rican tropics is real, so let’sbekindto SPECIAL FEATURE: PERSPECTIVE the survivors Daniel H. Janzena,1 and Winnie Hallwachsa Edited by David L. Wagner, University of Connecticut, and accepted by Editorial Board Member May R. Berenbaum November 11, 2020 (received for review April 6, 2020) We have been field observers of tropical insects on four continents and, since 1978, intense observers of caterpillars, their parasites, and their associates in the 1,260 km2 of dry, cloud, and rain forests of Area´ de Conservaci ´onGuanacaste (ACG) in northwestern Costa Rica. ACG’s natural ecosystem restoration began with its national park designation in 1971. As human biomonitors, or “insectometers,” we see that ACG’s insect species richness and density have gradually declined since the late 1970s, and more intensely since about 2005. The overarching perturbation is climate change. It has caused increasing ambient tempera- tures for all ecosystems; more erratic seasonal cues; reduced, erratic, and asynchronous rainfall; heated air masses sliding up the volcanoes and burning off the cloud forest; and dwindling biodiversity in all ACG terrestrial ecosystems. What then is the next step as climate change descends on ACG’s many small-scale successes in sustainable biodevelopment? Be kind to the survivors by stimulating and facilitating their owner societies to value them as legitimate members of a green sustainable nation. Encourage national bioliteracy, BioAlfa. climate change | BioAlfa | conservation by rewilding | biodevelopment | insect decline As “insectometers,” also known as human biomoni- eventually focused into Area´ de Conservaci ´onGuana- tors, we have watched the conspicuous ongoing de- caste (ACG) in northwestern Costa Rica (8–13) (Fig. -
Diptera: Tachinidae), from Area De Conservación Guanacaste, Northwestern Costa Rica, with a Key for Their Identification
Biodiversity Data Journal 3: e4595 doi: 10.3897/BDJ.3.e4595 Taxonomic Paper Three new species of Trigonospila Pokorny (Diptera: Tachinidae), from Area de Conservación Guanacaste, northwestern Costa Rica, with a key for their identification AJ Fleming‡‡, D. Monty Wood , Daniel H Janzen§, Winnie Hallwachs§, M. Alex Smith | ‡ Agriculture Agri-Food Canada, Ottawa, Canada § University of Pennsylvania, Philadelphia, PA, United States of America | Department of Integrative Biology, Guelph, Canada Corresponding author: AJ Fleming ([email protected]) Academic editor: Pierfilippo Cerretti Received: 26 Jan 2015 | Accepted: 07 Aug 2015 | Published: 11 Aug 2015 Citation: Fleming A, Wood D, Janzen D, Hallwachs W, Smith M (2015) Three new species of Trigonospila Pokorny (Diptera: Tachinidae), from Area de Conservación Guanacaste, northwestern Costa Rica, with a key for their identification. Biodiversity Data Journal 3: e4595. doi: 10.3897/BDJ.3.e4595 ZooBank: urn:lsid:zoobank.org:pub:E334B70E-8CD1-4E4A-9E00-08F77A36F178 Abstract We describe three new species of Trigonospila Pokorny (Tachinidae: Blondeliini) from Area de Conservación Guanacaste (ACG), northwestern Costa Rica. All were reared from various species of ACG caterpillars during an ongoing inventory of caterpillars, their food plants and their parasitoids in dry forest, rain forest and cloud forest. By coupling morphology, photographic documentation, life history and molecular data, we provide a clear and concise description of each species. All species published as new, are known to be previously undescribed as a result of careful study of the genus by DMW. This study builds on the current knowledge of the genus by adding three new species to the current 7 described in the New World. -
A Re-Analysis of the Data in Sharkey Et Al.'S (2021) Minimalist Revision
bioRxiv preprint doi: https://doi.org/10.1101/2021.04.28.441626; this version posted April 29, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A re-analysis of the data in Sharkey et al.’s (2021) minimalist revision reveals that BINs do not deserve names, but BOLD Systems needs a stronger commitment to open science Rudolf Meier1,2, Bonny Blaimer2, Eliana Buenaventura2, Emily Hartop3,4, Thomas von Rintelen2, Amrita Srivathsan1, Darren Yeo1 1 Department of Biological Sciences, National University of Singapore, Singapore 2 Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Center for Integrative Biodiversity Discovery, Berlin, Germany 3 Zoology Department, Stockholms Universitet, Stockholm, Sweden 4 Station Linné, Öland, Sweden bioRxiv preprint doi: https://doi.org/10.1101/2021.04.28.441626; this version posted April 29, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Halting biodiversity decline is one of the most critical challenges for humanity, but biodiversity assessment and monitoring are hampered by taxonomic impediments. We here distinguish between a “dark taxon impediment” caused by a large number of undescribed species and a “superficial description impediment” caused by species descriptions so imprecise that type specimens have to be consulted in order to resolve species identities. -
Contributions Toward a Lepidoptera (Psychidae, Yponomeutidae, Sesiidae, Cossidae, Zygaenoidea, Thyrididae, Drepanoidea, Geometro
Contributions Toward a Lepidoptera (Psychidae, Yponomeutidae, Sesiidae, Cossidae, Zygaenoidea, Thyrididae, Drepanoidea, Geometroidea, Mimalonoidea, Bombycoidea, Sphingoidea, & Noctuoidea) Biodiversity Inventory of the University of Florida Natural Area Teaching Lab Hugo L. Kons Jr. Last Update: June 2001 Abstract A systematic check list of 489 species of Lepidoptera collected in the University of Florida Natural Area Teaching Lab is presented, including 464 species in the superfamilies Drepanoidea, Geometroidea, Mimalonoidea, Bombycoidea, Sphingoidea, and Noctuoidea. Taxa recorded in Psychidae, Yponomeutidae, Sesiidae, Cossidae, Zygaenoidea, and Thyrididae are also included. Moth taxa were collected at ultraviolet lights, bait, introduced Bahiagrass (Paspalum notatum), and by netting specimens. A list of taxa recorded feeding on P. notatum is presented. Introduction The University of Florida Natural Area Teaching Laboratory (NATL) contains 40 acres of natural habitats maintained for scientific research, conservation, and teaching purposes. Habitat types present include hammock, upland pine, disturbed open field, cat tail marsh, and shallow pond. An active management plan has been developed for this area, including prescribed burning to restore the upland pine community and establishment of plots to study succession (http://csssrvr.entnem.ufl.edu/~walker/natl.htm). The site is a popular collecting locality for student and scientific collections. The author has done extensive collecting and field work at NATL, and two previous reports have resulted from this work, including: a biodiversity inventory of the butterflies (Lepidoptera: Hesperioidea & Papilionoidea) of NATL (Kons 1999), and an ecological study of Hermeuptychia hermes (F.) and Megisto cymela (Cram.) in NATL habitats (Kons 1998). Other workers have posted NATL check lists for Ichneumonidae, Sphecidae, Tettigoniidae, and Gryllidae (http://csssrvr.entnem.ufl.edu/~walker/insect.htm). -
UF/IFAS Annual Report of Peer-Reviewed Journal Articles – 2018 Master List – Unique Titles
UF/IFAS Annual Report of Peer-reviewed Journal Articles – 2018 Master List – Unique Titles Abbate, A., Campbell, J., Bremer, J., & Kern, W. H. (2018). The introduction and establishment of Campsomeris dorsata (Hymenoptera: Scoliidae) in Florida. Florida Entomologist, 101(3), 543- 545. Abdelbasir, S. M., El-Sheikh, S. M., Morgan, V. L., Schmidt, H., Casso-Hartmann, L. M., Vanegas, D. C., Velez-Torres, I., & McLamore, E. S. (2018). Graphene-anchored cuprous oxide nanoparticles from waste electric cables for electrochemical sensing. ACS Sustainable Chemistry & Engineering, 6(9), 12176-12186. Abdulridha, J., Ampatzidis, Y., Ehsani, R., & de Castro, A. I. (2018). Evaluating the performance of spectral features and multivariate analysis tools to detect laurel wilt disease and nutritional deficiency in avocado. Computers and Electronics in Agriculture, 155, 203-211. AbouEl Ela, N. A., El-Nesr, K. A., Ahmed, H. A., & Brooks, S. A. (2018). Molecular detection of severe combined immunodeficiency disorder in Arabian horses in Egypt. Journal of Equine Veterinary Science, 68, 55-58. Abountiolas, M., Kelly, K., Yagiz, Y., Li, Z., Mahnken, G., Borejsza-Wysocki, W., Marshall, M., Sims, C. A., Peres, N., & Nunes, M. C. D. (2018). Sensory quality, physicochemical attributes, polyphenol profiles, and residual fungicides in strawberries from different disease-control treatments. Journal of Agricultural and Food Chemistry, 66(27), 6986-6996. Abrahamian, P., Timilsina, S., Minsavage, G. V., Sushmita, K. C., Goss, E. M., Jones, J. B., & Vallad, G. E. (2018). The type III effector AvrBsT enhances Xanthomonas perforans fitness in field- grown tomato. Phytopathology, 108(12), 1355-1362. Abrahamsen, E. B., Moharamzadeh, A., Abrahamsen, H. B., Asche, F., Heide, B., & Milazzo, M. -
Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring Within the Kahului Airport Environs, Maui, Hawai‘I: Synthesis Report
Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Prepared by Francis G. Howarth, David J. Preston, and Richard Pyle Honolulu, Hawaii January 2012 Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Francis G. Howarth, David J. Preston, and Richard Pyle Hawaii Biological Survey Bishop Museum Honolulu, Hawai‘i 96817 USA Prepared for EKNA Services Inc. 615 Pi‘ikoi Street, Suite 300 Honolulu, Hawai‘i 96814 and State of Hawaii, Department of Transportation, Airports Division Bishop Museum Technical Report 58 Honolulu, Hawaii January 2012 Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright 2012 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2012 001 to the Hawaii Biological Survey COVER Adult male Hawaiian long-horned wood-borer, Plagithmysus kahului, on its host plant Chenopodium oahuense. This species is endemic to lowland Maui and was discovered during the arthropod surveys. Photograph by Forest and Kim Starr, Makawao, Maui. Used with permission. Hawaii Biological Report on Monitoring Arthropods within Kahului Airport Environs, Synthesis TABLE OF CONTENTS Table of Contents …………….......................................................……………...........……………..…..….i. Executive Summary …….....................................................…………………...........……………..…..….1 Introduction ..................................................................………………………...........……………..…..….4 -
DESENVOLVIMENTO E SOBREVIVÊNCIA DE Euborellia Annulipes COM DIETA VEGETAL, ANIMAL E MISTA MAYSA PEREIRA TOMÉ
DESENVOLVIMENTO E SOBREVIVÊNCIA DE Euborellia annulipes COM DIETA VEGETAL, ANIMAL E MISTA MAYSA PEREIRA TOMÉ UNIVERSIDADE ESTADUAL DA PARAÍBA CAMPINA GRANDE-PB FEVEREIRO DE 2018 DESENVOLVIMENTO E SOBREVIVÊNCIA DE Euborellia annulipes COM DIETA VEGETAL, ANIMAL E MISTA MAYSA PEREIRA TOMÉ Dissertação apresentada ao Programa de Pós-Graduação em Ciências Agrárias da Universidade Estadual da Paraíba / Embrapa Algodão, como parte das exigências para obtenção do título de Mestre em Ciências Agrárias / Área de Concentração: Agricultura familiar e sustentabilidade. Orientador: Prof. Dr. Carlos Alberto Domingues da Silva UNIVERSIDADE ESTADUAL DA PARAÍBA CAMPINA GRANDE-PB FEVEREIRO DE 2018 ii AGRADECIMENTOS A Deus por ter estado comigo em todos os momentos da vida. A Ele toda honra e toda minha gratidão! Aos meus pais, Genilda e “Mayca”, por investirem nos meus sonhos e por acreditarem em mim até quando eu mesma duvidei. Nunca terei como retribuir tamanho amor. Vocês são os melhores pais que Deus poderia ter me dado. Ao meu orientador, Carlos Alberto Domingues da Silva, pela amizade, profissionalismo, dedicação, paciência, ensinamentos e auxílio na confecção desta dissertação. À Embrapa Algodão, por disponibilizar sua infraestrutura e assim possibilitar o desenvolvimento dessa pesquisa. À UEPB e ao PPGCA, pelas condições oferecidas para realização do mestrado em Ciências Agrárias. Às professoras da UEPB, Élida Corrêa pela orientação no estágio de docência e participação na banca examinadora; e a Avany Gusmão pela contribuição externa ao nosso trabalho. À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), pela concessão da bolsa. Aos técnicos do laboratório de Entomologia, Airton, Antônio e Eduardo pelos momentos de alegria e descontração, companheirismo e experiência compartilhada. -
View the PDF File of the Tachinid Times, Issue 12
The Tachinid Times ISSUE 12 February 1999 Jim O’Hara, editor Agriculture & Agri-Food Canada, Biological Resources Program Eastern Cereal and Oilseed Research Centre C.E.F., Ottawa, Ontario, Canada, K1A 0C6 Correspondence: [email protected] The Tachinid Times began in 1988 when personal Evolution of Egg Structure in Tachinidae (by S.P. computers were gaining in popularity, yet before the Gaponov) advent of e-mail and the World Wide Web. A newsletter Using a scanning electron microscope I investigated distributed through the mail seemed like a useful the egg structure of 114 species of Tachinidae. The endeavour to foster greater awareness about the work of research was focused on the peculiarities of the egg others among researchers interested in the Tachinidae. surface and the structure of the aeropylar area. Data on Now, eleven years later, despite the speed and the method of egg-laying, the structure of the female convenience of e-mail and other advanced modes of reproductive system and the host range were also taken communication, this newsletter still seems to hold a place into consideration. Since any kind of adaptation is a in the distribution of news about the Tachinidae. If there result of evolution and every stage of ontogenesis, is sufficient interest - and submissions - over the course including the egg stage, is adapted to some specific of the next year, then another issue will appear in environmental conditions, each stage of ontogenesis February of the new millennium. As always, please send evolved more or less independently. The development of me your news for inclusion in the newsletter before the provisionary devices (coenogenetic adaptations) and their end of next January. -
Kha Pipet! Richard D
AGGREGATION, COURTSHIP, AND BEHAVIORAL INTERACTIONS IN EUROPEAN EARWIGS, FORFICULA AURICULARIA L. (DERMAPTERA: FORFICULIDAE) by Karen Ann Walker Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY IN ENTOMOLOGY APPROVED: Kha pipet! Richard D. Fell, Chair Jeffrey R. Bloomquist _ ““FtiomasA. Jenssen A, ph Donald E. Mullins W. Wayne Surles April 11, 1997 Blacksburg, Virginia Keywords: European earwig, aggregation, courtship, social behavior ct LD 5655 V8S6 99 F W354 AGGREGATION, COURTSHIP, AND BEHAVIORAL INTERACTIONS IN EUROPEAN EARWIGS, FORFICULA AURICULARIA L. (DERMAPTERA: FORFICULIDAE) by Karen Ann Walker Richard D. Fell, Chairman (ABSTRACT) Due to its relatively cool, humid summers, southwestern Virginia provides an ideal climate for European earwigs, Forficula aunculana.. |In 1990 - 1992, nymphs were captured in wooden groove-board traps beginning in late May , adults were captured beginning in mid-June, and disappeared from sampling sites by September or October. Sex ratios were significantly female-biased most of the season, becoming more marked by the fall. The pest status of F. auncularia is exacerbated by its gregarious nature. Gas chromatography-mass spectroscopy and accompanying behavioral bioassays showed that aggregation occurred as a result of a pheromone located on the male cuticle, which is probably a minor component of the hydrocarbon profile. Approximately 88% of the detected volatiles on the cuticle were identified. as a series of normal and branched alkanes. Fatty acids and hydrocarbons were also identified in nymphal and adult legs, but these extracts were not attractive. Frass, which also contained fatty acids and hydrocarbons, was attractive, but likely acquired its attractancy through the earwigs’ proclivity for consuming carcasses and exuviae. -
Moths: Lepidoptera
Moths: Lepidoptera Vítor O. Becker - Scott E. Miller THE FOLLOWING LIST summarizes identi- Agency, through grants from the Falconwood fications of the so-called Macrolepidoptera Corporation. and pyraloid families from Guana Island. Methods are detailed in Becker and Miller SPHINGIDAE (2002). Data and illustrations for Macrolepi- doptera are provided in Becker and Miller SPHINGINAE (2002). Data for Crambidae and Pyralidae will Agrius cingulatus (Fabricius 1775). United States be provided in Becker and Miller (in prepara- south to Argentina. tion). General, but outdated, background infor- Cocytius antaeus (Drury 1773). Southern United mation on Crambidae and Pyralidae are pro- States to Argentina. vided by Schaus (1940). Data for Pterophoridae Manduca sexta (Linnaeus 1763). Widespread in are provided in Gielis (1992) and Landry and the New World. Gielis (1992). Author and date of description Manduca rustica (Fabricius 1775). Widespread in are given for each species name. Earlier dates the New World. were not always printed on publications; those Manduca brontes (Drury 1773). Antilles north to in square brackets indicate that the year was Central Florida. determined from external sources not the pub- lication itself As in previous lists, authors' MACROGLOSSINAE names are put in parentheses when their Pseudosphinx tetrio (Linnaeus 1771). (See plate generic placement has been revised. Detailed 37.) United States through the Antilles to acknowledgments are provided in Becker and Argentina. Miller (2002), but, in addition, we are espe- Erinnyis alope (Drury 1773). Widespread in the cially grateful to C. Gielis, E.G. Munroe, M. New World. Shaffer, and M. A. Solis for assistance with iden- Erinnyis ello (Linnaeus 1758). Neotropical.